Overview of Digital Panel Meters

■ The Role of Digital Panel Meters

Digital Panel Meters digitally process measurement data such as analog signals from linear sensors (including voltages and currents) and pulse signals. It then converts and displays the data. They can also act as interfaces (see note) by performing operations such as comparisons with user-set values, and transmitting data to computers and PLCs.

OMRON Digital Panel Meters have good visibility in the field, are easy to use, are waterproof, and conform to international standards. Communications with host computers or programmable controllers have been improved to provide functionality for advanced information systems, such as data collection to increase operating rates and data recording capabilities to provide for implementing measures for PL laws and ISO.

Note: An interface is the boundary between two devices.

■ Analog Signals

- An analog signal is signal that changes continuously.
 Types: 4 to 20 mA DC
 1 to 5 VDC
 0 to 5 VDC
 0 to 10 VDC

A Wide Range of Voltages/Currents

Displacement, Length Measurement, or Linear Output Sensors

- Parallel Beam Linear Sensor
- Ultrasonic Sensor
- Inductive Proximity Sensor
- Pressure Sensor
Main Functions

Scaling
Scaling is a function that converts the signal output from various sensors into physical measurement units (pressure, level, flow, etc.) before displaying it. There are two scaling methods, one of which sets two points: any input value and its corresponding converted value. The other method is teaching by actual inputs.

Position Meter
The present measurement value is displayed as a position in relation to the scaling width on a 20-gradation position meter.

Average Processing
Average processing of input signals with extreme variations eliminates flicker in the display and reduces the effect of noise in the input signal. There are two types of averages that can be used, the simple average and the moving average.

Forced Zero
It is possible to shift the present value to zero by selecting zero from the front-panel keys. It is useful for setting reference values for measurement.

Timing Chart of a Forced Zero

Timing Hold
Prompted by an external timing signal, it can simultaneously measure the maximum value, minimum value, and the difference between maximum and minimum values.

Maximum/Minimum Hold
Holds the maximum and minimum measurement values.

Display Color Selection
The color of the PV display can be set to either green or red. It is also possible to set the current value to change color according to the status of the comparative output.

Bank Selection
It is possible to switch between eight comparative value banks using the keys on the front-panel or external inputs.
RS-232C (Recommended Standard 232C)
RS-232C is a modem interface standard for serial communications defined by the Electronic Industries Alliance (EIA). It defines the electrical specifications, type, and function of the signal line, as well as the mechanical characteristics.

RS-422 and RS-485 (Recommended Standard 422 and 485)
Both RS-422 and RS-485 are standards that specify the electrical characteristics of a balanced differential interface between drivers and receivers defined by the EIA, both are similar in many aspects. RS-422 allows multiple signal receivers to connect to one driver (signal sender) on the same bus. It does not consider multiple drivers. RS-485 is an extension to RS-422, permitting multiple drivers with tri-state output, and allowing for a multi-drop (party line) structure.
It is possible to transmit at a higher speed with an RS-485 compared to the RS-232C standard, which is suitable only for transmission below 20 kbits/s.

RFI (Radio Frequency Interference)
The effect from external electromagnetic fields. A type of EMI (Electromagnetic Interference).

Isolation
DC isolation of the input and output signals of a device.
For example, when using a thermocouple to measure the temperature within an electric oven, isolation is used to obtain accurate measurements.

Analog Signal
A signal with a continuous amplitude.

Annunciator
A process monitoring system whereby indicators are installed on the panel and control console to represent different stages of the process. If an error occurs, the corresponding indicator lights and an alarm sounds to provide notification of the error.

EMI (Electromagnetic Interference)
The effect of external electromagnetic fields on device circuits and parts.

Impedance
Refer to Output Impedance and Input Impedance.

SSR (Solid State Relay)
Also called a non-contact relay, a solid state relay is an electronic switch that works without any moving parts. The most common is a photo-triac.

Response
Refer to Frequency Response and Step Response.

Response Time
For a step response, the response time is the time taken for a target value, display value, or an output signal to settle within a specified range of the final value.
(For DC output devices, it often means the time taken for the signal get from 0% to 90%)

Temperature Coefficient
For the ambient operating temperature of a device, the amount of temperature change due to the ambient temperature deviating from the reference temperature causes changes in the physical properties of the device. The temperature coefficient is the relative change of a physical property when the temperature is changed. (Often indicated as a percentage of the span per unit of temperature.)

Cascade Control
Cascade control is a feedback control system that uses the output of one controller to manipulate the set point of other controllers.

Accuracy
When using an OMRON signal generator and measurement device to take measurements under normal operating conditions, accuracy is defined as the difference between the ideal output and the actual output expressed as a percentage of the output span.

