Single-phase Power Controller
G3PW

High-precision Control with Easy Setup

• Precise heater burnout detection.
• Set value and present value monitoring with indicators.
• Phase control or optimum cycle control.
• RS-485 communications to set manipulated variables and monitor load current.
• Total run time monitoring.
• Output modes for phase control: proportional to phase angle (same as G3PX), proportional to voltage, proportional to square voltage, and constant-current control.
• Application with various loads: constant load resistance, variable load resistance.
• Certified for CE and pending for UL.

Model Number Structure

Model Number Legend

G3PW-A2[1][2][3][4][5][6][7][8]

1. Basic model
 G3PW: Power Controller
2. Degree of protection
 A: Panel-mounting/Closed wallmounting
3. Voltage class
 2: 200 VAC
4. Maximum rated current
 20: 20 A
 45: 45 A
 60: 60 A
5. Power supply type
 E: Single-phase power supply
6. Current control
 U: Standard Model (no constant-current control)
 C: Constant-current Model
7. Control terminal block
 C: Screwless clamp terminal block
 S: Terminal block with small slotted screws
8. RS-485 communications
 Blank: Communications not supported.
 FLK: Communications supported.

Ordering Information

List of Models

<table>
<thead>
<tr>
<th>Number of phases</th>
<th>Control terminal block</th>
<th>Type</th>
<th>Capacity</th>
<th>Heater burnout detection</th>
<th>Communications</th>
<th>Model number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-phase</td>
<td>Screwless clamp terminal block</td>
<td>Standard</td>
<td>20 A</td>
<td>No</td>
<td>No</td>
<td>G3PW-A220EU-C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>45 A</td>
<td></td>
<td></td>
<td>G3PW-A245EU-C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60 A</td>
<td></td>
<td></td>
<td>G3PW-A260EU-C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Constant current</td>
<td>20 A</td>
<td>Yes</td>
<td>Yes</td>
<td>G3PW-A220EC-C-FLK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>45 A</td>
<td></td>
<td></td>
<td>G3PW-A245EC-C-FLK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60 A</td>
<td></td>
<td></td>
<td>G3PW-A260EC-C-FLK</td>
</tr>
<tr>
<td></td>
<td>Terminal block with small slotted screws</td>
<td>Standard</td>
<td>20 A</td>
<td>No</td>
<td>No</td>
<td>G3PW-A220EU-S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>45 A</td>
<td>Yes</td>
<td>Yes</td>
<td>G3PW-A245EU-S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60 A</td>
<td>Yes</td>
<td>Yes</td>
<td>G3PW-A260EU-S</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Constant current</td>
<td>20 A</td>
<td>Yes</td>
<td>Yes</td>
<td>G3PW-A220EC-S-FLK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>45 A</td>
<td>Yes</td>
<td>Yes</td>
<td>G3PW-A245EC-S-FLK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60 A</td>
<td>Yes</td>
<td>Yes</td>
<td>G3PW-A260EC-S-FLK</td>
</tr>
</tbody>
</table>

Accessories (Order Separately)

