

Delta Tau Data Systems, Inc.

Power Brick AC ARM

HARDWARE REFERENCE MANUAL

PBA⏕-A⏕⏕0⏕⏕-⏕⏕⏕⏕⏕⏕⏕

November 22, 2022

Document # MN-000142

Programmable Servo Amplifier

Power Brick AC ARM User Manual

COPYRIGHT INFORMATION

© 2022 Delta Tau Data Systems, Inc. All rights reserved.

This document is furnished for the customers of Delta Tau Data Systems, Inc. Other uses are unauthorized

without written permission of Delta Tau Data Systems, Inc. Information contained in this manual may be

updated from time-to-time due to product improvements, etc., and may not conform in every respect to former

issues.

To report errors or inconsistencies, email: odt-support@omron.com.

For inquiries about the product, contact your local OMRON representative.

Trademarks

All encoder protocols and industrial networks mentioned in this manual are registered trademarks to their

corresponding owners. They are only used in the purpose of product and technical description. E.g. EtherCAT®

is a registered trademark of Beckhoff.

mailto:odt-support@omron.com

Power Brick AC ARM User Manual

OPERATING CONDITIONS

All Delta Tau Data Systems, Inc. motion controller, accessory, and amplifier products contain static sensitive

components that can be damaged by incorrect handling. When installing or handling Delta Tau Data Systems,

Inc. products, avoid contact with highly insulated materials. Only qualified personnel should be allowed to

handle this equipment.

In the case of industrial applications, we expect our products to be protected from hazardous or conductive

materials and/or environments that could cause harm to the controller by damaging components or causing

electrical shorts. When our products are used in an industrial environment, install them into an industrial

electrical cabinet to protect them from excessive or corrosive moisture, abnormal ambient temperatures, and

conductive materials. If Delta Tau Data Systems, Inc. products are directly exposed to hazardous or conductive

materials and/or environments, we cannot guarantee their operation.

Power Brick AC ARM User Manual

SAFETY INSTRUCTIONS

Qualified personnel must transport, assemble, install, and maintain this equipment. Properly qualified

personnel are persons who are familiar with the transport, assembly, installation, and operation of equipment.

The qualified personnel must know and observe the following standards and regulations:

IEC364resp.CENELEC HD 384 or DIN VDE 0100

IEC report 664 or DIN VDE 0110

National regulations for safety and accident prevention or VBG 4

Incorrect handling of products can result in injury and damage to persons and machinery. Strictly adhere to the

installation instructions. Electrical safety is provided through a low-resistance earth connection. It is vital to

ensure that all system components are connected to earth ground.

This product contains components that are sensitive to static electricity and can be damaged by incorrect handling.

Avoid contact with high insulating materials (artificial fabrics, plastic film, etc.). Place the product on a

conductive surface. Discharge any possible static electricity build-up by touching an unpainted, metal, grounded

surface before touching the equipment.

Keep all covers and cabinet doors shut during operation. Be aware that during operation, the product has

electrically charged components and hot surfaces. Control and power cables can carry a high voltage, even when

the motor is not rotating. Never disconnect or connect the product while the power source is energized to avoid

electric arcing.

A Warning identifies hazards that could result in personal injury or

death. It precedes the discussion of interest.

Warning

Caution

A Caution identifies hazards that could result in equipment damage. It

precedes the discussion of interest.

Note

A Note identifies information critical to the understanding or use of the

equipment. It follows the discussion of interest.

Power Brick AC ARM User Manual

MANUAL REVISION HISTORY

REV DESCRIPTION DATE CHANGE APPROVED

A Preliminary 10/5/2020 EH RN

B Released 10/12/2020 EH RN

C

Part Number and Options Corrections

Serial Encoder Sections Update

Added D-SUB Mounting Warning

12/16/2020 EH RN

D

Related Manuals

Part Number and Options Corrections

Serial Encoder Sections Update

Updated information of second Ethernet port

Added Certifications

GPIO Relay

STO Section Update

Corrected MaxAdc in Setup Example

10/13/2021 EH RN

E Updated UKCA Standard 04/29/2022 AE SF

F Micro USB Accessory Update 11/14/2022 AE SS

Power Brick AC ARM User Manual

Table of Contents vii

Table of Contents

COPYRIGHT INFORMATION .. 2

Trademarks .. 2

OPERATING CONDITIONS ... 3

SAFETY INSTRUCTIONS .. 4

INTRODUCTION .. 11

Related Manuals .. 12

Downloadable Power PMAC Script .. 13

Agency of Approval and Safety... 14

RECEIVING AND UNPACKING ... 15

Use of Equipment ... 15

SPECIFICATIONS .. 16

Part Number Designation ... 16

Power Brick AC Configuration .. 18
Standard Configuration ... 18
Options ... 19
Configuration Notes ... 20

Environmental Specifications .. 21

Protection Specifications .. 22

Electrical Specifications .. 23
4-Axis Power Brick AC .. 23
8-Axis Power Brick AC .. 24

MOUNTING ... 25

Connector Locations ... 26

CAD Drawing .. 29
4–axis Power Brick AC .. 29
8–axis Power Brick AC .. 30

CONNECTIONS AND BASIC SETTINGS .. 31

Motor and Brake (A1 - A8) .. 31
Configuring the Brake Output .. 32
Motor Cable, Noise Elimination .. 33
Motor Selection .. 34

Logic Power Supply (A10) .. 36

Safe Torque OFF and Dynamic Brake (A11) .. 37
Disabling the STO .. 38
Wiring and Using the STO ... 38
Wiring and Using the Dynamic Braking .. 39
STO Feedback .. 40
Recovering from the STO or Dynamic Brake .. 41

Brake Power Supply Axis 1-4 (A12) .. 42

External Shunt Resistor (A14) .. 43

Power Brick AC ARM User Manual

Table of Contents viii

Main Bus Power Supply (A15) .. 44
Advised Power On/Off Sequence ... 45
Recommended Main Bus Power Wiring / Protection .. 46

Brake Power Supply Axis 5-8 (A16) .. 50

Encoder Connection (X1-X8) .. 51
Digital Quadrature .. 51
Analog Standard & ACI Sinusoidal ... 55
Analog Resolver ... 58
Serial Encoders with Gate3 ... 62
Serial Encoders with ACC-84B.. 95

Analog I/O (X9-X12) ... 124
Setting up the Analog (ADC) Inputs .. 125
Setting up the Analog (DAC) Outputs .. 128
Setting up the General Purpose Relay ... 131
Setting up the GP Input .. 133

Limits, Flags, and EQU (X13-X14) .. 134
Wiring the Limits and Flags... 135
Limits and Flags Suggested Pointers ... 136

Digital I/O (X15-X16) .. 138
About the Digital Inputs and Outputs .. 140
Wiring the Digital Inputs and Outputs ... 141
Digital I/O Pointers ... 142

MACRO (X17) .. 143

Abort and Watchdog (X18) ... 144
Abort Input ... 144
Watchdog Relay ... 146

External Encoder Power Supply (X19) .. 147
Wiring the Encoder Supply .. 147
Functionality and Safety Considerations ... 148

RTETH and Fieldbus (X20-X23) ... 149

ETH0 and ETH1/ECAT ... 150
ETH0 Ethernet Port ... 150
ETH1/ECAT Port ... 150

USB and Diagnostic ... 151
USB Host Port .. 151
USB-Serial UART Diagnostic Port .. 151

MANUAL MOTOR CONFIGURATION ... 153

Step 1: Creating an IDE Project .. 153
Reset ... 153
New Project .. 153
Disable Systemsetup Download ... 154
Recommended Project Layout ... 155

Step 2: Basic Optimization and System Gates Settings .. 156
Write Protect Key, Sys.WpKey ... 156
Abort All Input, Sys.pAbortAll ... 157
Maximum Number of Motors, Sys.MaxMotors .. 158
Maximum Number of Coordinate Systems, Sys.MaxCoords .. 158
Dominant Clock Frequencies ... 159
Data Unpacking ... 160

Power Brick AC ARM User Manual

Table of Contents ix

Setting up the BrickAC Structure Elements ... 161
System Gates Sample File for PBA4 .. 162
System Gates Sample File for PBA8 .. 163

Step 3: Power-On Reset PLC ... 164
Power-On Reset PLC Sample for PBA4 .. 164
Power-On Reset PLC Sample for PBA8 .. 165

Step 4: Applying Power-On Reset PLC and System Gates Settings ... 167

Step 5: Scaling and Verifying Encoder Feedback ... 168
Scaling to Engineering Units ... 168
Verifying Encoder Feedback .. 170

Step 6: Motor Setup .. 171
Common Structure Element Settings .. 171
PWM Scale Factor ... 172
On-going Phase Position ... 173
I2T Protection and Direct Magnetization Current .. 181
Slip Gain .. 184
Current Loop Tuning ... 185
Establishing Phase Reference .. 187
Open Loop Test .. 193
Optimizing Magnetization Current .. 195
Position Loop Tuning ... 196
Absolute Power-on Phasing ... 199

SPECIAL FUNCTIONS & TROUBLESHOOTING ... 217

D1: Error Codes ... 217

Step and Direction, PFM Output ... 218

Sinusoidal Encoder Bias Corrections .. 222

Reversing Motor Jogging Direction ... 228

DelayTimer PLC ... 230

Encoder Count Error ... 231

Encoder Loss Detection.. 232
Digital Quadrature .. 233
Sinusoidal | Resolver | HiperFace Encoders ... 234
Serial Encoders .. 235

Digital Tracking Filter .. 237

PTC Motor Thermal Input ... 239

LED Status ... 240

Reloading Power PMAC Firmware ... 241

Changing Network (IP Address) Settings .. 244

Restoring Factory Default Configuration ... 246

Watchdog Faults .. 247

BRICKAC STRUCTURE ELEMENTS .. 248

Global Saved Setup Elements .. 248
BrickAC.MonitorPeriod ... 248
BrickAC.SinglePhaseIn .. 249
BrickAC.UnderVoltageDisplay .. 249
BrickAC.UnderVoltageWarnOnly .. 250

Global Non-Saved Setup Elements .. 251
BrickAC.Config .. 251

Power Brick AC ARM User Manual

Table of Contents x

BrickAC.Monitor .. 253
BrickAC.Reset .. 255

Global Status Elements .. 256
BrickAC.BusOverVoltage .. 256
BrickAC.BusUnderVoltage .. 257
BrickAC.BusVoltage .. 257
BrickAC.LineOk ... 257
BrickAC.PhaseInMissing ... 258
BrickAC.PowerBoardId ... 258
BrickAC.PowerFault .. 258
BrickAC.RegenFault .. 259
BrickAC.RegenOverLoad ... 259
BrickAC.SoftStartFault .. 260
BrickAC.STO0 .. 260
BrickAC.STO1 .. 261
BrickAC.UnderVoltageMasked .. 262
BrickACVers .. 262

Channel Saved Setup Elements ... 263
BrickAC.Chan[j].I2tWarnOnly .. 263

Channel Status Elements ... 264
BrickAC.Chan[j].I2tExcess .. 264
BrickAC.Chan[j].IgbtOverTempFault ... 265
BrickAC.Chan[j].IgbtTemp .. 265
BrickAC.Chan[j].InvalidPwmFreq .. 266
BrickAC.Chan[j].OverCurrent .. 267
BrickAC.Chan[j].OverTemp .. 267
BrickAC.Chan[j].PwmFreq ... 268

APPENDICES .. 269

Appendix A: Yaskawa ACC-84B Example .. 269
Serial Encoder Control Example– Yaskawa Sigma II/III/V ... 269
Serial Encoder Command Example – Yaskawa Sigma II/III/V .. 269
Serial Data Registers – Sigma II/III/V ... 269
Yaskawa Sigma II/II/V Encoders Alarm Code (Absolute Encoders) ... 271
Yaskawa Sigma II/II/V Encoders Alarm Code (Incremental Encoders) .. 271
Resetting Faults – Yaskawa Sigma II/III/V .. 272

Appendix B: Digital Inputs Schematic ... 273

Appendix C: Digital Outputs Schematic .. 274

Appendix D: Analog I/O Schematics ... 275

Appendix E: Limits & Flags Schematic ... 277

Power Brick AC ARM User Manual

Introduction – Trademarks 11

INTRODUCTION

The Power Brick AC is a smart servo drive package. It combines the intelligence and capability of the Power

PMAC motion controller with high performance IGBT-based drives resulting into a 4, or 8-axis compact smart

drive.

The Power Brick AC is designed for up to 240 VAC main input power. It supports virtually any type of feedback

device and can drive directly the following types of motors:

 3-phase AC/DC brushless servo (synchronous) – rotary/linear

 AC Induction (asynchronous) – with or without encoder

 2-phase DC brush

Note

The Power Brick AC can also provide pulse and direction PFM output

signals to third-party stepper drives.

The number of axes in a Power Brick AC application can be expanded through MACRO or EtherCAT.

The Power Brick AC carries onboard up to 32 digital inputs and 16 digital outputs (I/Os) which can also be

expanded through MACRO, ModBus, or EtherCAT.

The trajectory planner, built-in software PLCs (programmable in Power PMAC script and / or C language), and

safety features make the Power Brick AC a fully scalable machine automation controller-drive which can be

integrated in virtually any kind of motion control application.

Power Brick AC ARM User Manual

Introduction – Related Manuals 12

Related Manuals

In conjunction with this manual, the following manuals are essential for the proper operation and use of the Power

Brick AC. Contact your local OMRON representative for procuring them.

Manual Name Cat. No. Application Description

Power PMAC Software

Reference Manual

O015 Learning the command set

and structure elements of

the Power PMAC

Controller.

 Power PMAC Data structure

 List and description of all

commands

 List and description of all ASIC,

Coordinate System and Motor

structure elements, including

CK3M and UMAC

Power PMAC User’s

Manual

O036 Learning the features and

usage examples of the

Power PMAC Controller.

 Parameter settings relevant to the

Amplifier

 Motor basic functions

 Encoder configuration examples

 Motor setup examples

 Power PMAC programming

examples

Power PMAC IDE User

Manual

O016 Learning how to use the

integrated development

environment IDE of the

Power PMAC Controller.

 Operating procedures of the Power

PMAC IDE software

 Configuration of the Direct PWM

Amplifier using system setup

Power Brick AC ARM User Manual

Introduction – Downloadable Power PMAC Script 13

Downloadable Power PMAC Script

Caution

Some code snippets may require the user to input specific information

pertaining to their system application. Occasionally, they are denoted in a

commentary ending with – User Input.

This manual contains downloadable code snippets in Power PMAC script. These examples can be copied and

pasted into the editor area of the IDE software. Care must be taken when using pre-configured Power PMAC

code, some information may need to be updated to match hardware or system specific configurations.

Downloadable code found in this manual is enclosed in the following format:

GLOBAL MyCounter = 0

GLOBAL MyCycles = 10

OPEN PLC ExamplePLC

WHILE (MyCounter < MyCycles)

{

 MyCounter ++

}

DISABLE PLC ExamplePLC

CLOSE

// Arbitrary global variable, counter

// Arbitrary global variable, number of cycles –User Input

// Open PLC buffer

// While counter is less than number of cycles

// Start while loop

// Increment MyCounter by 1

// End while loop

// Disable PLC

// Close PLC buffer

Caution

It is the user’s responsibility to manage the application’s PLCs properly.

The code samples are typically enclosed in a PLC buffer with the user

defined name ExamplePLC.

It is the user’s responsibility to use the PLC examples presented in this manual properly, and incorporate the

statement code in the application project accordingly.

Power Brick AC ARM User Manual

Introduction – Agency of Approval and Safety 14

Agency of Approval and Safety

Item Description

CE EMC EN61800-3

UKCA 2016 No. 1091

CE LVD EN61800-5-1

UL UL 61800-5-1

cUL CSA C22.2 No. 274

UKCA 2016 No. 1091

Power Brick AC ARM User Manual

Receiving and Unpacking – Use of Equipment 15

RECEIVING AND UNPACKING

Delta Tau products are thoroughly tested at the factory and carefully packaged for shipment. When the Power

Brick AC is received, there are several things to be done immediately:

 Observe the condition of the shipping container and report any damage immediately to the commercial

carrier that delivered the package.

 Remove the equipment from the shipping container and remove all packing materials. Check all shipping

material for connector kits, documentation, or other small pieces of equipment. Be aware that some

connector kits and other equipment pieces may be quite small and can be accidentally discarded if care

is not used when unpacking the equipment. The container and packing materials may be retained for

future shipment.

 Verify that the part number of the product received is the same as the part number listed on the purchase

order.

 Inspect the equipment for external physical damage that may have been sustained during shipment and

report any damage immediately to the commercial carrier.

 Electronic components in this product are design-hardened to reduce static sensitivity. However, use

proper procedures when handling the equipment.

 If the equipment is to be stored for several weeks before use, be sure that it is stored in a location that

conforms to published storage humidity and temperature specifications.

Use of Equipment

The following restrictions will ensure the proper use of the Power Brick AC:

 The components built into electrical equipment or machines can be used only as integral components of

such equipment.

 The Power Brick AC must not be operated on power supply networks without a ground or with an

asymmetrical ground.

 If the Power Brick AC is used in residential areas, or in business or commercial premises, implement

additional filtering measures.

 The Power Brick AC may be operated only in a closed switchgear cabinet, taking into account the

ambient conditions defined in the environmental specifications.