Allowable Load Resistance
The range of load resistance values for which performance is given.

Common Mode Rejection Ratio
Describes how well an instrument can reject the effect of common-mode voltage entering on the input from the output. It is usually expressed in decibels (dB). It is the ratio between the common-mode voltage on the input terminals of the device and the differential input signals required to achieve the same characteristics in the output signal.

Common Mode Voltage
Noise voltage caused by external induction appears at the two input terminals. It has the same amplitude and phase at both input terminals. The common-mode voltage is the algebraic average of the instantaneous values of the two voltages.

Error
The difference between measured value, set value, or rated value, and the measured or supplied true value.

Repeatability/Reproducibility
The extent to which the measurements of the same item under the same conditions match when any or all of the following are changed: the person who is taking the measurements, the measuring device, the location, or time. (The degree of repeatability is usually expressed as a percentage of the span.)

Difference Input
The difference between two input terminals when a common-mode voltage is applied to both terminals.

Cyclic Redundancy Check (CRC)
A type of block check for data transmission. It is a popular error checking method as it is simple to implement and has an excellent error detecting ability.
Root-Mean-Square Value
The square root of the mean of the squares of the instantaneous values of AC current or voltage. Also called RMS value.

Time Constant
For a first-order linear time-invariant system, the time constant is the time taken for the step response to reach about 63% of its final value.

Frequency Response
The change in gain and phase of the steady-state output as a response to the input frequency of a sinusoidal wave.

Output Impedance
Impedance of an active device seen from its output terminals. Like input impedance, it can also be called output resistance.

Output Bias
Output value when the product is idle (i.e., when the input is at the minimum value or there is no input).
For example, if the output is 1 to 5 V, 1 V is the output bias. If the output is 0 to 5 V, 0 V is the output bias.

Signal
Refer to Analog Signal and Digital Signal.

Step Response
Response of a system to an instantaneous change in input from one constant value to another.

Span
Difference between the maximum and minimum values of a range.
For example, if the range is −15 to 100°C, the span is 115°C.

Split Control
Controlling two or more different elements with one control signal.
For example, for a system that controls hot water temperature with separate control valves for hot and cold water, if both valve position motors are set at 0% to 50%, the hot water valve is controlled open at 100% to 0% but the cold water valve remains at 0%. If the setting is at 50% to 100%, the hot water valve remains at 0% and the cold water valve is controlled open at 0% to 100%.

Control
Refer to Cascade Control, Split Control, PID Control.

Insulation Resistance
The electrical resistance between two conductors separated by insulating material. The electrical resistance between inputs, outputs, and power source circuits is often of concern for electrical measurements.

Zero Elevation
Shifting the measurement range to the positive direction is called zero elevation.
For example, if the measurement range is −25 to +100°C, zero elevation is 25°C.

Zero Suppression
Shifting the measurement range to the negative direction is called zero suppression.
For example, if the measurement range is 0.2 to 1.0 kgf/cm², the zero suppression is 0.2 kgf/cm².

Zero Bias
Zero-suppression and zero-elevation together is called zero bias.
(Generally it means that the bias is zero.)

Resistance Temperature Sensor
A temperature sensor that uses a resistor element which varies in resistance depending on the temperature. The resistor element may be made from platinum, nickel, or bronze. The platinum type is commonly used for measurements in the temperature range between −200 and 650°C. In addition to the two-wire configuration, there are three-wire and four-wire configurations to compensate the lead-wire resistances. The three-wire configuration has one line connected to one end of the resistor and two on the other, and the four-wire configuration has two lines connected on either terminals of the resistor.

Time Sharing
A technique used to run two or more processes concurrently with one processor by alternating the run time.

Dielectric Strength/Withstand Voltage
The amount of voltage the insulation of an electrical device can withstand in a fixed period of time.

Neutral Zone
The area between the two set points of a three-position switch.

Linearity
The degree of deviation from a linear relationship between input and output signals. (The degree of linearity is generally indicated as a percentage of the span.)

Digital Signal
Signals that express numbers in a discrete state.

Electric Power
The amount of work done by electricity in one unit of time. In other words, the amount of electrical energy consumed in one unit of time.
Refer to Reactive Power, Apparent Power, and Active Power.

Input
Refer to Differential Input and Floating Input.
Input Impedance

Impedance of an active device seen from its input terminals. Often indicated by the equivalent impedance of the parallel resistance and capacitance. For DC measuring devices it is simply called input resistance.

Thermocouple

A thermocouple is a type of temperature sensor that uses two conductors of different metals that generate a voltage across its junction due to the thermoelectric effect. The potential difference across the junction corresponds to the temperature at the measuring junction (thermocouple junction) compared to the temperature at the reference junction (also known as the cold junction), which is held at a constant temperature (e.g., 0°C). The potential difference depends on the type of metals used in addition to the difference in temperatures at the junctions. Common types of thermocouples are R (platinum/platinum rhodium), K (chromel/alumel), E (chromel/constantan), and T (copper/constantan).