<table>
<thead>
<tr>
<th>Name</th>
<th>Resistive value</th>
<th>Display</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>External Variable Resistor</td>
<td>2 kΩ</td>
<td>202</td>
<td>G32X-V2K</td>
</tr>
<tr>
<td>Item</td>
<td>Model</td>
<td>Standard Models</td>
<td>Constant-current Models</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Control method</td>
<td>G3PW-A2 EU</td>
<td>G3PW-A2 EC FLK</td>
<td></td>
</tr>
<tr>
<td>Voltage ON/OFF input</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load current</td>
<td>-A220E</td>
<td>1 to 20 A</td>
<td></td>
</tr>
<tr>
<td>-A245E</td>
<td>1 to 45 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-A260E</td>
<td>1 to 60 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inrush current resistance</td>
<td>-A220E</td>
<td>220 A (60 Hz, 1 cycle)</td>
<td></td>
</tr>
<tr>
<td>-A245E</td>
<td>440 A (60 Hz, 1 cycle)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-A260E</td>
<td>440 A (60 Hz, 1 cycle)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output voltage adjustable range</td>
<td></td>
<td>0% to 98%</td>
<td></td>
</tr>
<tr>
<td>Input signal for control</td>
<td>Analog input</td>
<td>4 to 20 mA DC (input impedance: 100 Ω) or 1 to 5 VDC (input impedance: 30.1 kΩ)</td>
<td></td>
</tr>
<tr>
<td>Voltage ON/OFF Input</td>
<td>5 VDC (input impedance: 30.1 kΩ)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>External main setting</td>
<td>Specified Variable Resistor: G32X-V2K (2 kΩ, 2 W)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>External duty setting</td>
<td>Specified Variable Resistor: G32X-V2K (2 kΩ, 2 W)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output value setting range</td>
<td>Main setting</td>
<td>0.0% to 100%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Base-up value</td>
<td>0.0% to 100% (Default: 0.0%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Upper/lower limits</td>
<td>Output upper limit: 0.0% to 100% (Default: 100%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Duty setting</td>
<td>Duty setting = Internal duty setting x External duty setting</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Internal duty setting range (set using front-panel keys or communications): 0% to 100% (Default: 100%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>External duty setting range (set using external variable resistor): 0% to 100% (Default: 100%)</td>
<td></td>
</tr>
<tr>
<td>Soft-start up time and soft-start down time</td>
<td>0.0 to 99.9 s (Default: 0.5 s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current detection</td>
<td>Current transformer (CT)</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Current detection accuracy</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Minimum detected load current</td>
<td>1 A</td>
<td></td>
</tr>
<tr>
<td>Heater burnout alarm</td>
<td>Detection method</td>
<td>According to heater resistance (with heater resistance teaching and Heater Burnout Threshold parameter)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Setting range for heater burnout detection</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Burnout detection accuracy</td>
<td>10% FS at rated current</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Burnout detection output lower limit</td>
<td>Detects a burnout at or above the specified output value. 0.0% to 100% (Default: 0.0%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number of alarms for heater burnout detection</td>
<td>0 to 999 (Default: 150)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Multiple heater burnout detections</td>
<td>Burnout of 1 of 10 heater elements can be detected (at the rated current)</td>
<td></td>
</tr>
<tr>
<td>Event inputs</td>
<td>Number of event inputs</td>
<td>2 event inputs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Event input 1: The function of the event input can be changed with a parameter setting in the initial setting level. The event input can be used for one of the following functions.</td>
<td>Event input 2: Alarm reset</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switching the main setting between automatic and manual operation.</td>
<td>Switching between phase control and optimum cycle control.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switching between phase control and optimum cycle control.</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contact input conditions</td>
<td>ON: 1 kΩ max., OFF: 100 kΩ min.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non-contact input conditions</td>
<td>ON residual voltage: 1.0 V min., OFF leakage current: 0.1 mA max.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Current flow</td>
<td>Approx. 1.1 mA (per input)</td>
<td></td>
</tr>
</tbody>
</table>
Recommended Fuses

<table>
<thead>
<tr>
<th>Item</th>
<th>Model</th>
<th>Standard Models</th>
<th>Constant-current Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>G3PW-A2</td>
<td>EU-EC-FLK</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Alarm outputs

- **Number of alarm outputs**: 2 alarm outputs
 - Alarm output 1: ALARM1 (caution)
 - Alarm output 2: ALARM2 (warning)
 - Open-collector outputs
- **Maximum operating voltage**: 30 VDC
- **Maximum load current**: 50 mA
- **Maximum residual voltage**: 1.5 V
- **Maximum leakage current**: 0.4 mA

Serial communications

- **Serial communications**: One RS-485 port: CompoWay/F slave function (See note.)

Note: Connection is possible to a Basic Unit in an EJ1 Modular Temperature Controller. Parameters can be set and monitored from the CX-Thermo Support Software running on a computer that is connected to the EJ1 End Unit.