Power Brick AC ARM User Manual

Specifications – Part Number Designation 16

SPECIFICATIONS

Part Number Designation

Axis 1-4

Option DOption B

P B - A 0 -A

B D E G H I J K L M N

4:

8:

4-Axis

8-Axis

A:

E:

1 GB RAM, 1 GB Flash

2 GB RAM, 4 GB Flash

Option E

0:

1:

No EtherCAT®

I/O only

2: I/O + 4 Servo Axis

3:

5:

I/O + 8 Servo Axis

I/O + 16 Servo Axis

9: I/O + 32 Servo Axis

Option I

0:

1:

-

MACRO

Axis 5-8
No. Enc.
+ Flags

O

0

50:

5A:

80:

8A:

55:

85:

88:

5/10A

5/10A

8/16A

8/16A

5/10A

8/16A

8/16A

-

-

-

-

5/10A

5/10A

8/16A

4

8

4

8

8

8

8

Option GH

Power Brick AC ARM User Manual

Specifications – Part Number Designation 17

Option J

0:

1:

16/8 Digital I/O

32/16 Digital I/O*1

A:

B:

PROFIBUS-DP Master

PROFIBUS-DP Slave

C:

E:

DeviceNet Master

DeviceNet Slave

F:

G:

CANopen Master

CANopen Slave

H:

J:

CC-Link Slave

EtherCAT Slave

K:

L:

Ethernet/IP Scanner

Ethernet/IP Adapter

M:

N:

Open Modbus / TCP

PROFINET IO RT Controller

P: PROFINET IO RT Device

S: Sinusoidal

Option K

0: -

A: ACI*2

R: Resolver

Axis 1-4

P B - A 0 -A

B D E G H I J K L M N O

*1. Only available with 8 encoder channels
*2. ACI: Auto-Correcting Interpolator
*3. TBPC: Table-Based Position Compare
*4. ACC-84B Options
*5. Only available with 8 encoder channels and 4
amplifier channels in option H (value A)

S: Sinusoidal

Option L*1

0: -

A: ACI*2

R: Resolver

Axis 5-8

4: HiperFace

Option M*4

0: -

2: SSI

3: EnDat

Axis 1-4

9: Mitutoyo

6: Yaskawa III/V

7: Tamagawa

8: Panasonic

C: -

B: BiSS B/C

G: XY2-100

D: Mitsubishi

E: Omron 1S

F: TBPC*3

4: HiperFace

Option N*1*4

0: -

2: SSI

3: EnDat

Axis 5-8

9: Mitutoyo

6: Yaskawa III/V

7: Tamagawa

8: Panasonic

C: -

B: BiSS B/C

G: XY2-100

D: Mitsubishi

E: Omron 1S

F: TBPC*3

True
DAC

Option O

0:

1:

2:*1

4:*5

-

-

-

4

Filtered
PWM

-

4

8

-

Analog
Inputs

-

4

8

4

5:*5 4 4

-

4

8

4

4

GP
Relays

8

0

Power Brick AC ARM User Manual

Specifications – Power Brick AC Configuration 18

Power Brick AC Configuration

The Power Brick AC comes standard with a powerful set of hardware and software capabilities, plus a full set of

options.

Standard Configuration

CPU 1.0 GHz Dual-Core ARM

Memory 1 GB DDRAM3, 1 GB Flash.

Communication

Ports

2 x Gbs Ethernet port for host communication.

USB 2.0 Host port.

USB 2.0 Mass Storage and-Serial UART Diagnostic Port

Digital I/O
16 x Inputs, fully protected at 12 – 24 V sourcing or sinking (user wiring).

8 x Outputs, fully protected at 12 – 24 V sourcing or sinking (user wiring).

Servo

Interface

Four channels servo interface, each including:

Quadrature encoder (differential, with index) interface.

UVW digital hall sensor interface.

Serial encoder interface (software configurable):

o SSI

o EnDat 2.1 / 2.2 (2.1-compatible features only) with delay compensation

o Hiperface

o Yaskawa Sigma I / II / III / V (no position reset or fault clear)

o Tamagawa FA-Coder (no servo clock output)

o Panasonic (no servo clock output)

o Mitutoyo

o Kawasaki

Pulse & direction output.

Position compare (EQU) output (5 V TTL).

Input flags (home, + limit, – limit, user) at 5 – 24 V.

Motor thermal input (PTC).

Amplifier

Output
4 amplifier axes, each at 5/10A.

Amplifier Safety

& Features

Internal shunt / bleeding resistor built-in.

External shunt connection.

Shunt resistor fault detection.

Hardware I2T thermal fault detection.

Short circuit detection.

IGBT over-temperature detection.

PWM frequency out-of-range detection.

No bus voltage detection.

Soft start fault detection.

Watchdog output (normally closed / open).

Abort Input (category 2 stop).

STO Input (category 0 stop).

Ethernet/IP (Adapter)

Implicit I/O Message Service:

 Number of connection types: 32

 Packet interval (refresh cycle): 1 to 1,000 ms in 0.5-ms increments

 Maximum link data size per node: 16,128 byte

Power Brick AC ARM User Manual

Specifications – Power Brick AC Configuration 19

 Maximum data size per connection: 504 byte

Explicit I/O Message Service:

Number of servers that can communicate at one time: 32 max.

Options

Memory 2 GB DDRAM3, 4 GB Flash.

Digital I/O
Additional 16 x Inputs, fully protected at 12 – 24 V sourcing or sinking (user wiring).

Additional 8 x Outputs, fully protected at 12 – 24 V sourcing or sinking (user wiring).

Analog I/O

4 or 8 x 16-bit analog inputs.

4 or 8 x 14-bit filtered PWM analog outputs (±10 V).

4 x 16-bit true DAC analog outputs (±10 V).

4 or 8 x Amp enable outputs (to 3rd party drives).

4 or 8 x Amp fault inputs (from 3rd party drives).

Servo

Interface

Four additional servo channels with optional:

Sinusoidal encoder interface (x16384).

Auto-Correcting Interpolator ACI sinusoidal encoder interface (x65536)

Resolver encoder interface.

ACC-84B protocols:

o SSI (no additional capability over Gate3 built-in interface)

o EnDat 2.2 with additional information, no delay compensation

o Hiperface (no additional capability over Gate3 built-in interface)

o Yaskawa Sigma II/III/V with position reset and fault clear

o Tamagawa FA-Coder with servo clock output

o Panasonic (no additional capability over Gate3 built-in interface)

o Mitutoyo (no additional capability over Gate3 built-in interface)

o BiSS-B/C

o Mitsubishi

o Omron1S

o Table Based Position Compare Provided by ACC-84B

o XY2-100 Provided by ACC-84B

Amplifier

Output
4 additional amplifier axes, each at 5/10 A or 8/16 A

MACRO

Interface

16 Servo, 12 I/O nodes interface.

32 Servo, 24 I/O nodes interface.

EtherCAT

Interface

EtherCAT I/O only.

4 / 8 / 16 / 32 Servo axes plus I/O.

Fieldbus

EtherNet / IP Scanner / Master.

EtherNet / IP Adapter / Slave.

Open Modbus / TCP.

PROFINET IO RT Controller.

PROFINET IO RT Device.

CANopen Master.

CANopen Slave.

PROFIBUS-DP Master.

PROFIBUS-DP Slave.

DeviceNet Master.

DeviceNet Slave.

CC-Link Slave.

EtherCAT Slave.

Modbus.

Power Brick AC ARM User Manual

Specifications – Power Brick AC Configuration 20

Configuration Notes

 Quadrature encoders can always be wired in and processed regardless of the feedback options fitted.

 The following serial encoder protocols are built into (standard) the Power Brick AC – Gate3:

HiperFace

SSI

Panasonic

Kawasaki

EnDat 2.1 / 2.2

Yaskawa II / III / V

Tamagawa

Mitutoyo

Additionally, any of the listed optional protocols can be ordered (in sets of 4 channels: 1 – 4 or 5 – 8).

These are processed on what is known as the ACC–84B (piggy back inside the Power Brick AC).

Some protocols may overlap between the Gate3 and ACC–84B. Users may need new, updated protocols,

or additional serial data information which may not be available with the standard Gate3 protocol

implementation.

 With the optional ACC-84B installed, a given channel can be configured (in software) to use either one

of the Gate3 serial encoder protocols or one of the ACC-84B protocols.

 If a serial encoder is used on a given channel, it is also possible to wire in on the same connector and

process simultaneously a quadrature/sinusoidal/resolver encoder.

Note that pins #5, 6, 13, and 14 of the encoder feedback connectors (X1 – X8) share multiple functions:

only one of these functions (per channel) can be used – configured in software – at one time:

 Hall sensor inputs (default configuration).

 Pulse and direction PFM output signals (enable using PowerBrick[].Chan[].OutFlagD).

 Serial encoder inputs (enable using PowerBrick[].SerialEncEna).

 Serial encoder inputs (enable using bit 10 of ACC84B[].SerialEncCmd with ACC-84B).

 ACI sinusoidal encoder inputs (serial encoder input must be disabled).

 Alternate Sinusoidal encoder inputs (with sinusoidal encoder option).

Note

Each channel is independent of the other channels and can have its own

use for these pins.

Power Brick AC ARM User Manual

Specifications – Environmental Specifications 21

Environmental Specifications

Specification Description Range

Ambient operating Temperature

EN50178 Class 3K3 – IEC721-3-3

Minimum operating temperature 0°C (32 °F)

Maximum operating temperature 45°C (113 °F)

Storage Temperature Range

EN 50178 Class 1K4 – IEC721-3-1/2

Minimum Storage temperature -25°C (-13 °F)

Maximum Storage temperature 70°C (158 °F)

Humidity Characteristics with

NO condensation and NO formation of ice

IEC721-3-3

Minimum Relative Humidity 10% HU

Maximum Relative Humidity

up to 35 °C (95 °F)
 95% HU

Maximum Relative Humidity

from 35 °C up to 50 °C (122 °F)
 85% HU

De-rating for Altitude

0 ~ 1000m (0 ~ 3300ft) No de-rating

1000 ~ 3000 m (3300 ~ 9840 ft) -0.01% / m

3000 ~ 4000 m (9840 ~ 13000 ft) -0.02% / m

Environment

ISA 71-04
Degree 2 environments

Atmospheric Pressure

EN50178 class 2K3 70 kPa to 106 kPa

Shock Unspecified

Vibration Unspecified

Air Flow Clearances 3" (76.2 mm) above and below unit for air flow

Cooling Natural convection and external fan

Standard IP Protection
IP20

IP 55 can be evaluated for custom applications

Note

Above 40°C ambient, de-rate current output by 2.5% per °C.

Power Brick AC ARM User Manual

Specifications – Protection Specifications 22

Protection Specifications

Caution

The internal I2T applies to and protects the amplifier power blocks. The

software PMAC I2T (described in a later section) must be configured

properly to protect against motor / equipment damage.

Description Specifications

Over Voltage ~ 307 VAC / 435 VDC (±2 %)

Under Voltage ~ 70 VAC / 100 VDC (±5 %)

AC Phase Loss Detection Loss of one or more phases (single & three-phase operation)

Internal I2T protection 2 seconds at rated peak Amps per axis

Over Temperature ~ 75C

Motor Short Circuit 500 % of rated peak Amps per axis

Over Current 110 % of rated peak Amps per axis

Shunt I2T Detection Integrated, I2T model at 2 seconds peak

Shunt Short Detection Shunt IGBT short circuit protection

Shunt Turn On Threshold 380 VDC

Shunt Turn Off Threshold 405 VDC

Soft Start Short Detection Soft Start short circuit protection

PWM Out Of Range Out of [4 – 20] kHz, or on-time exceeds 1.4 msec

Safe Torque Off STO Cut off gate driver/motor power

Note

The under voltage fault triggers when the AC Input dips below 70 VAC

(100 VDC). However, if this threshold has not been reached (i.e. Low

Voltage/DC operation) the under voltage logic remains unarmed.

Power Brick AC ARM User Manual

Specifications – Electrical Specifications 23

Electrical Specifications

4-Axis Power Brick AC

Specification Unit PBA4-Axx5 PBA4-Axx8

Output Continuous Current per Axis Arms 5 8

Output Peak Current (2 sec) per Axis Arms 10 16

Rated Input Current

@ 240 VAC 3-phase (All Axes)
Arms 11 17

Max ADC (I2T Settings) A 15.625 25.0

Output Power per Axis

(Modulation depth of 60% RMS)
Watts 1000 1400

Output Power Total Watts 4000 5000

Power Dissipation Watts 400 500

PWM Frequency Operating Range KHz 4 – 20

Main AC Input Line Voltage VACrms 90 – 250

Logic Power Input Voltage VDC 24±5%

Logic Power Input Current Arms 5

Continuous Shunt Power Rating Watts 4000

Peak Shunt Power Rating Watts 8000

Recommended Shunt Resistor Ohms GAR 15 (15 Ω)

Recommended Shunt Power Rating Watts 300

Note

Output power ratings specified at 12 kHz PWM.

Note

All electrical specifications are rated for three-phase 240 VAC main input.

De-rating applies in single-phase AC, or DC Operation.

Power Brick AC ARM User Manual

Specifications – Electrical Specifications 24

8-Axis Power Brick AC

Specification Unit PBA8-Axx55 PBA8-Axx88 PBA8-Axx85

Axes 1 – 4 5 – 8 1 – 4 5 – 8 1 – 4 5 – 8

Output Continuous Current per Axis Arms 5 8 8 5

Output Peak Current (2 sec) per Axis Arms 10 16 16 10

Rated Input Current

@ 240 VAC 3-phase (All Axes)
A 20 32 26

Max ADC (I2T Settings) Arms 15.625 25 25 15.625

Output Power per Axis

(Modulation depth of 60% RMS)
Watts 1000 1400 1200

Output Power Total Watts 8000 10000 9000

Power Dissipation Watts 800 1000 900

PWM Frequency Operating Range KHz 4 – 20

Main AC Input Line Voltage VACrms 90-250

Logic Power Input Voltage VDC 24±5%

Logic Power Input Current A 5

Continuous Shunt Power Rating Watts 8000

Peak Shunt Power Rating Watts 8000

Recommended Shunt Resistor Ohms GAR 15 (15 Ω)

Recommended Shunt Power Rating Watts 300

Note

Output power ratings specified at 12 kHz PWM.

Note

All electrical specifications are rated for three-phase 240 VAC main input.

De-rating applies in single-phase AC, or DC Operation.

Power Brick AC ARM User Manual

Mounting – Electrical Specifications 25

MOUNTING

The location of the Power Brick AC is important. Installation should be in an area that is protected from direct

sunlight, corrosives, harmful gases or liquids, dust, metallic particles, and other contaminants. Exposure to these

can reduce the operating life and degrade performance of the drive.

Several other factors should be carefully evaluated when selecting a location for installation:

 For effective cooling and maintenance, the Power Brick AC should be mounted on a smooth, non-

flammable vertical surface.

 At least 76 mm (3 inches) top and bottom clearance must be provided for air flow. At least 10 mm (0.4

inches) clearance is required between units (each side).

 Temperature, humidity and Vibration specifications should also be taken into consideration.

Caution

Unit must be installed in an enclosure that meets the environmental IP

rating of the end product (ventilation or cooling may be necessary to

prevent enclosure ambient from exceeding 45° C [113° F]).

The Power Brick AC can be mounted with a traditional 3-hole panel mount, two U shape/notches on the bottom

and one pear shaped hole on top.

If multiple Power Brick ACs are used, they can be mounted side-by-side, leaving at least a 122 mm clearance

between drives. This means a 122 mm center-to-center distance (0.4 inches). It is extremely important that the

airflow is not obstructed by the placement of conduit tracks or other devices in the enclosure.

If the drive is mounted to a back panel, the back panel should be unpainted and electrically conductive to allow

for reduced electrical noise interference. The back panel should be machined to accept the mounting bolt pattern

of the drive.

The Power Brick AC can be mounted to the back panel using M4 screws and internal-tooth lock washers. It is

important that the teeth break through any anodization on the drive’s mounting gears to provide a good

electrically conductive path in as many places as possible. Mount the drive on the back panel so there is airflow

at both the top and bottom areas of the drive (at least three inches).

Caution

This product contains D-SUB style connectors. Do not

overtighten any screws on mating connectors, and when

possible, only tighten by hand. Overtightening, such as

with manual or electric tools, may lead to the mating nut

detaching when subsequently unscrewed, which may

result in damage to the product, other electronics, and/or

injury.

Screw

Hex nut

(Risk of falling)

off)

Power Brick AC ARM User Manual

Mounting – Connector Locations 26

Connector Locations

The following diagrams reflect the name and location of the connectors.

Front View

Encoder 5

Encoder 1

Encoder 6

Encoder 2

Encoder 7

Encoder 3

Encoder 8

Encoder 4

MACRO

Micro-USB Diagnostic

USB Host Port

EtherCAT

Ethernet

WD & Abort

Motor 1

Motor 2

Motor 5

Motor 6

Motor 3

Motor 4

Motor 7

Motor 8

Power Brick AC ARM User Manual

Mounting – Connector Locations 27

Top View

Bottom View

Analog I/Os

Analog I/Os

Main Bus power

24VDC Logic

STO

GP I/Os

Limits, Flags, EQU

External Encoder Supply

External Shunt Resistor

Brake Power

Power Brick AC ARM User Manual

Mounting – Connector Locations 28

Top View w/ Fieldbus

24VDC Logic

STO

GP I/O

Limits, Flags, EQU

External Encoder Supply

External Shunt Resistor

Brake Power Supply

Fieldbus

Power Brick AC ARM User Manual

Mounting – CAD Drawing 29

CAD Drawing

4–axis Power Brick AC

14.25"
(362 mm)

4.00"
(101.6 mm)

14.75"
(374.7 mm)

4 x M4

13.28"
(337.3 mm)

7.65"
(194.3 mm)

5.93"
(150.6 mm)

Power Brick AC ARM User Manual

Mounting – CAD Drawing 30

8–axis Power Brick AC

14.25"
(362 mm)

6.50"
(165.1 mm)

14.75"
(374.7 mm)

4 x M4

13.28"
(337.3 mm)

7.65"
(194.3 mm)

9.50"
(241.3 mm)

Power Brick AC ARM User Manual

Connections and Basic Settings – Motor and Brake (A1 - A8) 31

CONNECTIONS AND BASIC SETTINGS

Warning

Installation of electrical control equipment is subject to many regulations

including national, state, local, and industry guidelines and rules. General

recommendations can be stated but it is important that the installation be

carried out in accordance with all regulations pertaining to the

installation.