Normal Mode Rejection Ratio

Describes how well an instrument can reject the effect of normal-mode voltage entering on the input from the output. It is usually expressed in decibels (dB). It is the ratio between the normal-mode voltage on the input terminals of the device and the increase required in the input signals to achieve the same characteristics in the output signal.

Normal Mode Voltage

Undesirable input voltage superimposed on the measurement voltage, such as potential difference of the measuring conductors or induction voltage. Also called series mode voltage.

Burnout (Protection)

When there is no input, the output is increased or decreased, to whichever way is safe.

For example, when temperature is controlled using a thermocouple as the sensor, if the thermocouple breaks down due to a burnout, the input is cut off. When this is detected, it may be incorrectly determined as a temperature drop, resulting in the heat controller increasing the temperature and causing overheating. By implementing a burnout protection function, this kind of overheating can be prevented.

Byte

A group of adjacent bits treated as one unit. Often consists of 8 bits.

Bus

A signal communications line where many devices share the same connection. Data can be transferred from any of the signal sources to any of the receivers connected to the bus.

Parity Check

A parity bit is added to a data set as a binary digit to indicate whether the number of ones in a given set of bits is even or odd. It acts as an error detecting code.

Proportional Plus Integral Plus Derivative Control (PID Control)

A control loop that uses signals proportional to the linear combination of the input, the time integral of the input, and the time derivative of the input to control the output.

Binary Coded Decimal (BCD)

Each digit of a decimal number is represented by four binary bits. For example, decimal number 23 would be expressed as 0010 0011.

Hysteresis

Properties of equipment and devices where the output value depends on the immediately preceding history of the applied input.

Apparent Power

Apparent power is the simple product of voltage and current supplied to an AC device and is expressed in VA (volt-amperes). It describes the ability of AC devices and power sources to supply current at a given voltage to transformers and motors.

Bit

Short for "binary digit." It is either 1 or 0, and refers to a digit in a binary numeral system. It is the smallest unit of information.

Proportional Band

The range of change in the input (%) required for the output to go from 0% to 100% during proportional action.

Load Resistance

Refer to Tolerated Load Resistance.

Dead Band

The range of input variations where the no change is detected in the output variable. This characteristic is also called the neutral zone.

Frame

In a multiplex structure, a message is transmitted using a time-sharing method. Under this arrangement, a frame is a set of consecutive pulse signals conveying the information on the transmission line.

Floating Input

Input terminals that are isolated from the outer casing, power source, and various output terminals (JIS definition).
Negative Logic
There are two ways to assign high and low voltage levels and to the information bits 0 and 1. One is to make 0 correspond to low, and 1 to high, which is called positive logic. The other is in reverse, where 0 corresponds to high and 1 to low, which is called negative logic.

Compensating Lead Wire
An insulated pair of conductors with similar properties to the thermocouple is connected between the thermocouple terminals and the reference junction to compensate for measurement errors caused by temperature change at the thermocouple terminals.

Reactive Power
The portion of power supply (apparent power) that is actually used by an AC machine is the active power, and the portion of power due to stored energy, which returns to the source in each cycle, is known as reactive power. The unit for reactive power is Var.

It is the product of the voltage and current flowing in the device multiplied by the sine value of the phase difference (θ).

Reactive power \(Q = \text{Voltage} \times \text{Current} \times \text{Reactive ratio} \times \sin(\theta) \) (Var)

Active power \(P^2 + Q^2 = S^2 \) (Apparent power)

Active Power
The portion of the power supply that is used by an AC machine is called active power, in units of W (watts). It is the product of voltage, current, and the cosine value of the phase difference (θ). The value cos(θ) is referred as the power ratio, meaning the portion of power that is useful.

Power Factor
When AC voltage \(E \) is applied to a load (the device), the phase of the AC current \(I \) flowing in it generally lags behind the voltage \(E \) by amount \(\theta \). More specifically, when the load is purely resistive, there is no phase shift. When the load is inductive (i.e. a coil), it lags by \(\theta \). When the load is capacitive (i.e. a condenser), it leads by \(\theta \).

Linearizer
For example with a thermocouple, a detection signal (mV) which has a non-linear relationship with the measurement (temperature) can be used as an input. A linearizer takes this signal and converts it into an output signal that is proportional (linear relationship) to the measured value.

Range
The difference between minimum and maximum values that an input or output can reach.

Load Cell
A load cell is a sensor that detects load or force. A strain gauge is a commonly used type of load cell.