Overcurrent detection

- **Rated current x 120% min., within 250 cycles**

SSR failure detection

- An error is detected within 3 seconds after an SSR failure.
- Phase angle range for SSR short-circuit failure detection: 0% to 72%
- Phase angle range for SSR open failure detection: 28% to 100%

Power supply frequency error

- Not within 47 to 63 Hz

Leakage current

- 10 mA max. (100/110 VAC), 20 mA max. (200/220 VAC)

Insulation resistance

- 100 MΩ min. (at 500 VDC)

Dielectric strength

- 2,500 VAC at 50/60 Hz for 1 min between charged parts and noncharged parts

Vibration resistance

- 10 to 55 to 10 Hz, 100 m/s²

Shock resistance

- 300 m/s²

Ambient operating temperature

- -15°C to 55°C (with no icing or condensation)

Ambient operating humidity

- 5% to 95%

Storage temperature

- -25°C to 65°C (with no icing or condensation)

Weight

G3PW-A2	1.0 kg max.
G3PW-A245E	1.9 kg max.
G3PW-A260E	1.9 kg max.

Applicable Standards

- **Safety Standards (pending)**: UL508
- **CSA C22.2 No.14**
- **EN60947-4-3 (pollution degree 2, overvoltage category II)**
- **IEC60947-4-3 (pollution degree 2, overvoltage category II)**

- **EMC Directives (pending)**: EMI EN60947-1
- **EN60947-4-3**
- **EMS EN60947-1**
- **EN60947-4-3**

Recommended Fuses

<table>
<thead>
<tr>
<th>Type</th>
<th>Super-rapid Fuse (Fuji Electric)</th>
<th>Fuse Holder (Fuji Electric)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast-acting fuses</td>
<td>For 20 A CR6L-20/UL</td>
<td>CMS-4</td>
</tr>
<tr>
<td></td>
<td>For 45 A CR6L-50/UL</td>
<td>CMS-4</td>
</tr>
<tr>
<td></td>
<td>For 60 A CR6L-75/UL</td>
<td>CMS-5</td>
</tr>
<tr>
<td>Time-delay fuses</td>
<td>250 VAC, 2 A</td>
<td></td>
</tr>
</tbody>
</table>
Nomenclature and Operations

Level Indicators

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADJ</td>
<td>Lit when in the adjustment level.</td>
</tr>
<tr>
<td>SET</td>
<td>Lit when in the initial setting level.</td>
</tr>
<tr>
<td>EV</td>
<td>Lit when an external contact reset input or an event input is ON.</td>
</tr>
</tbody>
</table>

Monitoring Indicators

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>% (IN)</td>
<td>Lit when the input value is monitored in the monitor level.</td>
</tr>
<tr>
<td>% (DUTY)</td>
<td>Lit when the duty value is monitored in the monitor level.</td>
</tr>
<tr>
<td>% (OUT)</td>
<td>Lit when the output value is monitored in the monitor level.</td>
</tr>
<tr>
<td>% (PHASE)</td>
<td>Lit when the phase angle is monitored in the monitor level.</td>
</tr>
<tr>
<td>A</td>
<td>Lit when the current is monitored in the monitor level.</td>
</tr>
</tbody>
</table>

Communications Indicator

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMM</td>
<td>Lit when the serial communications are in progress.</td>
</tr>
</tbody>
</table>

Operation Keys

<table>
<thead>
<tr>
<th>Key symbol</th>
<th>Name</th>
<th>Description</th>
<th>Enabling condition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LVL (level) Key</td>
<td>Level Changes</td>
<td>Changing from monitor level to adjustment level or from monitor level to initial setting level is possible even when an error occurs.</td>
</tr>
<tr>
<td></td>
<td>ENT/RST (enter/reset) Key</td>
<td>Set value display</td>
<td>In the monitor level, the ENT/RST Key functions as a Reset Key only when an error occurs. (It does not function as a Reset Key when there is no error.)</td>
</tr>
<tr>
<td></td>
<td>UP Key</td>
<td>Set value change</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DOWN Key</td>
<td>Monitor item/set value number change</td>
<td></td>
</tr>
</tbody>
</table>
G3PW