Motor and Brake (A1 - A8)

A1 - A8: Phoenix Contact 6-pin Female

Mating: Phoenix Contact 6-pin Male

BRK
 BRK RET

CHGND
W

V
U

Pin # Symbol Function Description

1 U Output Phase 1

2 V Output Phase 2

3 W Output Phase 3

4 CHGND Chassis Ground

5 BRK RET Return Brake 0 V

6 BRK Output Brake 24 V

Phoenix Contact Mating Connector P/N: 1858808

Note

The Power Brick endorses the U, V, and W nomenclature for phases 1

through 3 respectively. Some motor manufacturers will call them A, B,

and C. Others may call them L1, L2, and L3.

Caution

Brakes which require AC voltage, level other than 24V, or draw current

in excess of 1A (at 24VDC) must be powered using a dedicated external

power supply.

If the motor brake does not draw more than 1A (per channel), then the brake power supply provided on the A12

connector can be used to toggle the motor brake directly – left diagram (below).

Power Brick AC ARM User Manual

Connections and Basic Settings – Motor and Brake (A1 - A8) 32

If the motor brake is rated to voltage level other than 24 VDC, or draws more than 1 A at 24 V, then the power

supply provided through A12 can be used to toggle an external relay which routes the brake power from a

dedicated power supply – right diagram (below).

U

V

W

CHG

B 0V

B 24V

Brake

0V

24V

3-Phase
Motor

Shield
360° onto Ground Bar / Chassis

U

V

W

CHG

B 0V

B 24V

Brake

0V

+V

3-Phase
Motor

Shield
360° onto Ground Bar / Chassis

Brake
Power Supply Relay

0V

+V

Note

The motor’s frame drain wire and the motor cable shield should be tied

together to minimize noise disturbances.

Note

For two-phase DC Brush motors, use U and W, and leave V floating.

Configuring the Brake Output

The brake output is high true. It is 0V when the motor is killed (or OutFlagB = 0) and 24 V when the motor is

enabled (or OutFlagB = 1). The necessary settings required to synchronize the enabling and disabling of the

motor with the brake output signal are as follows:

Motor[1].pBrakeOut = PowerBrick[0].Chan[0].OutFlagB.a //

Motor[1].BrakeOffDelay = 1 // msec, Brake Off Delay --USER INPUT

Motor[1].BrakeOnDelay = 1 // msec, Brake On Delay --USER INPUT

Motor[1].BrakeOutBit = 9 //

Note

For toggling the brake output manually, set pBrakeOut = 0 and write to

the PowerBrick[].Chan[].OutFlagB bit element.

Power Brick AC ARM User Manual

Connections and Basic Settings – Motor and Brake (A1 - A8) 33

Motor Cable, Noise Elimination

The Power Brick ACs’ voltage output has a fundamental frequency and amplitude that corresponds to motor

speed, torque, and number of poles. As a Direct Digital PWM Drive, the Power Brick AC produces higher

frequency voltage components corresponding to the rise, fall and repetition rate of the fast switching PWM

signals. Subsequently, it could naturally couple current noise to nearby conductors. This electrical coupling can

be problematic, especially in noise-sensitive applications such as using high-resolution sinusoidal encoders, or

high rate of communication which could suffer from Electro-Magnetic Interference EMI. Proper grounding,

shielding, and filtering can alleviate most noise issues. Some applications may require additional measures such

as PWM edge filters. The following; are general guidelines for proper motor cabling:

 Use a motor cable with high quality shield. A combination braid-and-foil is best.

 The motor drain wires and cable shield should be tied together, and attached at both ends of the

motor and Power Brick AC chassis / ground bar. At the motor end, make a 360 degree connection

between the shield and motor frame. If the motor has a metal shell connector, then you can tie the shield

directly to the metal shell of the mating connector. The connection between the cable shield and the

motor frame should be as short as possible). At the Power Brick AC end, make a 360 degree connection

between the shield and the chassis ground bar (protection earth).

 The motor cable should have a separate conductor (drain wire) tying the motor frame to the Power

Brick AC drive.

 Keep the motor cable as short as possible to maintain lower capacitance (desirable). A capacitance of

up to 50 Pico Farads per foot (0.3048 m), and runs of up to 200 feet (60 m) are acceptable with 240VAC.

Exceeding these lengths requires the installation of a Snubber at the motor end or an in-series inductor

at the Power Brick AC end.

 If the grounding/shielding techniques are insufficient, you may install chokes in the motor phases at

the Power Brick AC end such as wrapping individual motor leads several times through a ferrite core

ring. DigiKey, Micro-Metals (T400-26D), Fair Rite (2643540002), or equivalent ferrite cores are

recommended. This adds high-frequency impedance to the outgoing motor cable thereby making it

harder for high-frequency noise to leave the control area.

Note

Ferrite cores are also commonly used with lower inductance motors to

enhance compatibility with the Power Brick AC, which is nominally

about 2 mH.

 Do not use a motor wire gauge less than 14 AWG for 5/10 A or 8/16 A axes, and 10 AWG for 15/30

A axes unless otherwise specified by the motor manufacturer. Refer to Motor manufacturer and local

code recommendations.

 Avoid running sensitive signal cables (i.e. encoders, small signal transducers) in the same cable bundle

as the motor cable(s).

 Install dv/dt filter, Trans-coil V1K series (Optional).

Power Brick AC ARM User Manual

Connections and Basic Settings – Motor and Brake (A1 - A8) 34

Motor Selection

The Power Brick AC interfaces with a wide variety of motors. It supports virtually any kind of three-phase

AC/DC rotary, linear brushless, or induction motors. Using two out of the three phases, it is also possible to drive

permanent magnet DC brush motors.

Motor Inductance

Digital direct PWM control requires a significant amount of motor inductance to drive the on-off voltage signals

resulting smooth current flow with minimal ripple. Typically, servomotors’ phase inductance ranges from 2 to

15mH. The lower the inductance, the higher is the suitable PWM frequency.

Low inductance motors (less than 2 mH) can see large ripple currents causing excessive energy waste and

overheating. Additional in-series inductance is recommended in these cases.

High inductance motors (greater than 15 mH) are slower to react and generally not considered high performance

servo motors.

Motor Resistance

Motor resistance is not typically a determining factor in the drive/system performance but rather comes into play

when extracting a desired torque or horsepower out of the motor is a requirement.

Motor Inertia

Motor inertia is an important parameter in motor sizing. Considering the reflected load inertia back to the motor

in this process is important. In general, the higher the motor inertia, the more stable the system will inherently

be. A high ratio of load to motor inertia shrinks the operating bandwidth (gain limited) of the system, especially

in applications using belt or rubber based couplings. The ratio of load to motor inertia is typically around 3:1.

Mechanical gearing is often used to reduce reflected inertial load going back to the shaft of the motor.

Motor Speed

In some applications, it is realistically impossible to achieve the motors’ specified maximum velocity.

Fundamentally, providing sufficient voltage and proper current-loop tuning should allow attaining motor

maximum speeds. Consider feedback devices being a limitation in some cases, as well as the load attached to the

motor. In general, the maximum speed can be determined dividing the line-to-line input voltage by the back EMF

constant Kb of the motor. Input voltage headroom of about 20% is recommended for good servo control at

maximum speed.

Motor Torque

Torque requirements in an application can be viewed as both instantaneous and average

Typically, the instantaneous or peak torque is the sum of machining, and frictional forces required to accelerate

the inertial load. The energy required to accelerate a load follows the equation T=JA where T is the torque, J is

the inertia, and A is the acceleration. The required instantaneous torque is then divided by the motor torque

constant (Kt) to determine the necessary peak current of the Power Brick AC. Headroom of about 10% is always

desirable to account for miscellaneous losses (aging, wear and tear, calculation roundups).

The continuous torque rating of the motor is bound by thermal limitation. If the motor applies more torque than

the specified threshold, it will overheat. Typically, the continuous torque ceiling is the RMS current rating of the

motor, also known as torque output per ampere of input current.

Power Brick AC ARM User Manual

Connections and Basic Settings – Motor and Brake (A1 - A8) 35

Required Bus Voltage for Speed and Torque

For a required motor Speed, and continuous Torque, the minimum DC Bus Voltage (VDC) can be estimated by

looking at the equivalent single phase circuit:

BEMF

R L

+ -

+ -

Motor

The vector sum of back EMF, voltage across resistor and inductor should be less than 6/VDC .

For a Rotary Motor:

6

V
Mπ2

3

K

60

R
R

K

T

K

T
Lπ2N

60

R
VVV DC

derate

2

tRPM
p

t

M

2

t

M
pp

RPM2

BEMFR

2

L

 Where:

VL : Voltage Across equivalent inductor

VR : Voltage Across equivalent resistor

VBEMF : Back electromotive force voltage

RRPM : Required Motor Speed [rpm]

NP : Number of pole pairs

LP : Phase Inductance [H]

RP : Phase Resistance [Ω]

TM : Required Continuous Torque [N.M]

KT : Motor Torque Constant RMS [N.M/A]

Mderate : De-rate parameter (typically 0.8)

For a Linear Motor:

6

V
M

3

K

D

V
R

K

F

K

F
L

D

V
VVV DC

derate

2

t

pitch

motor
p

t

M

2

t

M
p

pitch

motor2

BEMFR

2

L

Where:

VL : Voltage across equivalent inductor

VR : Voltage across equivalent resistor

VBEMF : Back electromotive Force voltage

Vmotor : Required Motor Speed [m/s]

Mderate : De-rate parameter (typically 0.8)

LP : Phase Inductance [H]

RP : Phase Resistance [Ω]

FM : Required Motor Force RMS [N]

Kt : Motor Force Constant RMS [N/A]

DPitch : Magnetic Pitch [m]

Example:

An application requires running a motor at 500 RPM with a continuous torque of 30 N.M. The motor specs are

as follow:

mH 10Lp , Ohm 2R p , 16N p , Amps / Nm 2.187K t

Using the equation above, a minimum bus of 233 VDC (~165VAC) is necessary to achieve the speed and torque

requirements.

Power Brick AC ARM User Manual

Connections and Basic Settings – Logic Power Supply (A10) 36

Logic Power Supply (A10)

A10 is used to bring in the 24 VDC supply powering up the logic portion of the Power Brick AC. This power

can remain on regardless of the main AC bus power, allowing the signal electronics to be active while the main

motor power is passive.

Caution

The 24V logic power must always be applied before applying main AC

bus power.

The 24-Volt (±5%) power supply unit must be capable of providing 5 amperes per Power Brick AC. If multiple

drives are sharing the same 24-Volt power supply, it is highly recommended to wire each drive back to the power

supply terminals separately.

This connection can be made using a 22 AWG wire directly from a protected power supply.

A10: 3-pin Female

Mating: 3-pin Male

1 2 3

Pin # Symbol Function Description Notes

1 +24 VDC Input Logic power input + +24 VDC (±5 %)

2 +24 VDC RET Common Logic power return - Connect to Power Supply Return

3 CHGND Ground Chassis ground Connect to Protection Earth

Phoenix Contact mating connector part# # 1777293

24VDC

+24VDC RET

CHGND

1

A10

3

24 VDC

Ground to

100 or less

2

Power Brick AC ARM User Manual

Connections and Basic Settings – Safe Torque OFF and Dynamic Brake (A11) 37

Safe Torque OFF and Dynamic Brake (A11)

Connector A11 serves the following functions:

 Disabling the Safe Torque Off STO

 Arming / using the STO

 Using dynamic braking

 Wiring the STO feedback (output status)

Caution

Power Brick units shipped prior to the Q3 2016 had the Dynamic Brake

(DYN BRAKE) and STO IN silkscreen etchings reversed.

A11: 5-pin Female

Mating: 5-pin Male

1
2345

Pin # Symbol Function Description

1 STO FB Output STO Feedback

2 STO IN Input STO Input #1

3 DYN BRAKE Input STO Input #2

4 STO DISABLE - STO disable

5 STO DISABLE RTN - STO disable return

Phoenix Contact Mating Connector Part #: 1850699

The Safe Torque Off (STO) allows the complete “hardware” disconnection of the power amplifiers from the

motors by shutting down the gate-drivers power. This mechanism prevents unintentional “movement of” or

torque output to the motors in accordance with IEC/EN safety standards.

Dynamic braking forces the motors to a quick uncontrolled stop preventing them from coasting freely. This is

achieved by tying the motor leads together internally.

The STO FB feedback is an indicator of the STO status. Optionally, it can be brought back into the Power Brick

AC as a digital input, or wired into other machine logic device(s).

Power Brick AC ARM User Manual

Connections and Basic Settings – Safe Torque OFF and Dynamic Brake (A11) 38

Disabling the STO

The STO can be fully disabled by tying pins #4 and #5 together.

All other pins on this connector have no practical use in this mode, and

should be left floating.

STO FB

A11

STO IN

DYN BRAKE

5

4

3

2

1

Wiring and Using the STO

This scheme is suitable for a Category 0 safe –

uncontrolled – stop in accordance with machine

safety regulations. That is removing power to the

actuators immediately.

In normal mode operation, the STO must be a

normally closed relay (24 VDC applied).

In normal mode operation, the STO FB feedback is

at 24V.

STO FB

A11

STO IN

DYN BRAKE

5

4

3

2

1

0 V

24 VDC24 VDC
Power Supply

2

3

1 24 VDC

 RET

CHGND

A10

24 VDC

When the STO is triggered (24 VDC disconnected):

 Power is removed immediately; the motors are killed, coasting freely.

 The STO Feedback level drops to 0 V.

 The 7-segment displays an E fault.

 The PMAC reports and latches an amplifier fault in the motor status.

Note

Power is completely removed while the 24 VDC is disconnected from the

STO IN. No motor motion can be executed (amplifier fault). Once the 24

VDC is re-applied, motors are ready for motion and the display fault is

cleared.

Note

If the STO is not disabled, both STO IN and DYN BRAKE must see 24

VDC to allow motor motion.

Power Brick AC ARM User Manual

Connections and Basic Settings – Safe Torque OFF and Dynamic Brake (A11) 39

Wiring and Using the Dynamic Braking

This scheme is used if the application mandates

minimal coasting in an uncontrolled stop

request.

Some applications may choose to use dynamic

braking prior to triggering the STO.

In normal mode operation, the DYN BRAKE

must be normally closed (24 VDC applied).

STO FB

A11

STO IN

DYN BRAKE

5

4

3

2

1

0 V

24 VDC24 VDC
Power Supply

2

3

1 24 VDC

 RET

CHGND

A10

24 VDC

When the DYN BRAKE is triggered (24 VDC disconnected):

 Motors are killed, leads are shorted together (internally) bringing the motors to a quick standstill.

 The STO Feedback level drops to 0 V.

 The 7-segment displays a b fault.

 The Power PMAC reports an amplifier fault in the motor status.

Note

No motor motion is allowed while this 24 VDC is disconnected. Once re-

applied, the 7-segment display fault is cleared, and the motor is ready for

motion.

Note

If the STO is not disabled, both STO IN and DYN BRAKE must see 24

VDC to allow motor motion.

Note

Dynamic braking must not be confused with controlled stop, which is

performed using the Abort Input (X18).

Power Brick AC ARM User Manual

Connections and Basic Settings – Safe Torque OFF and Dynamic Brake (A11) 40

STO Feedback

The STO FB signal can be read in by a sinking input. If logic and IO have separate power supplies, this requires

tying together their grounds. This input will be true when PMAC is operating normally and false when the STO

or Dynamic Break is preventing motion.

STO FB

A11

STO IN

DYN BRAKE

5

4

3

2

1

0 V

24 VDC24 VDC
Power Supply

2

3

1 24 VDC

 RET

CHGND

A10

1
2

3
4

5

2
0

2
1

2
2

2
3

8
6

7

2
4

2
5

2
6

9
1

0
1

1
1

2

2
7

2
8

2
9

3
0

1
5

1
3

1
4

3
1

3
2

3
3

1
6

3
4

1
9

1
7

1
8

3
5

3
6

3
7

Input 1

Input
Common

Power Brick AC ARM User Manual

Connections and Basic Settings – Safe Torque OFF and Dynamic Brake (A11) 41

Recovering from the STO or Dynamic Brake

The Power Brick AC does not exhibit an amplifier fault in the motor status when the STO is triggered, It is

strongly advised to issue a kill to all active motors as soon as the STO or Dynamic Break is triggered. This can

be done in a background PLC.

When the STO or Dynamic Break trip, it appears to the controller as if the current readings from the ADC sensors

are saturated thus charging and tripping an I2T fault in PMAC.

The example PLC below, assuming the STO feedback FB is wired to input#1 of the Power Brick AC, kills the

motor immediately and discharges I2T allowing quick recovery and regaining motor control.

OPEN PLC StoResetPLC

LOCAL Mtr1PrevI2TSet

// STO TRIGGERED?

IF (Input1)

{

// I2T CHARGED?

IF (Motor[1].I2tSum > 0)

{

KILL 1

 Mtr1PrevI2TSet = Motor[1].I2TSet

 DO{Motor[1].I2tSet = 0} WHILE(Motor[1].I2tSum > 0)

 Motor[1].I2TSet = Mtr1PrevI2TSet

 }

 WHILE(Input1){}

}

CLOSE

Power Brick AC ARM User Manual

Connections and Basic Settings – Brake Power Supply Axis 1-4 (A12) 42

Brake Power Supply Axis 1-4 (A12)

A12 is used to supply the +24 VDC brake power for axes 1 – 4.