- **Bridge Resistance**
The standard resistance seen from the load cell input/output terminals (AB/CD) at ambient temperature. Normally 350 Ω.

- **Excitation Voltage**
Supply voltage applied across the load cell bridge resistance (A–B), normally 5 or 10 V.

- **Rated Output Voltage**
The voltage output when the maximum load corresponding to an additional 1 V is applied to the load cell. Normally 2 mV/V.

Cold Junction Compensation
Also called reference junction compensation. When measuring temperature using thermocouples, the reference terminal may not be held at 0°C, but at the surrounding temperature of \(T_1 \) °C instead.
Precautions for Correct Use of Digital Panel Meters

Refer to Safety Precautions for All Digital Panel Meters.

Countermeasures Against Noise

1. Install the product as far as possible from devices that generate strong high-frequency fields (such as high frequency welders or sewing machines) or surges.

2. Install surge absorbers or noise filters on nearby devices that generate noise (particularly motors, transformers, solenoids, magnet coils, and other devices that have a high inductive component).

3. To prevent inductive noise, separate the terminal block wiring for the product from high-voltage or high-current power lines. Do not route the wiring for the product in parallel with or tie it in a bundle with power lines. It is also effective to separate the conduits and ducts, or use shielded cables.

Countermeasures Against Inductive Noise

Analog Signal Inputs

Temperature Inputs

Separate the lead wire that connects the product with a temperature sensor from the load line to prevent the product from being affected by inductive noise.

4. When using a noise filter for the power supply, check the voltage and current and install the filter as close as possible to the Digital Panel Meter.

5. Do not install the product near radios, television sets, or wireless devices. Doing so may cause reception interference.

Water Resistance

Products that have no specified degree of protection and IP₀ models are not waterproof.
Q&A for Digital Panel Meters

Q1 Are the settings retained when power is turned OFF?

A1 The settings are stored in non-volatile memory and therefore retained even if power is turned OFF. (Non-volatile memory can be written 100,000 times.)

Communications settings are also saved to the non-volatile memory, so do not exceed the specified number of rewrites.

Q2 What is the display error for the K3HB-X?

A2 Example 1: For the K3HB-X, the input range is 0.0 to 400.0 V (AC voltage input type) and the input is 100 V.

The accuracy for an AC voltage input, range A (measurement range 0.0 to 400.0 V) device is ±0.3% rdg ±5 digits. The corresponding display error is as follows:

100 V × (±0.3%) = ±0.3 V
±5 digits = ±0.5 V
Display accuracy = 100 V ±0.8 V

However, when the input range is 0.0 to 400.0 V and the input signal is below 10% of the maximum input value (e.g. 30 V), the accuracy becomes ±0.15%.

Note: 1. The accuracy is for an input frequency range of 40 Hz to 1 kHz (except for AC current inputs A and B for which the range is 50 to 60 Hz) and an ambient temperature of 23 ±5°C. The error, however, increases below 10% of the maximum input value. DC voltage input (all ranges): 10% or less of max. input = ±0.15% FS
DC voltage input (all ranges): 10% or less of max. input = ±0.1% FS
AC voltage input (A: 0.0 to 400.0 V): 10% or less of max. input = ±0.15% FS
AC voltage input (B: 0.00 to 199.99 V): 10% or less of max. input = ±0.2% FS
AC voltage input (C: 0.000 to 19.999 V; D: 0.0000 to 1.9999 V): 10% or less of max. input = ±1.0% FS
AC current input (A: 0.000 to 10.000 A): 10% or less of max. input = ±0.25% FS
AC current input (B: 0.000 to 1.9999 A): 10% or less of max. input = ±0.5% FS
AC current input (C: 0.00 to 199.99 mA; D: 0.000 to 19.999 mA): 10% or less of max. input = ±0.15% FS

When DC voltage input models are used with a ±1.9999 V range, make sure that the connections between input terminals are not open. If the input terminals are open, the display will show large variations. Connect resistance of approximately 1 MΩ between the input terminals if they are open.

2. "rdg" means "reading" and refers to the input error.

3. The K3HB-XVA complies with UL standards when the applied input voltage is within the range 0 to 150 VAC.

If the input voltage is higher than 150 VAC, install an external transformer or take other measures to drop the voltage to 150 VAC or lower.