Engineering Data

Ambient Temperature

Current and Temperature Characteristics

<table>
<thead>
<tr>
<th>G3PW-A220E@/A245E@</th>
<th>G3PW-A260E@</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Graph A]</td>
<td>![Graph B]</td>
</tr>
</tbody>
</table>

Note:
1. The ambient operating temperature range is −15 to 55°C, but take the following considerations into account. When the ambient temperature exceeds 40°C, reduce the maximum load current as shown below.
2. At least 20 mm must be provided on the left and right sides of the G3PW-A260E@. If you must use side-by-side mounting, then reduce the maximum load current when the ambient temperature is over 30°C.
3. Certification for safety standards was obtained with a mounting interval of 20 mm.
4. Leave sufficient space for ventilation.
5. Do not install the Power Controller above devices that generate significant amounts of heat, such as heaters, transformers, and high-capacity resistors.
6. If the ambient temperature reaches 55°C or higher, install an air conditioner to lower the temperature.

Resistance to Inrush Current

<table>
<thead>
<tr>
<th>G3PW-A220E@</th>
<th>G3PW-A245E@ / G3PW-A260E@</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Graph C]</td>
<td>![Graph D]</td>
</tr>
</tbody>
</table>

Note: The solid lines in the graphs show the non-repetitive resistance to inrush current. For repetitive inrush current, keep the inrush current below the values shown by the dotted lines.
G3PW

Dimensions

Note: All units are in millimeters unless otherwise indicated.

20-A Models with Screwless Clamp Terminal Block
G3PW-A220EU-C
G3PW-A220EC-C-FLK

45/60-A Models with Screwless Clamp Terminal Block
G3PW-A245EU-C
G3PW-A260EU-C
G3PW-A245EC-C-FLK
G3PW-A260EC-C-FLK

Mounting Hole Dimensions
G3PW

20-A Models with Terminal Block with Small Slotted Screws
- G3PW-A220EU-S
- G3PW-A220EC-S-FLK

45/60-A Models with Terminal Block with Small Slotted Screws
- G3PW-A245EU-S
- G3PW-A245EC-S-FLK
- G3PW-A260EU-S
- G3PW-A260EC-S-FLK

Accessories (Order Separately)

External Variable Resistor
- G32X-V2K

Mounting Holes
- **Nameplate**
- **Knob**

Filled with white resin
G3PW
Safety Precautions

WARNING

Do not attempt to disassemble the Power Controller while the power is being supplied. Doing so may occasionally result in strong electric shock.

Do not touch any of the terminals while the power is being supplied. Also, always attach the terminal block cover after completing wiring. Touching live terminals may occasionally result in serious injury due to electric shock.

Fail-safe measures must be taken by the customer to ensure safety in the event of incorrect, missing, or abnormal signals caused by broken signal lines, momentary power interruptions, or other causes. Abnormal operation may result in serious accidents.

Abnormal operation may result in serious accidents.

Do not use the Power Controller where subject to flammable or explosive gas. Otherwise, explosion may occur.

Use the wire sizes given in this document and use twisted copper wires or solid copper wire. Use crimp terminals with insulative sleeves. If the crimp terminals do not come with insulative sleeves, attach insulative sleeves. Use the size of crimp terminals specified in this document.

Make sure that the phases match for load terminal T1 and power supply terminal 4 (N), and for load terminal L1 and power supply terminal 5 (L). Insert suitable fuses in the power supply line and load output line to protect the circuits. The Power Controller will not operate normally if the wiring is not correct, and the load may be damaged.

Leave at least 100 mm of space above and below the Power Controller. Do not obstruct the area around the Power Controller and especially the area around the heat sink.

Install the Power Controller in the direction shown in this Instruction Sheet. The Power Controller generates a lot of heat and it uses natural heat convection for cooling. Installing the Power Controller in the wrong direction may cause in malfunctions or accidents.