Caution

Brakes which require AC voltage, other than 24 VDC, or draw current

in excess of 1A (at 24VDC, per channel) must be powered using a

dedicated external power supply and not through A12.

A12: Phoenix 2-pin Female

Mating: Phoenix 2-pin Male

Pin # Symbol Function Description

1 + 24 VDC Input

2 + 24 VDC RET Input

Phoenix Contact Mating Connector P/N: 1850660

Power Brick AC ARM User Manual

Connections and Basic Settings – External Shunt Resistor (A14) 43

External Shunt Resistor (A14)

Caution

All applications using Power Brick AC drives (all configurations) are

strongly advised to install an external shunt resistor.

A14: Phoenix 2-pin Female

Mating: Phoenix 2-pin Male

Pin # Symbol Function Description

1 SHUNT+ Input

2 SHUNT– Input

Phoenix Contact Mating Connector P/N: 1777723

Delta Tau mating connector P/N: 016-PL0F02-76P

A14 is used to wire an external shunt resistor to expel the excess power during demanding deceleration profiles.

The 4- and 8-axis Power Brick AC drives are designed for operation with external shunt resistors of 15 Ohms.

Caution

The external shunt resistor can reach temperatures of up to 200°C. It must

be mounted away from other devices and ideally near the top of the

cabinet, also ensure it is enclosed and cannot be touched during operation.

Delta Tau offers these resistors (GAR15) with pre-terminated cables that plug directly into A14. These resistors

incorporate a normally closed (N.C.) thermal overload protection thermostat. The thermostat goes into an open

state when the core temperature of the resistor exceeds 225°C (450° F). This thermostat is accessible through

the two black leads. It is important that these two leads be wired into a safety circuit to halt operation should the

resistor temperature exceed the specified threshold.

Note

The white conduits are shunt resistor leads whereas the black wires are

thermostat.

SHUNT+

SHUNT–

THERMOSTAT

Power Brick AC ARM User Manual

Connections and Basic Settings – Main Bus Power Supply (A15) 44

Main Bus Power Supply (A15)

A15 is used to bring the main AC/DC bus power into the Power Brick AC.

 A15: Phoenix Contact 4-pin Female

Mating: Phoenix Contact 4-pin Male

G
N

DL1

Symbol Function Three Phase Single Phase DC

L1 Input AC Line Phase 1 Not Connected Not Connected

L2 Input AC Line Phase 2 Neutral 0 VDC

L3 Input AC Line Phase 3 Line DC +

GND Ground

Phoenix Contact Mating Connector P/N: 1970359

Delta Tau P/N: 016-197035-94P

Note

In single phase operation, use L2 and L3, and leave L1 floating.

In DC mode operation, use L3 for DC+ and L2 for 0 V, and leave L1

floating.

Note

BrickAC.SinglePhaseIn must be set to 1 in single phase or DC

operations. For this setting to take effect, BrickAC.Reset or

BrickAC.Config must be set to 1 at least once.

Caution

The main AC power should NEVER be supplied to the Power Brick AC

if the 24 VDC logic power is NOT applied.

Caution

Make sure that no motor commands (e.g. phasing, jogging) are being

executed at the time of applying main AC power.

Power Brick AC ARM User Manual

Connections and Basic Settings – Main Bus Power Supply (A15) 45

Advised Power On/Off Sequence

Caution

Main AC input power should never be cycled rapidly and repeatedly

within a few seconds.

Powering up the Power Brick AC must obey the following sequence:

1. Make sure main bus power is disconnected (e.g. E-Stop engaged)

2. Apply 24 VDC logic power (A10).

The STO and Dynamic Brake states are irrelevant at this point.

3. Configure the PMAC to execute the Power On Reset PLC. That is setting BrickAC.Reset = 1 and

waiting for it to return a 0 indicating a successful reset operation.

4. Apply main bus power (A15) (e.g. Releasing the E-Stop). Wait at least 1 second for the soft start

circuitry to finish its task.

5. Reset STO / Dynamic Brake (if utilized).

6. Energize motors.

Powering down the Power Brick AC must obey the following sequence:

1. Disconnect main bus power (A15).

Kill / de-energize motors simultaneously (e.g. via an E-Stop PLC).

The STO and Dynamic Brake states are irrelevant at this point.

2. Allow approximately 1 second.

3. Disconnect 24 VDC logic power (A10).

Note

Killing all motors (in software logic, background PLC) upon engaging the

E-Stop is highly recommended. This could be triggered by a general

purpose input which is typically tied to the E-Stop button/circuit.

Power Brick AC ARM User Manual

Connections and Basic Settings – Main Bus Power Supply (A15) 46

Recommended Main Bus Power Wiring / Protection

Caution

Main AC power lines should run in a separate duct at least 12” (or 30 cm)

away from – and should never be bundled with – the I/O, communication,

or encoder cables.

Grounding, Bonding

System grounding is crucial for proper performance of the Power Brick AC. Panel wiring requires that a central

earth-ground (also known as ground bus bar) location be installed at one part of the panel. The ground bus bar is

usually a copper plate directly bonded to the back panel. This electrical ground connection allows for each device

within the enclosure to have a separate wire brought back to the central earth-ground.

 Implement a star point ground connection scheme; so that each device wired to earth ground has its own

conductor brought directly back to the central earth ground plate (bus bar).

 Use an unpainted back panel. This allows a wide area of contact for all metallic surfaces, reducing

frequency impedances.

 Use a heavy gauge ground earth conductors made up of many strands of fine conducts.

 The Power Brick AC is brought to the earth-ground via one or two wire(s) connected to the M4 mounting

stud(s) through a heavy gauge multi-strand conductor to the central earth-ground. It can alternately be

tied to the motor grounding bar.

Power Brick AC ARM User Manual

Connections and Basic Settings – Main Bus Power Supply (A15) 47

Three-Phase Main AC Power Wiring Diagram

3-PHASE
TRANSFORMER
Up to 240 VAC

GND L1 L2 L3

PROTECTION EARTH FU
SE

FU
SE

FU
SE

L1
L2
L3
GND

Shielded
And

Twisted

EMC/EMI
FILTER

Phase-Phase
Voltage

Suppressors

Magnetic Contactor
(E-Stop Circuit)

Single-Phase Main AC Power Wiring Diagram

GND Neutral Line

PROTECTION EARTH

FU
SE

FU
SE

GND

Shielded
And

Twisted

EMC/EMI
FILTER

Phase-Phase
Voltage

Suppressors

Single Phase Source
Up to 240 VAC

L2
L3

Magnetic Contactor
(E-Stop Circuit)

Power Brick AC ARM User Manual

Connections and Basic Settings – Main Bus Power Supply (A15) 48

Transformers

Y-Y or Y- transformers should be used.

- Transformers are NOT advised. They try to balance phases dynamically, creating instances of instability in

the Power Brick AC’s rectifying circuitry.

Note

A line reactor should be installed if a transformer or reliable source of

power is not available. Line reactors suppress harmonics bi-directionally,

eliminating low frequency spikes.

Fuses

High peak currents and high inrush currents demand the use of slow blow time delayed type fuses.

RK1 or RK5 (i.e. current limiting) classes are recommended. FRN-R and LPN-RK from Cooper Bussmann or

similar fuses can be used.

The following table summarizes fuse gauges for three-phase bus input (240 VAC) at full load:

Model Fuse

PBA4-Axx-55 15A

PBA4-Axx-88 25A

PBA8-Axx-55 30A

PBA8-Axx-85 35A

PBA8-Axx-88 45A

Specific applications fuse sizing can be done using the following equations. Take, as an example, a 4-axis Power

Brick AC (5/10 A) on 240 VAC bus, and driving 4 motors (5 A continuous current rating):

DC Bus Voltage: VDCBus= √2 × VACBus= 1.414 × 240= 339.4 [VDC]

Motor Phase voltage: VMotorPhase=
VDCBus

√6
=

339

2.45
= 138.5 [VDC]

Power per axis: PAxis= 3 × VMotorPhase × IMotorPhase × 0.6= 3×138.6×5×0.6= 1247 [Watts]

Total power: PTotal= ∑ PAxis = 4 × 1247 = 4988.3 Watts [Watts]

Dissipated power: PDis= 0.1 × PTotal = 0.1 × 4988 = 498.8 Watts [Watts]

Current draw per phase

(for 3 bus input)
I3Phase=

PTotal + PDis

√3 × VACBus

=
4988 + 499

1.732 × 240
= 13.2 Amps [Amps]

Current draw per phase

(for 1 bus input)
I1Phase=

PTotal + PDis

 VACBus
=

4988 + 499

1.732 × 240
= 22.8 Amps [Amps]

Thus, 15 and 25 amp fuses are chosen for three and single phase bus power input lines respectively.

http://www.cooperindustries.com/content/dam/public/bussmann/Electrical/Resources/Data%20Sheets/Bus_Ele_DS_1019_FRN-R_1_10-60A.pdf
http://www.cooperindustries.com/content/dam/public/bussmann/Electrical/Resources/Data%20Sheets/Bus_Ele_DS_1003_LPN-RK_1_10-60A.pdf
http://www.cooperindustries.com/content/public/en/bussmann.html

Power Brick AC ARM User Manual

Connections and Basic Settings – Main Bus Power Supply (A15) 49

Magnetic Contactors

SC-E series from Fuji Electric or similar contactor can be used.

Line Filters

Line filters eliminate electromagnetic noise in a bi-directional manner (from and into the system).

T type filters are NOT recommended. PI type line filters are highly advised:

 Filter should be mounted on the same panel as the drive and power source.

 Filter should be mounted as close as possible to the power source.

 Filter should be mounted as close as possible to incoming cabinet power.

FN-258 series from Schaffner or similar filter can be used.

Voltage Suppressors

Voltage suppressors eliminate undesirable voltage spikes typically generated by the magnetic contactor or

external machinery in the plant.

This 3-phase voltage arrester from Phoenix Contact or similar suppressor can be used.

Bus Power Cables

The Power Brick AC electronics create a DC bus by rectifying the incoming AC lines. The current flow into the

drive is not sinusoidal but rather a series of narrow, high-peak pulses. Keeping the incoming impedance small is

essential for not hindering these current pulses.

Whether single- or three-phase, it is important that the AC input wires be twisted together to eliminate noise

radiation as much as possible. Recommended wire gauge:

Model Wire Gauge (AWG)

PBA4-Axx-55 12

PBA4-Axx-88 10

PBA8-Axx-55 10

PBA8-Axx-85 10

PBA8-Axx-88 8

Note

All ground conductors should be 8AWG minimum using wires

constructed of many strands of small gauge wire. This ensures the lowest

impedance to high-frequency noises.

http://www.fujielectric.com/fecoa/userfiles/file/Contactors%20Catalog%20USEH530b.pdf
http://www.fujielectric.com/fecoa/userfiles/file/Contactors%20Catalog%20USEH530b.pdf
http://www.schaffner.com/components/en/_pdf/Datasheet%20FN258%20e%2063.pdf
http://www.schaffner.com/components/en/_pdf/Datasheet%20FN258%20e%2063.pdf
http://eshop.phoenixcontact.com/phoenix/treeViewClick.do?from=dwl&action=assets&cat=pdf&UID=2859521&LANGUAGE=EN
http://www.phoenixcontact.com/

Power Brick AC ARM User Manual

Connections and Basic Settings – Brake Power Supply Axis 5-8 (A16) 50

Brake Power Supply Axis 5-8 (A16)

A16 is used to supply the +24 VDC brake power for axes 5 – 8.

Caution

Brakes which require AC voltage, other than 24 VDC, or draw current

in excess of 1A (at 24VDC, per channel) must be powered using a

dedicated external power supply and not through A16.

A16: Phoenix 2-pin Female

Mating: Phoenix 2-pin Male

Pin # Symbol Function Description

1 + 24 VDC Input

2 + 24 VDC RET Input

Phoenix Contact Mating Connector P/N: 1850660

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 51

Encoder Connection (X1-X8)

This section describes the wiring of various encoder protocols, and their basic software configuration.

Digital Quadrature

The Power Brick AC accepts digital quadrature (also known as incremental) encoder signals by default. It

provides up to four counts per square cycle, and extends it using hardware-computed (ASIC) 1/T.

X1-X8: D-sub DA-15F

Mating: D-sub DA-15M

2345678

9101112131415

1

Pin# Symbol Function Primary Use Alternate Use

1 CHA + Input Encoder A +

2 CHB + Input Encoder B +

3 CHC + Input Index C +

4 ENCPWR Output Encoder Power 5 VDC (max 250 mA per channel)

5 CHU / DIR + In / Out Halls U Direction Out + Serial Data–

6 CHW / PUL + In / Out Halls W Pulse Out + Serial Clock–

7 2.5V Output 2.5 VDC Reference power

8 PTC Input Motor Thermal Input

9 CHA – Input Encoder A –

10 CHB – Input Encoder B –

11 CHC – Input Index C –

12 GND Common Common ground

13 CHV / DIR – In / Out Halls V Direction Out – Serial Clock+

14 CHT / PUL – In / Out Halls T Pulse Out – Serial Data+

15 - - - - -

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 52

Note

Quadrature encoders can be wired in and processed regardless of the

encoder feedback option(s) the Power Brick AC is ordered with.

Caution

The +5 VDC encoder power is limited to ~250 mA per channel. For

encoders requiring more current, the +5 VDC power can be alternately

brought in externally through the +5 VDC ENC connector.

Caution

Encoders requiring a voltage level other than +5 VDC (higher or lower)

should be powered up using an external power supply directly into the

encoder.

Quadrature encoders provide two digital signals to determine the position of the motor. These signals are typically

5 VDC TTL/CMOS level. Each nominally with 50% duty cycle and 1/4 cycle apart. This format provides four

distinct states per cycle of the signal, or per line of the encoder. The phase difference of the two signals permits

the decoding electronics to discern the direction of travel, which would not be possible with a single signal.

Channel A

Channel B

Quadrature encoders can be wired either in a differential or single-ended manner. Differential signals can enhance

noise immunity by providing common mode noise rejection. Modern design standards virtually mandate their

use in industrial systems.

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 53

Differential Single-Ended
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5

1 A+

A-

B-

B+

C+

C-

+ 5VDC

GND

Encoder shield (solder to shell)

Hall U

Hall V

Hall W

Hall T

2
3

4
5

6
7

8

9
1

0
1

1
1

2
1

3
1

4
1

5

1 A+

B+

C+

+ 5VDC

GND

Encoder shield (solder to shell)

Hall U

Hall V

Hall W

Hall T

Note

In single-ended mode, leave the negative pins floating. They are

terminated internally.

Configuring Quadrature Encoders

The Power Brick AC firmware is configured to process quadrature incremental encoders by default. This type of

encoders is processed as a single 32-bit word in the Encoder Conversion Table (ECT). The 1/T extension is done

in the DSPGate3 hardware. Starting from factory default settings, activating the channel is sufficient to display

counts in the position window when the motor / encoder shaft is moved by hand.

Default Encoder Conversion Table for quadrature incremental encoders:

EncTable[1].type = 1

EncTable[1].pEnc = PowerBrick[0].Chan[0].ServoCapt.a

EncTable[1].pEnc1 = Sys.Pushm

EncTable[1].index1 = 0

EncTable[1].index2 = 0

EncTable[1].index3 = 0

EncTable[1].index4 = 0

EncTable[1].index5 = 0

EncTable[1].ScaleFactor = 1 / 256

Note

The hardware 1/T extension produces 8 bits of fractional data, thus the (1

/ 256) 0.00390625 scale factor.

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 54

The settings below are sufficient to view motor position in the watch window, in counts.

Motor[1].ServoCtrl = 1

Motor[1].pEnc = EncTable[1].a

Motor[1].pEnc2 = EncTable[1].a

Ch. # Source Address Ch. # Source Address

1 PowerBrick[0].Chan[0].ServoCapt.a 5 PowerBrick[1].Chan[0].ServoCapt.a

2 PowerBrick[0].Chan[1].ServoCapt.a 6 PowerBrick[1].Chan[1].ServoCapt.a

3 PowerBrick[0].Chan[2].ServoCapt.a 7 PowerBrick[1].Chan[2].ServoCapt.a

4 PowerBrick[0].Chan[3].ServoCapt.a 8 PowerBrick[1].Chan[3].ServoCapt.a

Quadrature Counts per Engineering Unit

A quadrature encoder line is equivalent to 4 counts. For example, a 2,000–line rotary encoder should result in

8,000 counts per revolution (before any gearing or coupling).

Quadrature Encoder Count Error

With quadrature encoders, the Power Brick AC has the capability of trapping encoder count (loss) errors. This is

described in detail in the Encoder Count Error section of this manual.

Quadrature Encoder Loss Detection

Warning

Loss of the feedback sensor signal is potentially a very dangerous

condition in closed-loop control, because the servo loop no longer has any

idea what the true physical position of the motor is – usually it thinks it is

“stuck” – and it can react wildly, often causing a runaway condition.

With quadrature encoders, the Power Brick AC has the capability of detecting the loss of an encoder signal. This

is described in detail in the Encoder Loss Detection section of this manual.

Note

Note the distinction between the encoder count error, which reports loss

of counts due to bad transitions of the quadrature signals, and encoder

loss, which indicates that one or more quadrature signals are completely

missing.

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 55

Analog Standard & ACI Sinusoidal

The Power Brick AC can process analog sinusoidal encoders (up to 1.2 Vpeak-peak) and provide high resolution

position data used in the servo loop. It is fitted with the standard or Auto Correcting Interpolator ACI if options

K and or L of the part number contain S or A respectively.

 The standard option interpolation is x16384

 The ACI option interpolation is x65536 with automatic correction of sinusoidal waveform signals bias,

phase, and harmonic suppression.