4. The value (0.5 VA CT) is the VA consumption of the internal CT (current transformer).

Applicable model: K3HB-X

Input Range (Measurement Range and Accuracy) (CAT II)

<table>
<thead>
<tr>
<th>Input type</th>
<th>Range Setting</th>
<th>Measurement range</th>
<th>Input impedance</th>
<th>Accuracy</th>
<th>Allowable instantaneous overload (30 s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K3HB-XVD (DC voltage)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>R</td>
<td>±199.99 V</td>
<td>10 MΩ min.</td>
<td>±0.1% rdg ±1 digit max.</td>
<td>±400 V</td>
</tr>
<tr>
<td>B</td>
<td>b</td>
<td>±199.99 V</td>
<td>1 MΩ</td>
<td>±200 V</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>c</td>
<td>±1.9999 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>d</td>
<td>1.0000 to 5.0000 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K3HB-XAD (DC current)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>R</td>
<td>±199.99 mA</td>
<td>1 Ω max.</td>
<td>±0.1% rdg ±1 digit max.</td>
<td>±400 mA</td>
</tr>
<tr>
<td>B</td>
<td>b</td>
<td>±19.999 mA</td>
<td>10 Ω max.</td>
<td>±200 mA</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>c</td>
<td>±1.9999 mA</td>
<td>33 Ω max.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>d</td>
<td>4.000 to 20.000 mA</td>
<td>10 Ω max.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K3HB-XVA (AC voltage) (See note 3.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>R</td>
<td>0.0 to 400.0 V</td>
<td>1 MΩ min.</td>
<td>±0.3% rdg ±1 digit max.</td>
<td>700 V</td>
</tr>
<tr>
<td>B</td>
<td>b</td>
<td>0.00 to 199.99 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>c</td>
<td>0.000 to 19.999 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>d</td>
<td>0.0000 to 1.9999 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K3HB-XAA (AC current)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>R</td>
<td>0.000 to 10.000 A (0.5VA CT) (See note 4.)</td>
<td></td>
<td>±0.5% rdg ±1 digit max.</td>
<td>20 A</td>
</tr>
<tr>
<td>B</td>
<td>b</td>
<td>0.0000 to 1.9999 A (0.5VA CT) (See note 4.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>c</td>
<td>0.00 to 199.99 mA</td>
<td>1 Ω max.</td>
<td>±0.5% rdg ±1 digit max.</td>
<td>2 A</td>
</tr>
<tr>
<td>D</td>
<td>d</td>
<td>0.0000 to 19.999 mA</td>
<td>10 Ω max.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: 1. The accuracy is for an input frequency range of 40 Hz to 1 kHz (except for AC current inputs A and B for which the range is 50 to 60 Hz) and an ambient temperature of 23 ±5°C. The error, however, increases below 10% of the maximum input value. DC voltage input (all ranges): 10% or less of max. input = ±0.15% FS
DC voltage input (all ranges): 10% or less of max. input = ±0.1% FS
AC voltage input (A: 0.0 to 400.0 V): 10% or less of max. input = ±0.15% FS
AC voltage input (B: 0.00 to 199.99 V): 10% or less of max. input = ±0.2% FS
AC voltage input (C: 0.000 to 19.999 V; D: 0.0000 to 1.9999 V): 10% or less of max. input = ±1.0% FS
AC current input (A: 0.000 to 10.000 A): 10% or less of max. input = ±0.25% FS
AC current input (B: 0.000 to 1.9999 A): 10% or less of max. input = ±0.5% FS
AC current input (C: 0.00 to 199.99 mA; D: 0.000 to 19.999 mA): 10% or less of max. input = ±0.15% FS

When DC voltage input models are used with a ±1.9999 V range, make sure that the connections between input terminals are not open. If the input terminals are open, the display will show large variations. Connect resistance of approximately 1 MΩ between the input terminals if they are open.

2. "rdg" means "reading" and refers to the input error.

3. The K3HB-XVA complies with UL standards when the applied input voltage is within the range 0 to 150 VAC.

If the input voltage is higher than 150 VAC, install an external transformer or take other measures to drop the voltage to 150 VAC or lower.

4. The value (0.5 VA CT) is the VA consumption of the internal CT (current transformer).
Q3 Is there a function that prevents the output from chattering?

A3 There are the following two methods.
 1. Hysteresis: Chattering can be prevented by setting the reset width.
 2. Average processing: Increasing the frequency of averaging using simple averaging stabilizes the display and prevents output chattering.

Q4 Can the number of rotations and the speed be displayed using monitor outputs of any inverter? (For example, FM output terminal outputs max. 1440 Hz voltage pulse.)

A4 If the Digital Panel Meter takes a voltage pulse input, the number of rotations and rotational speed can be displayed using the scaling and pre-scaling functions.

 For the K3MA-F, a value that is proportional to the input frequency is displayed (display value D = F × α). For example, if the frequency is 1,440 Hz and you want to display the value of 100, then set P^n to 1440 and D^P to 00100.

 For the K3HB-R, the display value is shown as $D = F \times 60 \times \alpha$.