CAUTION

The Power Controller and the heat sink become very hot. Do not touch anything but the setting keys while power is being supplied or just after the power supply is turned OFF. Doing so may cause burns.

Do not attempt to disassemble, modify, or repair the Power Controller or touch any of the internal parts. Minor electric shock, fire, or malfunction may occasionally occur.

Do not allow chips or filings from installation work, pieces of metal, or wire clippings to enter the Power Controller. Doing so may occasionally result in minor electric shock, fire, or malfunction.

Always connect the load to load terminal T1. Also, always connect power supply terminal 4 (N) directly to the power supply. Do not connect it through the load. If the wiring is not correct, the fault detection function of the Power Controller will stop the output operation.

When using the Power Controller to control the primary side of a transformer, do not open the circuit on the secondary side of the transformer while the Power Controller is operating.

Do not touch the connecting cables while power is being supplied. Static electricity from your body may cause malfunctioning.

If a malfunction in the Power Controller prevents control operations or if an alarm cannot be output, it may occasionally cause damage to the connected equipment and devices. To maintain safety in the event of a malfunction in the Power Controller, always take appropriate safety measures, such as installing a separate monitoring system.

Set the parameters of the Power Controller so that they are suitable for the system being controlled. If they are not suitable, unexpected operation may occasionally result in property damage or accidents.

Tighten the terminal screws to the torque specified in this Instruction Sheet. If the screws are loose, it may occasionally cause a fire.
Precautions for Safe Use

Installation Environment
- Use the Power Controller within the rated ambient temperature and humidity ranges.
- If multiple Power Controllers are installed side-by-side or vertically, the heat that is generated will cause the internal temperatures of the Power Controllers to rise and will shorten their service life. In these kinds of installations, take suitable measures, such as installing fans for forced cooling.
- The Power Controller is designed for indoor use only. Also, do not use the Power Controller in the following environments.
 - Locations subject to water, oil, or chemicals
 - Locations subject to direct sunlight
 - Locations where dust or corrosive gases (in particular, sulfuric or ammonia gas) are present
 - Locations subject to extreme temperature changes
 - Locations where icing or condensation may occur
 - Locations subject to excessive shocks or vibration
 - Locations subject to direct heat radiated from heating devices

Installation and Wiring
- When installing the Power Controller, always securely tighten the top mounting screws first. When removing the Power Controller, always remove the bottom mounting screws first.
- Take safety measures, such as wearing safety shoes, in case the Power Controller falls.
- Touch the Power Controller only after first touching a grounded metal object to discharge any static electricity from your body.
- Always ground the Power Controller to 100 Ω or less. There are no ground terminals provided, so use the heat sink mounting screws as ground terminals.
- Check the terminal number and polarity for each input before connecting it.
- Use copper twisted wire in the sizes specified in this Instruction Sheet.
- Use insulated crimp terminals with insulation sleeves. If using crimp terminals that are not insulated, cover them with insulation sleeves. Also, use terminals of the sizes specified in this Instruction Sheet.
- Insert connectors all the way.
- Do not connect anything to unused terminals.

Safety Measures and Checking
- Install a switch or circuit breaker so that the operator can immediately turn OFF the power, and provide a suitable display.
- Apply the power supply voltage through the contacts of a switch, relay, or similar device so it reaches the rated voltage within 2 s. If the power supply voltage is increased gradually, the power supply may not be reset or outputs may malfunction.
- Use a power supply voltage, input voltage, input current, and load within the specifications and rated ranges for the Power Controller.
- Use a load that draws a current at the maximum output that is within the rated current range of the Power Controller. If the current drawn by the load is not within the rated current range, malfunction or fire may occur.
- Make sure that the protective cover is attached to the load terminal block before using the Power Controller. Failure to do so may damage internal components due to mechanical stress.