P B - A 0 -A

K L

0

X1-X8: D-sub DA-15F

Mating: D-sub DA-15M

2345678

9101112131415

1

Pin# Symbol Function Primary Use Alternate Use

1 SIN + Input Sine +

2 COS + Input Cosine +

3 CHC + Input Index C +

4 ENCPWR Output Encoder Power 5 VDC (max 250 mA per channel)

5 CHU / DIR + In / Out Halls U Direction Out + Serial Data – AltSin +

6 CHW / PUL + In / Out Halls W Step Out + Serial Clock – AltCos +

7 2.5V Output 2.5 VDC Reference power

8 PTC Input Motor Thermal Input

9 SIN – Input Sine –

10 COS – Input Cosine –

11 CHC – Input Index C –

12 GND Common Common ground

13 CHV / DIR – In / Out Halls V Direction Out – Serial Clock + AltSin –

14 CHT / PUL – In / Out Halls T Step Out – Serial Data + AltCos –

15 - - - - - -

Caution

The +5 VDC encoder power is limited to ~250 mA per channel. For

encoders requiring more current, the +5 VDC power can be alternately

brought in externally through the +5 V ENC connector.

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 56

Caution

Encoders requiring a voltage level other than +5 VDC (higher or lower)

should be powered directly from an external power supply.

The Power Brick AC can accept “sine” and “cosine” signals (90°

out of phase with each other), of 1-volt (peak-to-peak) magnitude.

Due to their inherit susceptibility to electrical noise, these signals

are most commonly differential pairs, wired into the SIN+, SIN-,

COS+, and COS- inputs for the channel. Differential signals can

enhance immunity by providing common mode noise rejection.

Single-ended inputs can also be used, wired into the SIN+ and

COS+ inputs for the channel, with the SIN- and COS- inputs

connected directly to the 2.5 V reference (pin #7).

A good quality shielded cable with twisted-pair shielded conduits

is highly recommended for sinusoidal encoder applications.

2
3

4
5

6
7

8

9
1

0
1

1
1

2
1

3
1

4
1

5

1 Sine +

Sine -

Cosine -

Cosine +

Index +

Index -

5VDC

GND

Encoder shield (solder to shell)

Hall U

Hall V

Hall W

Hall T

Standard Sinusoidal Configuration

The sinusoidal encoder signals are interpolated in the ASIC (hardware); the resulting data is brought into the

encoder conversion table (ECT) as a single 32-bit word without any scaling:

EncTable[1].type = 1

EncTable[1].pEnc = PowerBrick[0].Chan[0].ServoCapt.a

EncTable[1].pEnc1 = Sys.Pushm

EncTable[1].index1 = 0

EncTable[1].index2 = 0

EncTable[1].index3 = 0

EncTable[1].index4 = 0

EncTable[1].index5 = 0

EncTable[1].ScaleFactor = 1

PowerBrick[0].Chan[0].AtanEna = 1

Motor[1].ServoCtrl = 1

Motor[1].EncType = 6

Standard Sinusoidal Counts per Engineering Unit

With the standard interpolator option:

 A rotary encoder with 1,024 sine/cosine periods per revolution produces:

1,024 x 16,384 = 16,777,216 counts / revolution

 A 20 μm linear encoder produces

16,384 / 0.020 = 819,200 counts / mm

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 57

Standard Sinusoidal Bias Correction

The Power Brick AC has the capability of correcting for biases of the cosine / sine signals. These corrections are

suitable when interpolating in the Gate3 without the ACI (Auto Correcting Interpolator) option. This procedure

is described in the Sinusoidal Encoder Bias Corrections section of this manual.

Standard Sinusoidal Encoder Count Error

With Sinusoidal encoders, the Power Brick AC has the capability of trapping encoder count (loss) errors. This is

described in detail in the Encoder Count Error section of this manual.

Standard Sinusoidal Encoder Loss Detection

Warning

Loss of the feedback sensor signal is potentially a very dangerous

condition in closed-loop control, because the servo loop no longer has any

idea what the true physical position of the motor is – usually it thinks it is

“stuck” – and it can react wildly, often causing a runaway condition.

With Sinusoidal encoders, the Power Brick AC has the capability of detecting the loss of an encoder signal. This

is described in detail in the Encoder Loss Detection section of this manual.

Note

Note the distinction between the encoder count error, which reports loss

of counts due to bad transitions of the quadrature signals, and encoder

loss, which indicates that one or more quadrature / sinusoidal signals are

missing.

ACI Sinusoidal Configuration

EncTable[1].type = 7

EncTable[1].pEnc = PowerBrick[0].Chan[0].ServoCapt.a

EncTable[1].pEnc1 = PowerBrick[0].Chan[0].AtanSumOfSqr.a

EncTable[1].index1 = 0

EncTable[1].index2 = 0

EncTable[1].index3 = 0

EncTable[1].index4 = 0

EncTable[1].index5 = 0

EncTable[1].index6 = 0

EncTable[1].ScaleFactor = 1

Gate3[0].AdcEncHeaderBits = 0

Gate3[0].AdcEncStrobe = $800000

Gate3[0].Chan[0].AtanEna = 1

Motor[1].ServoCtrl = 1

Motor[1].EncType = 7

ACI Sinusoidal Counts per Engineering Unit

With the ACI interpolator option:

 A rotary encoder with 1,024 sine/cosine periods per revolution produces

1,024 x 65,536 = 67,108,864 counts / revolution

 A 20 μm linear encoder produces

65,536 / 0.020 = 3,276,800 counts / mm

https://omrongroup-my.sharepoint.com/personal/eric_hotchkiss_omron_com/Documents/Projects/Brick%20Manuals/Power%20Brick%20LV%20ARM%20User%20Manual%20D3.docx#_Sinusoidal_Encoder_Bias

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 58

Analog Resolver

If option K and/or L has a value of R, the Power Brick AC can accept resolver encoder input (up to 5 Vpeak-peak)

and provide interpolated position data.

P B - A 0 -A

K L

0

X1-X8: D-sub DA-15F

Mating: D-sub DA-15M

Pin# Symbol Function Primary Use Alternate Use

1 SIN + Input Sine +

2 COS + Input Cosine +

3 CHC + Input Index C +

4 ENCPWR Output Encoder Power 5 VDC (max 250 mA per channel)

5 CHU / DIR + In / Out Halls U Direction Out + Serial Data – AltSin +

6 CHW / PUL + In / Out Halls W Step Out + Serial Clock – AltCos +

7 2.5V Output 2.5 VDC Reference power

8 PTC Input Motor Thermal Input

9 SIN – Input Sine –

10 COS – Input Cosine –

11 CHC – Input Index C –

12 GND Common Common ground

13 CHV / DIR – In / Out Halls V Direction Out – Serial Clock + AltSin –

14 CHT / PUL – In / Out Halls T Step Out – Serial Data + AltCos –

15 RES EXC. Out Resolver Excitation Output

Caution

The +5 VDC encoder power is limited to ~250 mA per channel. For

encoders requiring more current, the +5 VDC power can be alternately

brought in externally through the +5 VDC ENC connector.

Caution

Encoders requiring a voltage level other than +5 VDC (higher or lower)

should be powered up using an external power supply directly into the

encoder.

2345678

9101112131415

1

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 59

Setting up Resolvers

Configuring a resolver requires setting up the excitation signal control. The excitation signal control element,

PowerBrick[].ResolverCtrl, is a 4-channel saved component:

Channels Excitation Signal Control

1 – 4 PowerBrick[0].ResolverCtrl

5 – 8 PowerBrick[1].ResolverCtrl

The excitation signal control element is a 32-bit element wherein the upper 12 bits carry meaningful

information is broken down as follows:

Bit #:

Binary:

0

Reserved

Hex ($):

123

0000

4567

0000

891011

0000

12131415

0000

16171819

0000

20212223

0011

24252627

0000

28293031

0001

Fr
eq

.

M
ag

.

Phase Shift (Delay)

00000C08

Bits [31 – 24] specify the phase shift or delay of the excitation sine wave with respect to the phase clock. The

unit of this field is 1 / 512 of an excitation cycle. This component is usually set experimentally to maximize the

magnitude of the feedback signal.

Bits [23 – 22] specify the magnitude of the excitation output. The highest magnitude that does not cause

saturation of the feedback ADCs (which occurs when values in the lower 16 bits of

PowerBrick[].Chan[].AtanSumOfSqr exceed 32767) should be used.

Peak-Peak [Volts] Value Binary

3.2 0 00

6.2 1 01

8.8 2 10

12.2 (Max.) 3 11

Bits [21 – 20] specify the frequency of the excitation output. The frequency that comes closest, but slightly

higher, to that recommended by the resolver manufacturer should be used.

Excitation Frequency Value Binary

Phase Clock / 1 0 00

Phase Clock / 2 1 01

Phase Clock / 4 2 10

Phase Clock / 6 3 11

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 60

Utilizing the following expression, for channels 1 – 4 as an example:

GLOBAL ResExcitDelay

GLOBAL ResExcitMag

GLOBAL ResExcitFreqDiv

ResExcitMag = 3 // [0 - 3]

ResExcitFreqDiv = 0 // [0 - 3]

ResExcitDelay = 65 // [0 - 255]

PowerBrick[0].ResolverCtrl = ResExcitDelay*EXP2(24) + ResExcitMag*EXP2(22) + ResExcitFreqDiv*EXP2(20)

And monitoring the magnitude of the signals in the lower 16 bits of PowerBrick[].Chan[].AtanSumOfSqr

(e.g. in the watch window):

 First, set up the excitation output magnitude, ResExcitMag. Start with highest (value of 3). We want

the value of AtanSumOfSqr (lower 16 bits) to be the greatest possible.

 Set up the excitation frequency divider, ResExcitFreqDiv. Resolver manufacturers generally specify a

minimum operating frequency. Set this typically to a value of 0, same as the phase clock.

 Set up the excitation delay (from the phase clock), ResExcitDelay. This value is also configured

experimentally to produce the greatest possible value of the signal’s magnitude, which is in the lower

16 bits of AtanSumOfSqr.

Configuring Resolver ECT

Once, the resolver excitation signal is set up, the encoder conversion table can be configured as follows (e.g.

channel 1, motor #1):

EncTable[1].Type = 1

EncTable[1].pEnc = PowerBrick[0].Chan[0].AtanSumofSqr.a

EncTable[1].pEnc1 = Sys.pushm

EncTable[1].index1 = 0

EncTable[1].index2 = 0

EncTable[1].index3 = 0

EncTable[1].index4 = 0

EncTable[1].index5 = 0

EncTable[1].index6 = 0

EncTable[1].ScaleFactor = 1

The settings below are sufficient to view motor position in the watch window, in counts.

Motor[1].ServoCtrl = 1

Motor[1].pEnc = EncTable[1].a

Motor[1].pEnc2 = EncTable[1].a

Resolver Counts per Engineering Unit

With resolvers, the feedback resolution is set by the ASIC interface hardware, and produces 65,536 counts per

revolution.

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 61

Resolver Absolute Power-On Position

With resolvers, the absolute position is computed directly from the upper 16 bits of the AtanSumOfSqr register.

It is set up using the following key structure elements:

 Motor[].pAbsPos = PowerBrick[0].Chan[2].AtanSumOfSqr.a

 Motor[].AbsPosSf = Motor[].PosSf

 Motor[].AbsPosFormat = $00001010 (Upper 16 bits)

 Motor[].HomeOffset = (user desired home offset value)

Note

With resolvers, it is not recommended to use PowerOnMode (value of 2)

for power-on absolute position read. Instead, it is recommended to issue

a HOMEZ command from an initialization PLC.

Bias Correction

The resolver sine and cosine signals may be corrected for biases similarly to sinusoidal encoders. This is described

in the Sinusoidal Encoder Bias Corrections section of this manual.

Note

Automatic correction for signal magnitude mismatch and phase offset at

the cost of additional processor time can be obtained through use of a type

4 encoder conversion table entry. Refer to Conversion Method Details,

type 4 under the setting up the encoder conversion table section of the

Power PMAC User Manual for more details.

Resolver Encoder Count Error

The Power Brick AC has the capability of trapping encoder count (loss) errors for resolvers. This is described in

detail in the Encoder Count Error section of this manual.

Resolver Encoder Loss Detection

Warning

Loss of the feedback sensor signal is potentially a very dangerous

condition in closed-loop control, because the servo loop no longer has any

idea what the true physical position of the motor is – usually it thinks it is

“stuck” – and it can react wildly, often causing a runaway condition.

With Resolvers, the Power Brick AC has the capability of detecting the loss of an encoder signal. This is described

in detail in the Encoder Loss Detection section of this manual.

Note

Note the distinction between the encoder count error, which reports loss

of counts due to bad transitions of the quadrature signals, and encoder

loss, which indicates that one or more quadrature / sinusoidal signals are

missing.

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 62

Serial Encoders with Gate3

The Power Brick AC, in its standard configuration, accepts a variety of serial encoder protocols. These protocols

are built into the DSPGate3. This section discusses the configuration of these serial encoders.

X1-X8: D-sub DA-15F

Mating: D-sub DA-15M

Pin# Symbol Function HiperFace
SSI

EnDat
Panasonic Mitutoyo

Sigma

II/III/V/VII
Tamagawa

1

2

3 –

4 ENCPWR Output Encoder Power 5 VDC (max 250 mA per channel)

5 DATA – In / Out DAT– DAT– PS MRR
SDI

blu/blk SD

6 CLOCK – Output – CLK– – – – –

7 2.5V Output 2.5 VDC – Reference

8 PTC Input Motor Thermal Input

9

10

11 –

12 GND Common Common Ground

13 CLOCK + Output – CLK+ – – – –

14 DATA + In / Out DAT+ DAT+ PS MR
SDO

blu
SD

15

Caution

The +5 VDC encoder power is limited to ~250 mA per channel. For

encoders requiring more current, the +5 VDC power can be alternately

brought in externally through the +5 VDC ENC connector.

Caution

Encoders requiring a voltage level other than +5 VDC (higher or lower)

should be powered directly from an external power supply.

2345678

9101112131415

1

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 63

Note

Quadrature / sinusoidal encoders can be wired and processed

simultaneously with serial encoders on the same channel.

Pins #5, 6, 13, and 14 of the encoder feedback connectors (X1 – X8) share multiple functions: only one of these

functions (per channel) can be used – configured in software – at one time:

 Hall sensor inputs (default configuration).

 Pulse and direction PFM output signals (enable using PowerBrick[].Chan[].OutFlagD).

 Serial encoder inputs (enable using PowerBrick[].SerialEncEna).

 Serial encoder inputs (enable using bit 10 of ACC84B[].SerialEncCmd with ACC-84B).

 ACI sinusoidal encoder inputs (serial encoder input must be disabled).

 Alternate sinusoidal encoder inputs (with sinusoidal encoder option).

Note

Each channel is independent of the other channels and can have its own

use for these pins.

Configuring a serial encoder requires the programming of two essential structure elements, and the enabling of

the serial encoder line:

 The Serial Encoder Control word, PowerBrick[].SerialEncCtrl

 The Serial Encoder Command word, PowerBrick[].Chan[].SerialEncCmd

 PowerBrick[].Chan[].SerialEncEna = 1

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 64

Encoder Specific Connection Information with Gate3

 YASKAWA SIGMA II/III/V ENCODERS

Yaskawa Sigma II/III/V absolute encoders require a 3.6V battery to maintain the multi-turn data while the

controller is powered down. This battery should be placed outside of the Power Brick AC and the Yaskawa Sigma

II/III/V encoder, possibly on the cable. The battery should be installed between orange (+3.6V) and orange/black

wires (GND). Use of ready-made cables by Yaskawa is recommended. (Yaskawa part number: UWR00650)

1 3 5

2 4 6

+5VDC (Red)

BAT+ (Orange) SDO (Blue)

GND (Black)

BAT-
(Orange/Black)

SDI (Blue/Black)

1
2

3
4

5

9
10

11
12

8
6

7

13
14

15

The previous diagram shows the pin assignment from mating IEEE 1394 Yaskawa Sigma II connector to the

Power Brick AC encoder input. The Molex connector required for IEEE 1394 can be acquired as receptacle kit

from Molex, 2.00mm (.079") Pitch Serial I/O Connector, Receptacle Kit, Wire-to-Wire, Molex Part Number:

0542800609.

Note

Yaskawa Encoder expects a supply voltage of 5V with less than 5%

tolerance. Make sure voltage drop is not caused by excessive wire length.

Note

Encoder wire shield must be connected to chassis ground on both encoder

and connector ends.

Note

Yaskawa Sigma II/III/V require a 120Ω termination resistor between SDI

and SDO twisted pair lines on the Power Brick AC side.

 TAMAGAWA ENCODERS

For Tamagawa, if communicating through an intermediate device, using an ACC-84B may be necessary.

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 65

Serial Encoder Control with Gate3

The Serial Encoder Control is a 32-bit, 4-channel (1 – 4, or 5 – 8), structure element. It specifies the protocol

type, delay compensation time, trigger edge, trigger clock, and transmission frequency of the 4

serial encoder channels.

 Serial Encoder Control Elements

Channels 1 – 4 PowerBrick[0].SerialEncCtrl

Channels 5 – 8 PowerBrick[1].SerialEncCtrl

Bit #:

Binary:

0

Protocol

0: Rising
1: Falling

0: Phase
1: Servo

Hex ($):

123

0000

4567

0000

891011

0000

12131415

0000

16171819

0000

20212223

0000

24252627

0000

28293031

0000

Trigger Delay

Ed
ge

C
lo

ck

R
e

se
rv

e
d

N DivisorM Divisor

Encoder
Protocol

Typically 0
(Units of Serial Clock Cycles)

00000000

Serial Encoder Transmission Frequency

Bits [31 – 20] specify the serial interface transmission frequency. This frequency (or range) is usually specified

by the encoder manufacturer and programmed by the user or pre-defined by the protocol.

Bit 17 specifies the trigger source; Phase clock is recommended (value 0).

Bit 16 specifies the active edge; rising edge is recommended (value 0).