 F: Input frequency (Hz)
 α: Scaling value

 Applicable models: K3MA-F, K3HB-R

 Note: PWM output type inverters do not change the frequency even when the pulse duty ratio changes, therefore the K3MA-F and K3HB-R cannot be used.

Q5 Is there a function that can be used to force values near zero to zero?

A5 The zero limit function can be used to force values near zero to zero.

 Applicable models: K3HB-X, K3HB-V, K3HB-S, K3HB-H, K3MA-J
Measured Material for Digital Panel Meters

■ Measuring High DC Currents

For some OMRON products, shunt resistors are used in the input section to convert a DC current to a DC voltage to measure high DC voltages when the measurement range is exceeded (e.g., 2 A).

■ Measuring DC voltages

To measure a DC current that exceeds the measurement range of the OMRON product, install an external voltage dividing circuit to divide the voltage.

■ Measuring High AC Currents

To measure an AC current that exceeds the measurement range of the OMRON product, install an external current transformer (CT) to reduce the current flow. Also, install a CT transducer to convert a DC voltage to a DC current signal for measurement.

■ Measuring High AC Voltages

To measure an AC voltage that exceeds the measurement range of the OMRON product, install an external power transformer (PT) to reduce the voltage. Also, install a PT transducer to convert a DC voltage to a DC current signal for measurement.

■ Measuring Other Forms of Signals, Sensor Signals, and Non-linear Signals

To measure anything related to electrical output, such as power, reactive power, power factor, frequency or phase, any signals from sensors, or any non-linear signals, install a power transducer or a signal converter to convert DC voltage into DC current.
Summary of Element Symbols

<table>
<thead>
<tr>
<th>Element</th>
<th>Symbol</th>
<th>Denotation in product catalogs</th>
<th>Denotation by JIS</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO contact</td>
<td>![Symbol]</td>
<td>![Symbol]</td>
<td>![Symbol]</td>
<td>Contacts are open when the relay is inactive.</td>
</tr>
<tr>
<td>NC contact</td>
<td>![Symbol]</td>
<td>![Symbol]</td>
<td></td>
<td>Contacts are closed when relay is inactive.</td>
</tr>
<tr>
<td>Double-throw contact</td>
<td>![Symbol]</td>
<td>![Symbol]</td>
<td></td>
<td>Transfer contacts (also called double-throw contacts) control two circuits, one normally open contact and one normally closed contact with a common terminal.</td>
</tr>
<tr>
<td>Diode</td>
<td>![Symbol]</td>
<td>![Symbol]</td>
<td>![Symbol]</td>
<td></td>
</tr>
<tr>
<td>Photocoupler</td>
<td>![Symbol]</td>
<td>![Symbol]</td>
<td>![Symbol]</td>
<td></td>
</tr>
<tr>
<td>AC power source</td>
<td>![Symbol]</td>
<td>![Symbol]</td>
<td>![Symbol]</td>
<td></td>
</tr>
<tr>
<td>DC power source</td>
<td>![Symbol]</td>
<td>![Symbol]</td>
<td>![Symbol]</td>
<td></td>
</tr>
<tr>
<td>NPN transistor</td>
<td>![Symbol]</td>
<td>![Symbol]</td>
<td>![Symbol]</td>
<td></td>
</tr>
<tr>
<td>PNP transistor</td>
<td>![Symbol]</td>
<td>![Symbol]</td>
<td>![Symbol]</td>
<td></td>
</tr>
<tr>
<td>Zener diode</td>
<td>![Symbol]</td>
<td>![Symbol]</td>
<td>![Symbol]</td>
<td></td>
</tr>
</tbody>
</table>

Parameter Display

The following symbols are used to represent the characters for parameter names on a Digital Panel Meter.

![Symbols](image_url)

In the interest of product improvement, specifications are subject to change without notice.
Terms and Conditions of Sale

1. Offer, Acceptance. These terms and conditions (these “Terms”) are deemed part of and accepted by all Orders, sales, purchases, shipments, transactions, and exchanges consummated between Omron and Buyer. These Terms supersede any terms or conditions contained in Buyer’s purchase order or other documents which are inconsistent with, or in addition to, these Terms. Unless otherwise stated in writing by Omron, these Terms are applicable to all products sold by Omron (the “Products”).

2. Prices; Payment Terms. All prices stated are current, subject to change without notice. Payment terms are FOB shipping point and require payment prior to shipment, unless otherwise stated in writing by Omron, at which point title and risk of loss shall pass from Omron to Buyer; provided that Omron shall retain a security interest in the Products occurring before delivery to the carrier must be presented in writing, relating to the sale of products or services (collectively, the “Products”). Buyer may not assign its rights hereunder to any other person or other entity. Buyer shall have no right to resell or otherwise transfer any Product or any right therein, except in “break down” situations.