Preventing Inductive Noise
- Allow as much space as possible between the Power Controller and devices that generate powerful high frequencies (high-frequency welders, high-frequency sewing machines, etc.) or surge.
- Keep the signal lines that connect to the Power Controller's terminal block away from power cables carrying high voltages or large currents. Also, do not wire power lines together with or parallel to Power Controller wiring. Using shielded cables and using separate conduits or ducts is recommended.
- Attach a surge suppressor or noise filter to peripheral devices that generate noise (in particular, motors, transformers, solenoids, magnetic coils or other equipment that have an inductance component).
- When a noise filter is used at the power supply, first check the voltage or current, and attach the noise filter as close as possible to the Power Controller.

Cleaning
- Do not use paint thinner or similar chemical to clean with. Use commercially available standard grade alcohol.

Storage
- Store the Power Controller within the rated ambient temperature.
Installation Direction
For cooling efficiency, install the Power Controller in the correct direction. The Power Controller generates a lot of heat, and it uses natural heat convection for cooling. Installing the Power Controller in the wrong direction may cause it to malfunction or to be damaged.

Wiring the Power Supply and Load Circuits
Connect the AC power supply to power supply terminals 4 (N) and 5 (L).
Connect the load to load terminal T1 and to the power supply, and then connect the power supply to load terminal L1 through a fast-acting fuse.
The AC power supply ground polarity and the G3PW terminal block polarity are not related, but connect the 4 (N) and 5 (L) terminals on the command input/power supply terminal block and the T1 and L1 terminals of the load terminal block to power supplies with the same phases.

Wiring the Load Terminal Block
Recommended Wires
When connecting to the load terminals, use the specified wire size for each model of Power Controller.

<table>
<thead>
<tr>
<th>Model</th>
<th>Recommended wire size</th>
<th>Tightening torque</th>
<th>Terminal screws</th>
</tr>
</thead>
<tbody>
<tr>
<td>G3PW-A220</td>
<td>AWG 18 to 10</td>
<td>1.8 N·m</td>
<td>M4</td>
</tr>
<tr>
<td>G3PW-A245</td>
<td>AWG 6</td>
<td>2.8 N·m</td>
<td>M5</td>
</tr>
</tbody>
</table>

* Crimp terminals that conform to UL and CSA specifications must be used.

Recommended Crimp Terminals
- Either use insulated crimp terminals or cover the crimp terminals with insulating sleeves.
- Always use the following crimp terminals to wire the load terminals.
- Do not connect more than two crimp terminals to one terminal screw.

Recommended Fuses

<table>
<thead>
<tr>
<th>Fast-acting fuses</th>
<th>Super-rapid Fuse (Fuji Electric)</th>
<th>Time-delay fuse</th>
</tr>
</thead>
<tbody>
<tr>
<td>For 20 A</td>
<td>CR6L-20/UL</td>
<td>250 VAC, 2 A</td>
</tr>
<tr>
<td>For 45 A</td>
<td>CR6L-50/UL</td>
<td></td>
</tr>
<tr>
<td>For 60 A</td>
<td>CR6L-75/UL</td>
<td></td>
</tr>
</tbody>
</table>

Command Input and Power Supply Terminal Wiring
Voltage Input (1 to 5 VDC)
When using a voltage input, connect the positive and negative signal wires to terminals 1 and 3, respectively.

Current Input (4 to 20 mA DC)
When using current input, connect the positive and negative signal wires to terminals 2 and 3, respectively.

ON/OFF Voltage Input (0 or 5 VDC)
When using an ON/OFF voltage input, connect the positive and negative signal wires to terminals 1 and 3, respectively.
Command Input and Power Supply Wire Sizes

<table>
<thead>
<tr>
<th>Model</th>
<th>Recommended wire diameter</th>
<th>Tightening torque</th>
<th>Terminal screws</th>
</tr>
</thead>
<tbody>
<tr>
<td>All models</td>
<td>AWG 18 to 14</td>
<td>0.8 to 1.0 N·m</td>
<td>M3.5</td>
</tr>
</tbody>
</table>

Recommended Crimp Terminals
Always use the following crimp terminals (for M3.5) to wire to the command input and power supply terminals.