Bits [15 – 8] specify the trigger delay (in units of serial clock cycles).

Bits [3 – 0] specify the encoder protocol of the serial encoder:

Protocol Value Protocol Value Protocol Value Protocol Value

– 0 Hiperface 4 Panasonic 8 – 12 ($C)

– 1 Sigma I 5 Mitutoyo 9 – 13 ($D)

SSI 2 Sigma II/III/V 6 Kawasaki 10 ($A) – 14 ($E)

EnDat 3 Tamagawa 7 – 11 ($B) SW Ctrl 15 ($F)

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 66

Serial Encoder Command with Gate3

The Serial Encoder Command is a 32-bit, channel specific, structure element. It specifies the bit length

(resolution), status bits, data type, conversion method, trigger enable, trigger mode, parity, and command code

of the serial encoder channel.

Ch.# Serial Encoder Command Ch. # Serial Encoder Command

1 PowerBrick[0].Chan[0].SerialEncCmd 5 PowerBrick[1].Chan[0].SerialEncCmd

2 PowerBrick[0].Chan[1].SerialEncCmd 6 PowerBrick[1].Chan[1].SerialEncCmd

3 PowerBrick[0].Chan[2].SerialEncCmd 7 PowerBrick[1].Chan[2].SerialEncCmd

4 PowerBrick[0].Chan[3].SerialEncCmd 8 PowerBrick[1].Chan[3].SerialEncCmd

Bit #:

Binary:

0

Bit Length
(Resolution)

Hex ($):

123

0000

4567

0000

891011

0000

12131415

0000

16171819

0000

20212223

0000

24252627

0000

28293031

0000

00000000

Status
BitsD

at
a

R
d

y

G
 t

o
 B

Tr
ig

 E
n

a

M
o

d
e

ParityCommand Code

Protocol Specific

00: None
01: Odd
10: Even

0: Continuous
1: One Shot

0: Disable
1: Enable

0: No Conversion
1: Gray to Binary

Read Only

Single Turn +
Multi Turn

Bits [31 – 16] specify the command code. This field is protocol specific.

Bits [15 – 14] specify the parity. This field is protocol specific.

Bit 13 specifies the trigger mode.

Bit 12 is the trigger enable toggle.

Bit 11 specifies the conversion type. This field is protocol specific.

Bit 10 is the data ready bit, read only.

Bits [9 – 6] specify the encoder status field. This field is protocol specific.

Bits [5 – 0] specify the serial encoder bit length (single-turn + multi-turn).

Following, are examples for setting up the control and command words for each of the supported protocols. Also,

the resulting data registers and their format.

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 67

SSI Configuration Example with Gate3

 SERIAL ENCODER CONTROL – SSI

No trigger delay, rising edge of phase, and 2.5 MHz transmission

M = 39 ($27)
N = 0

Bit #:

Binary:

0

Protocol

0: Rising
1: Falling

0: Phase
1: Servo

Hex ($):

123

0100

4567

0000

891011

0000

12131415

0000

16171819

0000

20212223

0000

24252627

1110

28293031

0100

Trigger Delay

Ed
ge

C
lo

ck

R
es

er
ve

d

N DivisorM Divisor

Protocol: =2 SSI

20000072

fSerial = 2.5 MHz = Delayµsec x fSerialMHz

 SERIAL ENCODER COMMAND – SSI

A 25-bit SSI encoder in Gray code, with odd parity

Bit #:

Binary:

0

Bit Length
(Resolution)

Hex ($):

123

1001

4567

1000

891011

0001

12131415

1010

16171819

0000

20212223

0000

24252627

0000

28293031

0000

91850000
G

 t
o

 B

Tr
ig

 E
n

a

M
o

deParity

0: Disable
1: Enable

0: Continuous
1: One Shot

Single Turn +
Multi Turn = 25 ($19)

00: none
01: Odd
10: Even

0: No Conversion
1: Gray to Binary

PowerBrick[0].SerialEncCtrl = $27000002

PowerBrick[0].Chan[0].SerialEncCmd = $5819

PowerBrick[0].Chan[0].SerialEncEna = 1

 SERIAL DATA REGISTERS – SSI

The resulting position data, status, and error bits for SSI are found in the following Serial Data Registers:

PowerBrick[].Chan[].SerialEncDataA

Possible Single/Multi-Turn Position

PowerBrick[].Chan[].SerialEncDataB

31 2627282930 012345678910111213141516171819202122232425

31 2627282930 012345678910111213141516171819202122232425

Parity Error

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 68

EnDat 2.1/2.2 Configuration Example with Gate3

 SERIAL ENCODER CONTROL – ENDAT 2.1/2.2

No trigger delay, rising edge of phase, and 2.0 MHz transmission

M = 1
N = 0

Bit #:

Binary:

0

Protocol

0: Rising
1: Falling

0: Phase
1: Servo

Hex ($):

123

1100

4567

0000

891011

0000

12131415

0000

16171819

0000

20212223

0000

24252627

1000

28293031

0000

Trigger Delay

Ed
ge

C
lo

ck

R
es

er
ve

d

N DivisorM Divisor

Protocol: =3 EnDat

30000010

fSerial = 2 MHz = Delayµsec x fSerialMHz

 SERIAL ENCODER COMMAND – ENDAT 2.1/2.2

The DSPGate3 interface to EnDat supports four 6-bit command codes:

 000111 ($7) for reporting position (EnDat2.1/2.2).

 101010 ($2A) for resetting the encoder (EnDat2.1/2.2).

 111000 ($38) for reporting position with possible additional information (EnDat 2.2 only)

 101101 ($2D) for resetting the encoder (EnDat 2.2 only)

Note

By the EnDat standard, EnDat 2.2 encoders should be able to accept and

process EnDat 2.1 command codes. However, not all encoders sold as

meeting the EnDat 2.2 standard can do this.

Note

With the Power Brick AC, EnDat additional information is supported via

the (optional) ACC-84B serial interface.

A 37-bit EnDat 2.2 encoder for continuous position reporting:

Bit #:

Binary:

0

Bit Length
(Resolution)

Hex ($):

123

1001

4567

0100

891011

0000

12131415

1000

16171819

1110

20212223

0000

24252627

0000

28293031

0000

52017000

Tr
ig

 E
n

a

M
o

deCommand Code

0: Disable
1: Enable

0: Continuous
1: One Shot

Single Turn +
Multi Turn = 37 ($25)

D
e

la
y

C
o

m
p

en
sa

ti
o

n

000111 ($07): Report Position
101010 ($2A): Reset Encoder
111000 ($38): Report Position w/ possible add l info (EnDat 2.2 only)
101101 ($2D): Reset Encoder (EnDat 2.2 only)

PowerBrick[0].SerialEncCtrl = $1000003

PowerBrick[0].Chan[0].SerialEncCmd = $71025

PowerBrick[0].Chan[0].SerialEncEna = 1

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 69

With EnDat 2.2, bit 31 is the StartDelayComp control bit. Setting this bit to 1 starts a delay identification and

compensation cycle which measures the propagation delay between the encoder and the controller. The delay is

measured three times and the average is used in the compensation. When these calculations are done, the

StartDelayComp bit 31 is automatically cleared. This delay identification operation must be performed after every

power-up cycle. Delay compensation permits high bit transmission rates over very long cables.

To perform the delay identification and compensation cycle on this encoder, set

PowerBrick[].Chan[].SerialEncCmd = $80071025, then wait for bit #31 to clear.

This same encoder can be reset with a command code of $2A sent in one-shot mode, so by setting

PowerBrick[].Chan[].SerialEncCmd = $2A3025.

 SERIAL DATA REGISTERS – ENDAT 2.1/2.2

The resulting position data, status, and error bits for EnDat are found in the following Serial Data Registers:

PowerBrick[].Chan[].SerialEncDataA

Possible Single/Multi-Turn Position

PowerBrick[].Chan[].SerialEncDataB

31 2627282930 012345678910111213141516171819202122232425

31 2627282930 012345678910111213141516171819202122232425

En
co

d
er

 E
rr Possible Single/Multi-Turn Position (cont.)

C
R

C
 E

rr
o

r

Ti
m

eo
u

t
Er

r

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 70

Hiperface Configuration Example with Gate3

 SERIAL ENCODER CONTROL – HIPERFACE

Because there is no explicit clock signal with Hiperface, the serial clock frequency is set 20 times higher than the

bit transmission frequency to “oversample” the input data stream. For the default 9600 baud transmission of the

Hiperface encoder, this clock frequency should be 9.6 x 20 = 192 kHz.

Divide the 100 MHz clock by M=130 ($83) and by 4 (N = 2) to get 192 kHz triggering on the falling edge of

servo clock without delay. Since this is a “one-shot” read, the selection of the triggering clock edge does not

matter much.

Virtually always For Hiperface

Bit #:

Binary:

0

Protocol

0: Rising
1: Falling

0: Phase
1: Servo

Hex ($):

123

0010

4567

0000

891011

0000

12131415

0000

16171819

1100

20212223

0100

24252627

0100

28293031

0001

Trigger Delay

Ed
ge

C
lo

ck

R
es

er
ve

d

N DivisorM Divisor

Protocol: =4 Hiperface

40003228

M = 130 ($82)
N = 2

 = Delayµsec x 0.192

 SERIAL ENCODER COMMAND – HIPERFACE

The DSPGate3 interface to Hiperface supports three 8-bit command codes:

o $42 for reporting position.

o $50 for reporting status

o $53 for resetting the encoder

These command codes reside in the lower 8 bits of the Serial Encoder Command word. The upper 8 bits contain

the address of the encoder in the interface. The Hiperface protocol permits up to 8 separate encoders to be “daisy-

chained” on a single multi-drop interface. While this can be done, it is expected that each channel of the Power

Brick AC will be connected to a separate individual encoder, simplifying the wiring. In this configuration, this

address field can either match the encoder’s address value (+ $40), or it can be set to $FF (broadcast mode).

A Hiperface encoder at user address 0 with odd parity would be set up for one-shot position reporting as follows:

Bit #:

Binary:

0

Hex ($):

123

1001

4567

0100

891011

0000

12131415

1110

16171819

0100

20212223

0010

24252627

0000

28293031

0010

00072404

Tr
ig

 E
n

a

M
o

d
e

ParityCommand Code
0: Disable
1: Enable

0: Continuous
1: One Shot

Encoder ID

00: None
01: Odd
10: Even

$42: Report Position
$50: Report Status
$53: Reset Encoder

$4n: where n is encoder ID
$FF: Broadcast mode

PowerBrick[].Chan[].SerialEncCmd = $40427000 or $FF427000

PowerBrick[0].SerialEncCtrl = $82230004

PowerBrick[0].Chan[0].SerialEncCmd = $40427000

PowerBrick[0].Chan[0].SerialEncEna = 1

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 71

 SERIAL DATA REGISTERS – HIPERFACE

The resulting position data, status, and error bits for Hiperface are found in the following Serial Data Registers:

PowerBrick[].Chan[].SerialEncDataA

Possible Single/Multi-Turn Position

PowerBrick[].Chan[].SerialEncDataB

31 2627282930 012345678910111213141516171819202122232425

31 2627282930 012345678910111213141516171819202122232425

En
co

d
e

r
Er

r. Encoder Error Code

P
a

ri
ty

 E
rr

.

C
h

ks
u

m
 E

rr
.

T
im

e
o

u
t

Er
r.

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 72

Yaskawa Sigma I Configuration Example with Gate3

 SERIAL ENCODER CONTROL – SIGMA I

Because there is no explicit clock signal with Sigma I, the serial clock frequency is set 20 times higher than the

bit transmission frequency to “oversample” the input data stream. For the default 9600 baud transmission of the

Sigma I encoder, this clock frequency should be 9.6 x 20 = 192 kHz.

Divide the 100 MHz clock by M=130 ($83) and by 4 (N = 2) to get 192 kHz. triggering on the falling edge of

servo clock without delay. Since this is a “one-shot” read, the selection of the triggering clock edge does not

matter much. Example settings:

M = 0
N = 0

Bit #:

Binary:

0

Protocol

0: Rising
1: Falling

0: Phase
1: Servo

Hex ($):

1234567891011

0110

12131415

0000

16171819

0000

20212223

000000000000

Trigger
DelayEd

ge

C
lo

ck

R
e

se
rv

e
d

N DivisorM Divisor

Protocol =
6 Yaskawa

600000

Always for Yaskawa
 = Delayµsec

x fSerialMHz

 SERIAL ENCODER COMMAND – SIGMA I

Yaskawa no longer produces Sigma I absolute encoders. However, newer generations of Yaskawa Sigma servo

drives synthesize the Yaskawa Sigma I protocol for return to the controller even when using newer Sigma II, III,

and V encoders. Bit 16 is set to strobe the encoder and Sigma I should use one-shot trigger, set as follows:

Bit #:

Binary:

0

Hex ($):

123

0000

4567

0000

891011

0000

12131415

1100

16171819

1000

20212223

0000

24252627

0000

28293031

0000

00031000

Tr
ig

 E
na

M
o

de

0: Disable
1: Enable

0: Continuous
1: One Shot

PowerBrick[0].SerialEncCtrl = $82230005

PowerBrick[0].Chan[0].SerialEncCmd = $13000

PowerBrick[0].Chan[0].SerialEncEna = 1

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 73

 SERIAL DATA REGISTERS – SIGMA I

The resulting position data, status, and error bits for Sigma I are found in the following Serial Data Registers:

PowerBrick[].Chan[].SerialEncDataA

Multi-Turn Position

PowerBrick[].Chan[].SerialEncDataB

31 2627282930 012345678910111213141516171819202122232425

31 2627282930 012345678910111213141516171819202122232425

P
ar

it
y

Er
r. Multi-Turn PositionSign (±)

Ti
m

eo
u

t
Er

r. "P"

In SerialEncDataA, bits [7 – 0] represent the bits of the ASCII code for the “ones digit” of the turns count, bits

[15 – 8] represent bits of the “tens digit”, bits [23 – 16] represent bits of the “hundreds digit”, bits [31 – 24]

represent bits of the “thousands digit”.

In SerialEncDataB, Bits [7 – 0] represent bits of the “ten-thousands digit”, bits [15 – 8] represent bits of the

ASCII code for the plus or minus sign, bits [23 – 16] represent bits of the ASCII code for the letter “P”, bits [31

– 30] represent bits of the error field (bit 30 is a parity error; bit 31 is a timeout error).

For each of the five numeric ASCII digits, the numeric value of the digit can be obtained by subtracting 48 ($30)

from the value of the ASCII code.

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 74

Yaskawa Sigma II/III/V Configuration Example with Gate3

 SERIAL ENCODER CONTROL – SIGMA II/III/V

No trigger delay, rising edge of phase, and 4.0 MHz transmission:

Bit #:

Binary:

0

Protocol

0: Rising
1: Falling

0: Phase
1: Servo

Hex ($):

123

0110

4567

0000

891011

0000

12131415

0000

16171819

0000

20212223

0000

24252627

1110

28293031

0100

Trigger Delay

Ed
ge

C
lo

ck

R
e

se
rv

e
d

N DivisorM Divisor

Protocol: =6 Sigma II/III/V

60000000

Always for Yaskawa = Delayµsec x fSerialMHz

M = 0
N = 0

 SERIAL ENCODER COMMAND – SIGMA II/III/V

For continuous position reporting:

Bit #:

Binary:

0

Hex ($):

123

0000

4567

0000

891011

0000

12131415

1000

16171819

0000

20212223

0000

24252627

0000

28293031

0000

00010000

Tr
ig

 E
n

a

M
o

de

0: Disable
1: Enable

0: Continuous
1: One Shot

PowerBrick[0].SerialEncCtrl = $6

PowerBrick[0].Chan[0].SerialEncCmd = $1000

PowerBrick[0].Chan[0].SerialEncEna = 1

 SERIAL DATA REGISTERS – SIGMA II/III/V

The resulting position data, status, and error bits for Sigma II/III/V are found in the following Serial Data

Registers:

Yaskawa Sigma II (absolute 17-bit)

PowerBrick[].Chan[].SerialEncDataA

Single-Turn Position

PowerBrick[].Chan[].SerialEncDataB

31 2627282930 012345678910111213141516171819202122232425

31 2627282930 012345678910111213141516171819202122232425

Alarm Code

Multi-Turn Position

Multi-Turn PositionTemperature

C
o

d
in

g
Er

r.

C
R

C
 E

rr
.

T
im

e
o

u
t

Er
r.

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 75

Yaskawa Sigma II (incremental 17-bit)

PowerBrick[].Chan[].SerialEncDataA

Single-Turn Position

PowerBrick[].Chan[].SerialEncDataB

31 2627282930 012345678910111213141516171819202122232425

31 2627282930 012345678910111213141516171819202122232425

Alarm Code

Compensation Position

Temperature

C
o

d
in

g
E

rr
.

C
R

C
 E

rr
.

T
im

e
o

u
t

E
rr

.

H
a

ll
 U

H
a

ll
 V

H
a

ll
 W

In
d

e
x

Z

Yaskawa Sigma III/V (absolute 20-bit)

PowerBrick[].Chan[].SerialEncDataA

Single-Turn Position

PowerBrick[].Chan[].SerialEncDataB

31 2627282930 012345678910111213141516171819202122232425

31 2627282930 012345678910111213141516171819202122232425

Alarm Code

Multi-Turn Position

Multi-Turn PositionTemperature

C
o

d
in

g
Er

r.

C
R

C
 E

rr
.

T
im

e
o

u
t

Er
r.