3. Discounts. Discounts, if any, will apply only to net amounts of invoices sent to Buyer after deducting transportation charges, taxes and duties, and will be allowed only if the invoice is paid according to Omron’s payment terms and (ii) Buyer has no past due amounts.

4. Interest. Omron, at its option, may charge Buyer 1-1/2% interest per month or any other rate permitted by law, on any money due and not paid when due. Interest shall be calculated from the date due to the date of payment.

5. Orders. Omron will accept no order less than $200 net billing.

6. Governmental Approvals. Buyer shall be responsible for, and shall bear all costs involved in, obtaining any government approvals required for the importation or sale of the Products.

7. Taxes. All taxes, duties and other governmental charges (other than general real property and income taxes), including any interest or penalties thereon, imposed directly or indirectly on Omron or required to be collected directly or indirectly by Omron for the manufacture, production, sale, delivery, importation, exportation, or use of the Products sold hereunder (including customs duties and sales, excise, use, turnover and license taxes) shall be charged to and remitted by Buyer to Omron.

8. Financial. If the financial position of Buyer at any time becomes unsatisfactory to Omron, Omron reserves the right to stop shipments or require satisfactory security for payment. If Buyer fails to make payment when due or to comply with these Terms or any related agreement, Omron may (without liability and in addition to other remedies) cancel any unshipped portion of Products or stop any shipment of Products until Buyer pays all amounts, including amounts payable hereunder, whether or not then due, when and as demanded by Omron. Buyer shall in any event remain liable for all unpaid accounts.

9. Cancellation. Orders are subject to rescinding or cancellation at any time and for any reason and without penalty if Buyer is following an incorrect part number.

10. Force Majeure. Omron shall not be liable for any delay or failure in delivery resulting from circumstances beyond its control, including but not limited to: strikes or other labor disputes, shortage of labor or materials, accidents to machinery, acts of sabotage, riot, delay in or lack of transportation or the requirements of any government authority.

11. Shipping, Delivery. Unless otherwise expressly agreed in writing by Omron:
 a. Shipments will be by a carrier selected by Omron; Omron will not drop ship “breach” the carrier's duties and responsibilities.
 b. Such carrier shall act as the agent of Buyer and delivery to such carrier shall constitute delivery to Buyer;
 c. All sales and shipments of Products shall be FOB shipping point (unless otherwise stated in writing by Omron), at which point title and risk of loss shall pass from Omron to Buyer; provided that Omron shall retain a security interest in the Products until the full purchase price is paid;
 d. Delivery and shipping dates are estimates only; and
 e. Omron will package Products as it deems proper for protection against normal handling and extra charges apply to special conditions.

12. Claims for Damages. Buyer shall institute claims for damages against the Products occurring before delivery to the carrier must be presented in writing, relating to the sale of products or services (collectively, the “Products”). Buyer shall notify Omron within 30 days of receipt of shipment and include the original transportation document or other evidence of delivery, and such other evidence as Omron may require, to substantiate Buyer’s claim. Omron may, at its option, may charge Buyer 1-1/2% interest per month or any other rate permitted by law, on any money due and not paid when due. Interest shall be calculated from the date due to the date of payment.

13. Risk of Loss. Omron’s exclusive warranty is that the Products will be free from defects in materials and workmanship for a period of twelve (12) months from the date of shipment or from the date of the product’s manufacture (whichever is later), unless Buyer is purchasing the Products (without regard to conflict of law principles) under the law of the jurisdiction of the home office of the Omron company from which Buyer is purchasing the Product, in which case Omron warrants the Product for a period of twelve (12) months from the date of shipment or from the date of manufacture. Omron disclaims all other warranties, express or implied, and shall not be liable for any incidental or consequential damages, including, but not limited to, lost profits or loss of anticipated profits, lost savings, or any other special, indirect, or punitive damages arising out of or in connection with the sale or use of the Products or the breach of these Terms.

14. Limitation of Liability. Omron Companies shall not be liable for special, indirect, incidental, or consequential damages, loss of profits or production or commercial loss in any way connected with the Products or their operation, including but not limited to: damage to Buyer’s property or to third party property. Omron shall not be liable for any loss of profits or production or commercial loss in any way connected with the Products or their operation, including but not limited to: damage to Buyer’s property or to third party property.

15. Indemnification. Buyer shall indemnify and hold harmless Omron Companies and their employees from any and all claims, losses, costs, damages, and expenses (including attorney’s fees and expenses) related to any claim, investigation, litigation or proceeding (whether or not Omron is a party) which arises or is alleged to arise as a result of Buyer’s acts or omissions under these Terms or in any way with respect to the Products. Without limiting the foregoing, Buyer (at its own expense) shall indemnify and hold harmless Omron Companies from and against any action brought against such Companies to the extent based on a claim that any Product made to Buyer specifications infringed intellectual property rights of any other party.