Wiring the Control Terminal Block
Recommended Wire Sizes and Connection Method
G3PW-A2 E-S (Models with terminal blocks with small slotted screws)
G3PW-A2 E-C (Models with screwless clamp terminal block)

Wire Sizes for Control Terminals (Models with Small Slotted or Screwless Clamp Terminals)

- Use copper AWG 26 to 16 twisted-pair cable when connecting the wires directly.
- Strip the wire sheathing for the following lengths, according to the connector type.
 - Small slotted terminals: 7 mm
 - Screwless clamp terminals: 9 mm
- When using twisted wires, it is recommended that you attach a ferrule with an insulating cover that conforms to DIN 46228-4 and connect the ferrule to the terminal.
- Use shielded twisted-pair wires for RS-485 communications wires. A maximum of 500 m total of wiring can be used.

Terminal Names

- Use a G32X-V2K Variable Resistor to adjust the main setting.
- Use a G32X-V2K Variable Resistor to adjust the duty setting.

Wiring an External Noise Filter
Always insert a noise filter in the power supply lines to the G3PW.

Grounding
Always ground the Power Controller to 100 Ω or less. There are no ground terminals provided, so use the heat sink mounting screws as ground terminals.
Advanced Digital Temperature Controller

E5CN-H (48 x 48 mm)

Logic Operations and Preventive Maintenance Function.

- High-resolution display with 5 digits/0.01°C display in a compact Controller (48 x 48 mm).
- High-speed sampling cycle of 60 ms.
- High Accuracy
 - Thermocouple/Pt input: ±0.1% of PV
 - Analog input: ±0.1% FS
- Universal inputs on all models (thermocouple, PT, or analog input) to handle various sensors with one Controller.
- A PV/SV-status display function can be set to automatically alternate between displaying the status of the Temperature Controller (auto/manual, RUN/STOP, and alarms) and the PV or SV.
- Flexible contact outputs with logic operations (AND, OR, and delays) set from the Support Software (CX-Thermo Ver. 4.0)
- Preventive maintenance for relays in the Temperature Controller using a Control Output ON/OFF Counter.

Advanced Digital Temperature Controller

E5AN-H/E5EN-H (96 x 96 mm and 48 x 96 mm)

Logic Operations and Preventive Maintenance Function.

Plus Infrared Port on Front Panel.

- High-resolution display with 5 digits/0.01°C display.
- High-speed sampling cycle of 60 ms.
- High Accuracy
 - Thermocouple/Pt input: ±0.1% of PV
 - Analog input: ±0.1% FS
- Universal inputs on all models (thermocouple, PT, or analog input) to handle various sensors with one Controller. Models also available with Remote SP.
- A PV/SV-status display function can be set to automatically alternate between displaying the status of the Temperature Controller (auto/manual, RUN/STOP, and alarms) and the PV or SV.
- Flexible contact outputs with logic operations (AND, OR, and delays) set from the Support Software (CX-Thermo Ver. 4.0)
- Preventive maintenance for relays in the Temperature Controller using a Control Output ON/OFF Counter.
- Model available with position-proportional control
Solid State Relays for Heaters

Single-phase G3PE

Compact, Slim-profile SSRs with Heat Sinks. Models with No Zero Cross for a Wide Range of Applications.

- RoHS compliant.
- Models also available with no zero cross
- Improved surge dielectric strength for output circuits.
- Compact with a slim profile.
- Mount to DIN Track or with screws.
- Certification pending for UL, CSA, and EN (TÜV certification).

Solid State Contactors for Heaters

Three-phase G3PE

Compact, Slim-profile SSRs with Heat Sinks.
Solid State Contactors for Three-phase Heaters Reduced Installation Work with DIN Track Mounting.