Yaskawa Sigma II/II/V Encoders Alarm Code (SerialEncDataB)

Bit # Alarm Code

21 Power-on error self-detected

23 Revolution count (index to index) incorrect

26 Position reference (index) not found yet

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 76

Tamagawa FA-Coder Configuration Example with Gate3

 SERIAL ENCODER CONTROL – TAMAGAWA FA-CODER

No trigger delay, rising edge of phase, and 2.5 MHz transmission:

M = 1
N = 0

Bit #:

Binary:

0

Protocol

0: Rising
1: Falling

0: Phase
1: Servo

Hex ($):

123

1110

4567

0000

891011

0000

12131415

0000

16171819

0000

20212223

0000

24252627

1000

28293031

0000

Trigger Delay

Ed
ge

C
lo

ck

R
es

er
ve

d

N DivisorM Divisor

Protocol: =7 Tamagawa

70000010

fSerial = 2.5 MHz = Delayµsec x fSerialMHz

 SERIAL ENCODER COMMAND – TAMAGAWA FA-CODER

For continuous position reporting:

Bit #:

Binary:

0

Hex ($):

123

0000

4567

0000

891011

0000

12131415

1000

16171819

0101

20212223

1000

24252627

0000

28293031

0000

0001A100

Tr
ig

 E
n

a

M
o

d
e

0: Disable
1: Enable

0: Continuous
1: One Shot

Command code

$1A: Report Position
$BA: Reset Multi-Turn
$C2: Reset Multi-Turn
$62: Reset Multi-Turn

If the command code is set to $BA, $C2, or $62, the multi-turn position value in the encoder is reset to 0. This

should be done in “one-shot” mode, making the element equal to $00BA3000, $00C23000, or $00623000,

respectively. When the reset operation is done, the component should report as $00BA2000, $00C22000, or

$00622000, respectively.

PowerBrick[0].SerialEncCtrl = $1000007

PowerBrick[0].Chan[0].SerialEncCmd = $1A1000

PowerBrick[0].Chan[0].SerialEncEna = 1

 SERIAL DATA REGISTERS – TAMAGAWA FA-CODER

The resulting position data, status, and error bits for Tamagawa FA-Coder are found in the following Serial Data

Registers:

PowerBrick[].Chan[].SerialEncDataA

Single-Turn Position

PowerBrick[].Chan[].SerialEncDataB

31 2627282930 012345678910111213141516171819202122232425

31 2627282930 012345678910111213141516171819202122232425

Alarm CodeStatus Field Multi-Turn Position

C
R

C
 E

rr
.

Ti
m

eo
u

t
Er

r.

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 77

Panasonic Configuration Example with Gate3

 SERIAL ENCODER CONTROL – PANASONIC

No trigger delay, rising edge of phase, and 2.5 MHz transmission

M = 1
N = 0

Bit #:

Binary:

0

Protocol

0: Rising
1: Falling

0: Phase
1: Servo

Hex ($):

123

0001

4567

0000

891011

0000

12131415

0000

16171819

0000

20212223

0000

24252627

1000

28293031

0000

Trigger Delay

Ed
ge

C
lo

ck

R
es

er
ve

d

N DivisorM Divisor

Protocol: =8 Panasonic

80000010

fSerial = 2.5 MHz = Delayµsec x fSerialMHz

 SERIAL ENCODER COMMAND – PANASONIC

For continuous position reporting

Bit #:

Binary:

0

Hex ($):

123

0001

4567

0000

891011

0000

12131415

1000

16171819

0101

20212223

0100

24252627

0000

28293031

0000

0001A200

Tr
ig

 E
n

a

M
o

d
e

0: Disable
1: Enable

0: Continuous
1: One Shot

Command code

$2A: Report Absolute Position
$52: Single-Turn Position with Encoder ID code
$4A: Reset Multi-Turn
$7A: Reset Multi-Turn
$DA: Reset Multi-Turn
$F2: Reset Multi-Turn

If the command code is set to $52 for single-turn position reporting with alarm code, the encoder ID value is

reported where multi-turn position is normally reported.

If the command code is set to $4A, $7A, $DA, or $F2, the multi-turn position value in the encoder is reset to 0.

This should be done in “one-shot” mode, making the element equal to $004A3000, $007A3000, $00DA3000, or

$00F23000, respectively. When the reset operation is done, the component should report as $004A2000,

$007A2000, $00DA2000, or $00F22000, respectively.

PowerBrick[0].SerialEncCtrl = $1000008

PowerBrick[0].Chan[0].SerialEncCmd = $2A1000

PowerBrick[0].Chan[0].SerialEncEna = 1

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 78

 SERIAL DATA REGISTERS – PANASONIC

The resulting position data, status, and error bits for Panasonic are found in the following Serial Data Registers:

PowerBrick[].Chan[].SerialEncDataA

Single-Turn Position

PowerBrick[].Chan[].SerialEncDataB

31 2627282930 012345678910111213141516171819202122232425

31 2627282930 012345678910111213141516171819202122232425

Status Field

C
R

C
 E

rr
.

Ti
m

eo
u

t
Er

r.

Multi-Turn Position Or
Encoder ID Code

Multi-Turn Position Or
Encoder ID Code

Alarm code
when commanded

Bits 24 – 31 (SerialEncDataA) of the encoder ID code are fixed at a value of $11.

Bit # Alarm Code

8 Overspeed error

9 Full resolution status; = 1 when over 100 rpm and reporting reduced resolution

10 Count Error

11 Counter Overflow

13 Multi-revolution error

14 System undervoltage error (< 2.5 V)

15 Battery low (< 3.1 V)

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 79

Mitutoyo Configuration Example with Gate3

 SERIAL ENCODER CONTROL – MITUTOYO

No trigger delay, rising edge of phase, and 2.5 MHz transmission:

M = 1
N = 0

Bit #:

Binary:

0

Protocol

0: Rising
1: Falling

0: Phase
1: Servo

Hex ($):

123

1001

4567

0000

891011

0000

12131415

0000

16171819

0000

20212223

0000

24252627

1000

28293031

0000

Trigger Delay

Ed
ge

C
lo

ck

R
es

er
ve

d

N DivisorM Divisor

Protocol: =9 Mitutoyo

90000010

fSerial = 2.5 MHz = Delayµsec x fSerialMHz

 SERIAL ENCODER COMMAND – MITUTOYO

For continuous position reporting:

Bit #:

Binary:

0

Hex ($):

123

0000

4567

0000

891011

0000

12131415

1000

16171819

1000

20212223

0000

24252627

0000

28293031

0000

00011000

Tr
ig

 E
n

a

M
o

d
e

0: Disable
1: Enable

0: Continuous
1: One Shot

Command code

$01: Report Position
$85: Same as $01
$89: Reset Multi-Turn
$9D: Report Encoder ID

If the command code is set to $89, the multi-turn position value in the encoder is reset to 0 (after 8 cycles). If the

command code is set to $9D, the encoder ID value is reported in bits 8 – 15 of SerialEncDataB. If the command

code is set to $85, absolute position is reported, similarly to $01.

PowerBrick[0].SerialEncCtrl = $1000009

PowerBrick[0].Chan[0].SerialEncCmd = $11000

PowerBrick[0].Chan[0].SerialEncEna = 1

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 80

 SERIAL DATA REGISTERS – MITUTOYO

The resulting position data, status, and error bits for Mitutoyo are found in the following Serial Data Registers:

PowerBrick[].Chan[].SerialEncDataA

Possible Single-Turn/Multi-turn Position

PowerBrick[].Chan[].SerialEncDataB

31 2627282930 012345678910111213141516171819202122232425

31 2627282930 012345678910111213141516171819202122232425

Status Field

C
R

C
 E

rr
.

T
im

e
o

u
t

Er
r. Encoder IDAlarm code

Bit # Alarm Code

16 Initialization error

17 Mismatch of optical and capacitive sensors

18 Optical sensor error

19 Capacitive sensor error

20 CPU error (AT303); CPU/ROM/RAM error (AT503)

21 EEPROM error

22 ROM/RAM error (AT303); communication error (AT503)

23 Overspeed error

Bit # Status Field

24 Fatal (unrecoverable) encoder error

26 Illegal command code from controller

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 81

Kawasaki Configuration Example with Gate3

 SERIAL ENCODER CONTROL – KAWASAKI

No trigger delay, rising edge of phase, and 2.5 MHz transmission:

M = 1
N = 0

Bit #:

Binary:

0

Protocol

0: Rising
1: Falling

0: Phase
1: Servo

Hex ($):

123

0101

4567

0000

891011

0000

12131415

0000

16171819

0000

20212223

0000

24252627

1000

28293031

0000

Trigger Delay

Ed
ge

C
lo

ck

R
es

er
ve

d

N DivisorM Divisor

Protocol: =A Kawasaki

A0000010

fSerial = 2.5 MHz = Delayµsec x fSerialMHz

 SERIAL ENCODER COMMAND – KAWASAKI

Bit #:

Binary:

0

Hex ($):

123

0000

4567

0000

891011

0000

12131415

1000

16171819

0000

20212223

0000

24252627

0000

28293031

0000

00010000

Tr
ig

 E
n

a

M
o

d
e

0: Disable
1: Enable

0: Continuous
1: One Shot

PowerBrick[0].SerialEncCtrl = $100000A

PowerBrick[0].Chan[0].SerialEncCmd = $1000

PowerBrick[0].Chan[0].SerialEncEna = 1

 SERIAL DATA REGISTERS – KAWASAKI

The resulting position data, status, and error bits for Kawasaki are found in the following Serial Data Registers:

PowerBrick[].Chan[].SerialEncDataA

Single-Turn Position

PowerBrick[].Chan[].SerialEncDataB

31 2627282930 012345678910111213141516171819202122232425

31 2627282930 012345678910111213141516171819202122232425

Alarm Code

C
R

C
 E

rr
.

Ti
m

e
o

u
t

Er
r.

Interpolated
Position

Multi-Turn Position Correction

Multi-Turn Position

C
o

d
in

g
Er

r.

Bit # Alarm code

24 Interpolator error

25 Absolute track error

26 Busy flag

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 82

Serial Encoder Ongoing Position Setup with Gate3

For the on-going "incremental" position data, it is sufficient to process whatever position data (single-turn and/or

multi-turn) is available in PowerBrick[].Chan[].SerialEncDataA. The PMAC firmware does not require

processing the entire bit length, the difference change in between servo cycles is used to compute the on-going

position. This will not limit the resolution or hinder the performance. Some people may choose to use strictly the

single-turn data in the Encoder Conversion Table for simplicity.

A key step is to make sure that unwanted data has been cleared and the Most Significant Bit (MSB) of the data

chosen is left-shifted to bit #31 in order to handle the rollover gracefully. EncTable[].index2 is set to the number

of unwanted bits to the right of the desired data, so that a right shift can be performed to clear that unwanted data.

EncTable[].index1 is then set to the number of bits the data must be shifted left (after the right shift) to make the

(MSB) of your position data bit #31.

The following settings are required to read on-going position in counts. These settings depend primarily on the

location of the position data in the SerialEncDataA.

Structure Element Value

EncTable[].type 1

EncTable[].pEnc PowerBrick[].Chan[].SerialEncDataA.a

EncTable[].pEnc1 Sys.Pushm

EncTable[].index1 Number of bits to left shift (second operation)

EncTable[].index2 Number of bits to right shift (first operation)

EncTable[].index3 0

EncTable[].index4 0

EncTable[].index5 0

EncTable[].index6 0

EncTable[].ScaleFactor 1 / 2EncTable[].index1

Structure Element Value

Motor[].ServoCtrl 1

Motor[].pEnc EncTable[].a

Motor[].pEnc2 EncTable[].a

The following are examples for setting up the Encoder Conversion Table (ECT).

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 83

Example 1: A binary serial encoder with 17 bits of single-turn (or an equivalent 1 μm linear scale) position data

starting at bit #0 of SerialEncDataA.

PowerBrick[].Chan[].SerialEncDataA

31 2627282930 012345678910111213141516171819202122232425

The position data should be shifted 15 bits left (using index1) so that the Most Significant Bit (MSB) is at bit #31

to handle the rollover gracefully. Also, the scale factor should reflect the new location of the Least Significant

Bit (LSB).

After Shifting

31 2627282930 012345678910111213141516171819202122232425

EncTable[1].type = 1

EncTable[1].pEnc = PowerBrick[0].Chan[0].SerialEncDataA.a

EncTable[1].pEnc1 = Sys.Pushm

EncTable[1].index1 = 15

EncTable[1].index2 = 0

EncTable[1].index3 = 0

EncTable[1].index4 = 0

EncTable[1].index5 = 0

EncTable[1].ScaleFactor = 1 / EXP2(15)

The settings below are sufficient to view motor position in the position window, in counts.

Motor[1].ServoCtrl = 1

Motor[1].pEnc = EncTable[1].a

Motor[1].pEnc2 = EncTable[1].a

In this case, the user will see 2SingleTurn = 217 = 131,072 counts per revolution for a rotary encoder. And 1/0.001 =

1,000 counts per mm for a linear encoder.

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 84

Example 2: A binary serial encoder with 20 bits of single-turn (or an equivalent 50 nm linear scale) position data

starting at bit #4 of SerialEncDataA. The low 4 bits may contain other information, irrelevant to position data.

PowerBrick[].Chan[].SerialEncDataA

31 2627282930 012345678910111213141516171819202122232425

The position data should be first shifted 4 bits to the right (using index2) to get rid of the unwanted data. Then

shifted 12 bits to the left (using index1), so that the (MSB) is at bit #31 to handle the rollover gracefully. Also,

the scale factor should reflect the new location of the (LSB).

After Shifting

31 2627282930 012345678910111213141516171819202122232425

EncTable[1].type = 1

EncTable[1].pEnc = PowerBrick[0].Chan[0].SerialEncDataA.a

EncTable[1].pEnc1 = Sys.Pushm

EncTable[1].index1 = 12

EncTable[1].index2 = 4

EncTable[1].index3 = 0

EncTable[1].index4 = 0

EncTable[1].index5 = 0

EncTable[1].ScaleFactor = 1 / EXP2(12)

The settings below are sufficient to view motor position in the position window, in counts.

Motor[1].ServoCtrl = 1

Motor[1].pEnc = EncTable[1].a

Motor[1].pEnc2 = EncTable[1].a

In this case, the user will see 2SingleTurn = 220 = 1,048,576 counts per revolution for a rotary encoder. And 1 /

0.000050 = 20,000 counts per mm for a linear encoder.

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 85

Example 3: A binary serial encoder with 36 bits of single-turn (or an equivalent 1 nm linear scale) position data

starting at bit #0 of SerialEncDataA and extending to bit #3 of SerialEncDataB.

PowerBrick[].Chan[].SerialEncDataA

31 2627282930 012345678910111213141516171819202122232425

PowerBrick[].Chan[].SerialEncDataB

31 2627282930 012345678910111213141516171819202122232425

Reading and processing the 32 bits of position data in SerialEncDataA is sufficient for producing the proper

ongoing position.

31 2627282930 012345678910111213141516171819202122232425

After Shifting

EncTable[1].type = 1

EncTable[1].pEnc = PowerBrick[0].Chan[0].SerialEncDataA.a

EncTable[1].pEnc1 = Sys.Pushm

EncTable[1].index1 = 0

EncTable[1].index2 = 0

EncTable[1].index3 = 0

EncTable[1].index4 = 0

EncTable[1].index5 = 0

EncTable[1].ScaleFactor = 1

The settings below are sufficient to view motor position in the position window, in counts.

Motor[1].ServoCtrl = 1

Motor[1].pEnc = EncTable[1].a

Motor[1].pEnc2 = EncTable[1].a

In this case, the user will see 2SingleTurn = 236 = 68,719,476,736 counts per revolution for a rotary motor. And 1 /

0.000001 = 1,000,000 counts per mm for a linear motor.

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 86

Example 4: A 29-bit binary serial encoder with 17 bits of single-turn and 12 bits of multi-turn position data

starting at bit #0 of SerialEncDataA.

PowerBrick[].Chan[].SerialEncDataA

31 2627282930 012345678910111213141516171819202122232425

Single-Turn Position DataMulti-Turn Position Data

Both single-turn and multi-turn data can be used for ongoing position. The entire bit length is shifted left (using

index1) 3 bits to place the (MSB) at bit #31.

31 2627282930 012345678910111213141516171819202122232425

Single-Turn Position DataMulti-Turn Position Data

After Shifting

EncTable[1].type = 1

EncTable[1].pEnc = PowerBrick[0].Chan[0].SerialEncDataA.a

EncTable[1].pEnc1 = Sys.Pushm

EncTable[1].index1 = 3

EncTable[1].index2 = 0

EncTable[1].index3 = 0

EncTable[1].index4 = 0

EncTable[1].index5 = 0

EncTable[1].ScaleFactor = 1 / EXP2(3)

The settings below are sufficient to view motor position in the position window, in counts.

Motor[1].ServoCtrl = 1

Motor[1].pEnc = EncTable[1].a

Motor[1].pEnc2 = EncTable[1].a

In this case, the user will see 2SingleTurn = 217 = 131,072 counts per revolution.

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 87

Example 5: A 36-bit binary serial encoder with 24 bits of single-turn and 12 bits of multi-turn position data

starting at bit #0 of SerialEncDataA and continuously extending to bit #3 of SerialEncDataB.

PowerBrick[].Chan[].SerialEncDataA

31 2627282930 012345678910111213141516171819202122232425

Single-Turn Position DataMulti-Turn Position Data

PowerBrick[].Chan[].SerialEncDataB

31 2627282930 012345678910111213141516171819202122232425

Multi-Turn Position Data

For on-going position, we are only interested in the position data residing in SerialEncDataA. Some people may

elect to use only the single-turn data for on-going position processing. This would require shifting to the left 8

bits (index1 = 8), and setting up the EncTable[].ScaleFactor = 1 / 256.

But, also it is possible to simply process the whole 32-bit word comprised of single-turn, and multi-turn position

data with no shifting.