16. Property; Confidentiality. Any intellectual property in the Products is the exclusive property of Omron. Omron will not seek to have any patent, trademark, copyright or other property interest assigned to any other person or other entity. Buyer shall take application responsibility in all cases but the following is a non-exhaustive list of applications for which particular attention must be given:

 a. Use in consumer products or any use in significant quantities.
 b. Use in energy control systems, combustion systems, railroad systems, aviation systems, medical equipment, amusement machines, vehicles, safety equipment, and installations subject to separate industry or government regulations.
 c. Use of Omron or any Omron’s subsidiary or affiliate thereof.

17. Export Control. Buyer shall comply with all applicable laws, regulations and licences regarding (i) export of products or information; (ii) sale of products to regulated technology or information.

18. Miscellaneous. (a) Waiver. No failure or delay by Omron in exercising any right and no course of dealing between Buyer and Omron shall operate as a waiver of rights by Omron. (b) Assignment. Buyer may not assign its rights hereunder without Omron’s written consent. (c) Law. These Terms are governed by the law of the jurisdiction of the home office of the Omron company from which Buyer is purchasing the Products (without regard to conflict of law principles). (d) Amendment. These Terms constitute the entire agreement between Buyer and Omron and they completely supersede any prior agreements, representations or warranties (written or oral). Buyer shall not transfer or assign the Products or any part thereof. The purchase of the Products by Buyer constitutes acceptance of these Terms. (e) Severability. If any provision hereof is rendered invalid or ineffective, such provision shall not invalidate any other provision. (f) Sale and/or export of the Products by Buyer shall not be for donation, trade, barter or other equivalent to any type for claims or expenses based on infringement by the Products or otherwise of any intellectual property right, (c) Buyer Remedy. Omron’s sole obligation hereunder shall be to supply the Omron’s products, to (i) replace (in the form originally shipped with Buyer responsible for labor charges for replacement and return thereof) any non-complying Product, (i) repair the non-complying Product, or (ii) repay or credit Buyer an amount equal to the purchase price of the non-complying Product; provided that in no event shall Omron be responsible for any warranty, repair, replacement expenses regarding the Products unless Omron’s analysis confirms that the Products were properly handled, stored, installed and maintained and not subject to contamination, abuse, misuse or inappropriate modification. Return of any Products by Buyer must be approved in writing by Omron before shipment. Omron Compa-

19. Information presented by Omron Companies has been reviewed and is believed to be accurate; however, no responsibility is assumed for clerical, typographical or proofreading errors or omissions.

Certain Precautions on Specifications and Use

1. Suitability of Use. Omron Companies shall not be responsible for conformity with any standards, codes or regulations which apply to the combination of the Product in the Buyer’s application or use of the Product. At Buyer’s request, Omron will provide applicable third party certification documents identifying rating limitations and warnings applicable to any application of use. Omron does not perform testing or use to confirm actual specifications of purchased Product. This information by Omron addresses the risks, and that the Omron’s product is properly rated and installed for the intended use within the overall equipment or system.

2. Programmable Products. Omron Companies shall not be responsible for the proper programming of any application of Omron’s products which are Programmable Products. This information by Omron’s product is properly rated and installed for the intended use within the overall system.

3. Performance Data. Data presented in Omron Company websites, catalogs and other materials is provided as a guide to the user in determining suitability and does not constitute a warranty. Omron does not guarantee the accuracy of the information presented, error of products or information; and (ii) sale of products to

4. Change in Specifications. Product specifications and accessories may be changed at any time based on improvements and other reasons. It is our prac-

5. Errors and Omissions. Information presented by Omron Companies has been reviewed and is believed to be accurate; however, no responsibility is assumed for clerical, typographical or proofreading errors or omissions.
Automated Control Systems
- Machine Automation Controllers (MAC) • Programmable Controllers (PLC)
- Operator interfaces (HMI) • Distributed I/O • Software

Drives & Motion Controls
- Servo & AC Drives • Motion Controllers & Encoders

Temperature & Process Controllers
- Single and Multi-loop Controllers

Sensors & Vision
- Proximity Sensors • Photoelectric Sensors • Fiber-Optic Sensors
- Amplified Photomicrosensors • Measurement Sensors
- Ultrasonic Sensors • Vision Sensors

Industrial Components
- RFID/Code Readers • Relays • Pushbuttons & Indicators
- Limit and Basic Switches • Timers • Counters • Metering Devices
- Power Supplies

Safety
- Laser Scanners • Safety Mats • Edges and Bumpers • Programmable Safety Controllers • Light Curtains • Safety Relays • Safety Interlock Switches