- RoHS compliant.
- Improved surge dielectric strength for output circuits.
- Slim design with 3-phase output and built-in heat sinks.
- DIN Track mounting types and screw mounting types are available.
 All DIN Track mounting types mount to DIN Track
 (applicable DIN Track: TR35-15Fe (IEC 60715)).
- Certification pending for UL, CSA, and EN (TÜV certification).
Read and Understand This Catalog

Please read and understand this catalog before purchasing the products. Please consult your OMRON representative if you have any questions or comments.

Warranty and Limitations of Liability

WARRANTY
OMRON's exclusive warranty is that the products are free from defects in materials and workmanship for a period of one year (or other period if specified) from date of sale by OMRON.

OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, REGARDING NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR PARTICULAR PURPOSE OF THE PRODUCTS. ANY BUYER OR USER ACKNOWLEDGES THAT THE BUYER OR USER ALONE HAS DETERMINED THAT THE PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR INTENDED USE. OMRON DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED.

LIMITATIONS OF LIABILITY
OMRON SHALL NOT BE RESPONSIBLE FOR SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES, LOSS OF PROFITS OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS BASED ON CONTRACT, WARRANTY, NEGLIGENCE, OR STRICT LIABILITY.

In no event shall the responsibility of OMRON for any act exceed the individual price of the product on which liability is asserted.

IN NO EVENT SHALL OMRON BE RESPONSIBLE FOR WARRANTY, REPAIR, OR OTHER CLAIMS REGARDING THE PRODUCTS UNLESS OMRON'S ANALYSIS CONFIRMS THAT THE PRODUCTS WERE PROPERLY HANDLED, STORED, INSTALLED, AND MAINTAINED AND NOT SUBJECT TO CONTAMINATION, ABUSE, MISUSE, OR INAPPROPRIATE MODIFICATION OR REPAIR.

Application Considerations

SUITABILITY FOR USE
OMRON shall not be responsible for conformity with any standards, codes, or regulations that apply to the combination of products in the customer's application or use of the products.

At the customer's request, OMRON will provide applicable third party certification documents identifying ratings and limitations of use that apply to the products. This information by itself is not sufficient for a complete determination of the suitability of the products in combination with the end product, machine, system, or other application or use.

The following are some examples of applications for which particular attention must be given. This is not intended to be an exhaustive list of all possible uses of the products, nor is it intended to imply that the uses listed may be suitable for the products:
- Outdoor use, uses involving potential chemical contamination or electrical interference, or conditions or uses not described in this catalog.
- Nuclear energy control systems, combustion systems, railroad systems, aviation systems, medical equipment, amusement machines, vehicles, safety equipment, and installations subject to separate industry or government regulations.
- Systems, machines, and equipment that could present a risk to life or property.

Please know and observe all prohibitions of use applicable to the products.

NEVER USE THE PRODUCTS FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR PROPERTY WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO ADDRESS THE RISKS, AND THAT THE OMRON PRODUCTS ARE PROPERLY RATED AND INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM.

PROGRAMMABLE PRODUCTS
OMRON shall not be responsible for the user's programming of a programmable product, or any consequence thereof.

Disclaimers

CHANGE IN SPECIFICATIONS
Product specifications and accessories may be changed at any time based on improvements and other reasons.

It is our practice to change model numbers when published ratings or features are changed, or when significant construction changes are made. However, some specifications of the products may be changed without any notice. When in doubt, special model numbers may be assigned to fix or establish key specifications for your application on your request. Please consult with your OMRON representative at any time to confirm actual specifications of purchased products.

DIMENSIONS AND WEIGHTS
Dimensions and weights are nominal and are not to be used for manufacturing purposes, even when tolerances are shown.

PERFORMANCE DATA
Performance data given in this catalog is provided as a guide for the user in determining suitability and does not constitute a warranty. It may represent the result of OMRON's test conditions, and the users must correlate it to actual application requirements. Actual performance is subject to the OMRON Warranty and Limitations of Liability.

ERRORS AND OMISSIONS
The information in this document has been carefully checked and is believed to be accurate; however, no responsibility is assumed for clerical, typographical, or proofreading errors, or omissions.