31 2627282930 012345678910111213141516171819202122232425

Single-Turn Position DataMulti-Turn Position Data

After Shifting

EncTable[1].type = 1

EncTable[1].pEnc = PowerBrick[0].Chan[0].SerialEncDataA.a

EncTable[1].pEnc1 = Sys.Pushm

EncTable[1].index1 = 0

EncTable[1].index2 = 0

EncTable[1].index3 = 0

EncTable[1].index4 = 0

EncTable[1].index5 = 0

EncTable[1].ScaleFactor = 1

The settings below are sufficient to view motor position in the position window, in counts.

Motor[1].ServoCtrl = 1

Motor[1].pEnc = EncTable[1].a

Motor[1].pEnc2 = EncTable[1].a

In this case, the user will see 2SingleTurn = 224 = 16,777,216 counts per revolution.

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 88

Serial Encoder Power-on Absolute Position Setup with Gate3

The absolute position is computed directly from the serial data registers, and set up using the following key

structure elements:

 Motor[].pAbsPos, typically = PowerBrick[].Chan[].SerialEncDataA.a

 Motor[].AbsPosSf = Motor[].PosSf

 These settings should appear after Scaling to Engineering Units (in your motor setup file) so that

Motor[].PosSf is already set.

 Motor[].AbsPosFormat:

 Encoders with no multi-turn position data are unsigned. Rotary encoders with multi-turn position

data are signed.

a a b b c c d dMotor[].AbsPosFormat = $

Number of the starting bit
of the data from register A

Number of the starting bit
of the data from register B

Total Number of bits0 0 0 0 0 0 0 0

= 000 Unsigned binary
= 001 Signed binary
= 010 ($2) Gray Code, convert to unsigned binary
= 011 ($3) Gray code, convert to signed binaryShift Register A data left by this much first

= 0 No additional shift
= 1 Shift the data in Register A 16 more bits

 Motor[].HomeOffset = 0

Note

Gray code conversion should be omitted here if it had been already

implemented in PowerBrick[].Chan[].SerialEncCmd word.

Note

Motor[].PowerOnMode bit 2 (value of 4) specifies an absolute position

read on power up. Alternately, #1HMZ from the online terminal or a

HOMEZ 1 from a PLC can be issued to retrieve the absolute position.

Following, are examples for setting up the absolute position read with various serial encoders. These settings

depend primarily on the location of the position data in SerialEncDataA and SerialEncDataB.

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 89

Example 1: A binary serial encoder with 17 bits of single-turn (or an equivalent 1 μm linear scale) position data

starting at bit #0 of SerialEncDataA.

PowerBrick[].Chan[].SerialEncDataA

31 2627282930 012345678910111213141516171819202122232425

0 0 0 0 1 1 0 0Motor[].AbsPosFormat = $

Serial data A start at bit 00Serial data B: none 00

17 bits00: unsigned binary

Motor[1].pAbsPos = PowerBrick[0].Chan[0].SerialEncDataA.a

Motor[1].AbsPosSf = Motor[1].PosSf

Motor[1].AbsPosFormat = $00001100

Motor[1].HomeOffset = 0

Example 2: A binary serial encoder with 20 bits of single-turn (or an equivalent 50 nm linear scale) position data

starting at bit #4 of SerialEncDataA. The low 4 bits may contain other information, irrelevant to position data.

PowerBrick[].Chan[].SerialEncDataA

31 2627282930 012345678910111213141516171819202122232425

0 0 0 0 1 4 0 4Motor[].AbsPosFormat = $

Serial data A start at bit 4Serial data B: none 00

20 bits00: unsigned binary

Motor[1].pAbsPos = PowerBrick[0].Chan[0].SerialEncDataA.a

Motor[1].AbsPosSf = Motor[1].PosSf

Motor[1].AbsPosFormat = $00001404

Motor[1].HomeOffset = 0

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 90

Example 3: A binary serial encoder with 36 bits of single-turn (or an equivalent 1 nm linear scale) position data

starting at bit #0 of SerialEncDataA and extending to bit #3 of SerialEncDataB.

PowerBrick[].Chan[].SerialEncDataA

31 2627282930 012345678910111213141516171819202122232425

PowerBrick[].Chan[].SerialEncDataB

31 2627282930 012345678910111213141516171819202122232425

0 0 0 0 2 4 0 0Motor[].AbsPosFormat = $

Serial data A start at bit 0Serial data B start at bit 0

36 bits00: unsigned binary

Motor[1].pAbsPos = PowerBrick[0].Chan[0].SerialEncDataA.a

Motor[1].AbsPosSf = Motor[1].PosSf

Motor[1].AbsPosFormat = $00002400

Motor[1].HomeOffset = 0

Example 4: A 29-bit binary serial encoder with 17 bits of single-turn and 12 bits of multi-turn position data

starting at bit #0 of SerialEncDataA.

PowerBrick[].Chan[].SerialEncDataA

31 2627282930 012345678910111213141516171819202122232425

Single-Turn Position DataMulti-Turn Position Data

0 1 0 0 1 D 0 0Motor[].AbsPosFormat = $

Serial data A start at bit 0Serial data B, none

29 bits01: signed binary

Motor[1].pAbsPos = PowerBrick[0].Chan[0].SerialEncDataA.a

Motor[1].AbsPosSf = Motor[1].PosSf

Motor[1].AbsPosFormat = $01001D00

Motor[1].HomeOffset = 0

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 91

Example 5: A 36-bit binary serial encoder with 24 bits of single-turn and 12 bits of multi-turn position data

starting at bit #0 of SerialEncDataA and continuously extending to bit #3 of SerialEncDataB.

PowerBrick[].Chan[].SerialEncDataA

31 2627282930 012345678910111213141516171819202122232425

Single-Turn Position DataMulti-Turn Position Data

PowerBrick[].Chan[].SerialEncDataB

31 2627282930 012345678910111213141516171819202122232425

Multi-Turn Position Data

0 1 0 0 2 4 0 0Motor[].AbsPosFormat = $

Serial data A start at bit 0Serial data B start at bit 0

36 bits01: signed binary

Motor[1].pAbsPos = PowerBrick[0].Chan[0].SerialEncDataA.a

Motor[1].AbsPosSf = Motor[1].PosSf

Motor[1].AbsPosFormat = $01002400

Motor[1].HomeOffset = 0

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 92

Example 6: A 36-bit binary serial encoder with 24 bits of single-turn data starting at bit #0 of SerialEncDataA,

and 12 bits of multi-turn position data starting at bit #0 of SerialEncDataB.

PowerBrick[].Chan[].SerialEncDataA

31 2627282930 012345678910111213141516171819202122232425

Single-Turn Position Data

PowerBrick[].Chan[].SerialEncDataB

31 2627282930 012345678910111213141516171819202122232425

Multi-Turn Position Data

The single turn data must be shifted 8 bits left first, to make it contiguous with the multi-turn data. This shift is

done using the upper 5 bits of the $aa byte of Motor[].AbsPosFormat. The data would then look like:

31 2627282930 012345678910111213141516171819202122232425

31 2627282930 012345678910111213141516171819202122232425

8 1 0 0 2 4 0 8Motor[].AbsPosFormat = $

Serial data A start at bit 8Serial data B start at bit 0

36 bits01: signed binary

Shift data A left 8 bits

Motor[1].pAbsPos = PowerBrick[0].Chan[0].SerialEncDataA.a

Motor[1].AbsPosSf = Motor[1].PosSf

Motor[1].AbsPosFormat = $81002408

Motor[1].HomeOffset = 0

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 93

Example 7: A 32-bit Gray code serial encoder with 20 bits of single-turn data starting at bit #4 of

SerialEncDataA, and 12 bits of multi-turn position data starting at bit #8 of SerialEncDataB.

PowerBrick[].Chan[].SerialEncDataA

31 2627282930 012345678910111213141516171819202122232425

Single-Turn Position Data

PowerBrick[].Chan[].SerialEncDataB

31 2627282930 012345678910111213141516171819202122232425

Multi-Turn Position Data
The single turn data must be shifted 8 bits left first. This shift is done using the upper 5 bits of the $aa byte of

Motor[].AbsPosFormat. The data would then look like:

31 2627282930 012345678910111213141516171819202122232425

31 2627282930 012345678910111213141516171819202122232425

8 3 0 8 2 0 0 CMotor[].AbsPosFormat = $

Serial data A start at bit 12Serial data B start at bit 8

32 bits011 ($3) Gray Code

Shift data A left 8 bits

Motor[1].pAbsPos = PowerBrick[0].Chan[0].SerialEncDataA.a

Motor[1].AbsPosSf = Motor[1].PosSf

Motor[1].AbsPosFormat = $8308200C

Motor[1].HomeOffset = 0

Note

Encoders with multi-turn position data are typically set up as signed.

Note

Gray code conversion should be omitted here if it had been already

implemented in PowerBrick[].Chan[].SerialEncCmd.

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 94

Example 8: A 34-bit binary serial encoder (for example, Panasonic) with 18 bits of single-turn and 16 bits of

multi-turn position data in the following fields:

PowerBrick[].Chan[].SerialEncDataA

31 2627282930 012345678910111213141516171819202122232425

Single-Turn Position DataMulti-Turn Position Data

PowerBrick[].Chan[].SerialEncDataB

31 2627282930 012345678910111213141516171819202122232425

Multi-Turn Position Data

The automatic settings are not suitable for the discontinuity between the single-turn and multi-turn data.

We will assemble the absolute position word manually (in a background or initialization PLC), and hold the data

in two consecutive open memory registers to feed the automatic settings. Below is the example PLC for

performing this operation:

GLOBAL Enc1StData

GLOBAL Enc1MtData

GLOBAL Enc1Data

#define Enc1AbsPos1 Sys.Udata[10]

#define Enc1AbsPos2 Sys.Udata[11]

OPEN PLC PanasonicAbsPosPLC

LOCAL Enc1MtDataA, Enc1MtDataB;

Enc1StData = PowerBrick[0].Chan[0].SerialEncDataA & $3FFFF

Enc1MtDataA = (PowerBrick[0].Chan[0].SerialEncDataA & $FF000000) >> 24

Enc1MtDataB = PowerBrick[0].Chan[0].SerialEncDataB & $000000FF

Enc1MtData = Enc1MtDataA + Enc1MtDataB * EXP2(8)

IF (Enc1MtData > EXP2(15)) // NEGATIVE?

{

 Enc1Data = (Enc1StData - EXP2(18)) + (Enc1MtData - EXP2(16)) << 18

}

ELSE // POSITIVE?

{

 Enc1Data = Enc1StData + Enc1MtData * << 18

}

Enc1AbsPos1 = Enc1Data & $FFFFFFFF

Enc1AbsPos2 = (Enc1Data >> 32) & $3

DISABLE PLC PanasonicAbsPosPLC

CLOSE

The automatic settings can now be set up to read the absolute position at the first corresponding user defined

register:

0 1 0 0 2 2 0 0Motor[].AbsPosFormat = $

Sys.Udata[10] start at bit 0Sys.Udata[11] start at bit 0

34 bits01: signed binary

Motor[1].pAbsPos = Sys.Udata[10].a

Motor[1].AbsPosSf = Motor[1].PosSf

Motor[1].AbsPosFormat = $01002200

Motor[1].HomeOffset = 0

Once the example code in the sample PLC is executed, an HMZ command can be issued for an absolute position

read.

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 95

Serial Encoders with ACC-84B

In addition to the serial encoder protocols built into DSPGate3, the Power Brick AC can accept a variety of

additional protocols. These protocols are enabled by the ACC-84B. Each set of four encoders can only be

programmed for one protocol at a time. This section discusses the configuration of these serial encoders.

If options M and/or N is non-zero an ACC-84B is present with a protocol indicated by the value.

P B - A 0 -L

M N

0

X1-X8: D-sub DA-15F

Mating: D-sub DA-15M

Pin# Symbol Function
SSI

EnDat

Yaskawa

Sigma

III/V/VII

Tamagawa Panasonic
Mitutoyo/

Mitsubishi
Biss B/C

OMRON

1S

1 - - - - -

2 - - - - -

3 ENA – Output - SENA- -

4 ENCPWR Output Encoder Power 5 VDC (max 250 mA per channel)

5 DATA – In / Out DAT- SDI SD- PS- MRR SLO- SDI

6 CLOCK – Output CLK- - CLK- - MA- -

7 2.5V Output 2.5 VDC – Reference

8 PTC Input Motor Thermal Input

9 - - -

10 - - -

11 ENA + Output - SENA -

12 GND Common Common Ground

13 CLOCK + Output CLK+ - CLK+ - MA+ -

14 DATA + In / Out DAT+ SDO SD PS MR SLO+ SDO

15 - - - - - - - - -

Note

In most cases, only DATA lines are needed for Tamagawa encoders.

See “Encoder Specific Connection Information with ACC-84B” for

more details.

2345678

9101112131415

1

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 96

Caution

The +5 VDC encoder power is limited to ~250 mA per channel. For

encoders requiring more current, the +5 VDC power can be alternately

brought in externally through the +5 VDC ENC connector.

Caution

Encoders requiring a voltage level other than +5 VDC (higher or lower)

should be powered directly from an external power supply.

Note

Quadrature / sinusoidal encoders can be wired and processed

simultaneously with serial encoders on the same channel.

Pins #5, 6, 13, and 14 of the encoder feedback connectors (X1 – X8) share multiple functions: only one of these

functions (per channel) can be used – configured in software – at one time:

 Hall sensor inputs (default configuration).

 Pulse and direction PFM output signals (enable using PowerBrick[].Chan[].OutFlagD).

 Serial encoder inputs (enable using PowerBrick[].SerialEncEna).

 Serial encoder inputs (enable using bit 10 of ACC84B[].SerialEncCmd with ACC-84B).

 ACI sinusoidal encoder inputs (serial encoder input must be disabled).

 Alternate Sinusoidal encoder inputs (with sinusoidal encoder option).

Note

Each channel is independent of the other channels and can have its own

use for these pins.

Configuring a serial encoder requires the programming of two essential structure elements.

 The Serial Encoder Control word, ACC84B[].SerialEncCtrl

 The Serial Encoder Command word, ACC84B[].Chan[].SerialEncCmd

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 97

Encoder Specific Connection Information with ACC-84B

 YASKAWA SIGMA II/III/V ENCODERS

Yaskawa Sigma II/III/V absolute encoders require a 3.6V battery to maintain the multi-turn data while the

controller is powered down. This battery should be placed outside of the Power Brick AC and the Yaskawa Sigma

II/III/V encoder, possibly on the cable. The battery should be installed between orange (+3.6V) and orange/black

wires (GND). Use of ready-made cables by Yaskawa is recommended. (Yaskawa part number: UWR00650)

1 3 5

2 4 6

+5VDC (Red)

BAT+ (Orange) SDO (Blue)

GND (Black)

BAT-
(Orange/Black)

SDI (Blue/Black)

1
2

3
4

5

9
10

11
12

8
6

7

13
14

15

The previous diagram shows the pin assignment from mating IEEE 1394 Yaskawa Sigma II connector to the

Power Brick AC encoder input. The Molex connector required for IEEE 1394 can be acquired as receptacle kit

from Molex, 2.00mm (.079") Pitch Serial I/O Connector, Receptacle Kit, Wire-to-Wire, Molex Part Number:

0542800609.

Note

Yaskawa Encoder expects a supply voltage of 5V with less than 5%

tolerance. Make sure voltage drop is not caused by excessive wire length.

Note

Encoder wire shield must be connected to chassis ground on both encoder

and connector ends.

Note

Yaskawa Sigma II/III/V require a 120Ω termination resistor between SDI

and SDO twisted pair lines on the Power Brick AC side.

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 98

 TAMAGAWA ENCODERS

When directly connecting between a Tamagawa Encoder and a Power Brick AC, the only lines needed in most

cases are SD and SD̅̅ ̅̅ . However, in some applications the Tamagawa Encoder is not directly connected to the

Power Brick AC, but rather, first connected to another device which then transmits the Encoder signal to the

PMAC. In this configuration, the intermediary device often needs an enable signal before it transmits data.

The Power Brick can output two different signals to choose from. The enable signal on pins 3 and 11 is a true

enable, but will only go true for one to two “packets” of data, and will often be too fast for many devices to

accept. As such, the clock signal on pins 6 and 13 will output the PMAC’s Servo or Phase Clock when a given

channel is enabled, depending on bit 9 of Acc84B[i].SerialEncCtrl. While this is not a true “enable”, it will

often be the preferred signal to transmit to the device.

 MITSUBISHI HG- SERVO MOTOR ENCODERS

Mitsubishi HG- servo motor absolute encoders require a 3.6V battery to maintain the multi-turn data while the

controller is powered down. This battery should be placed outside of the Power Brick AC and the Mitsubishi

HG- servo motor’s encoder, possibly on the cable. The battery should be installed between pin 9 of the motor

encoder connector (+6V) and pin 2(GND). Use of ready-made cables by Mitsubishi is recommended. (Mitsubishi

part number: UWR00650)

19 3

24

+5VDC

BAT+ MR

GNDBAT-

MRR

12345

9101112

8 67

131415

The diagram above shows the pin assignment from mating 3M SCR Receptacle (36110) to Power Brick AC

encoder input.

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 99

Serial Encoder Control with ACC-84B

The Serial Encoder Control is a 24-bit, 4-channel (1 – 4, or 5 – 8), structure element. It specifies the protocol

type, delay compensation time, trigger edge, trigger clock, and transmission frequency of the 4

serial encoder channels.

Channel Serial Encoder Control Elements

1 – 4 ACC84B[0].SerialEncCtrl

5 – 8 ACC84B[1].SerialEncCtrl

Bit #:

Binary:

Protocol

0: Rising
1: Falling

0: Phase
1: Servo

Hex ($):

0123

0000

4567

0000

891011

0000

12131415

0000

16171819

0000

20212223

0000

Trigger
DelayEd

ge

C
lo

ck

R
e

se
rv

e
d

N DivisorM Divisor

Encoder
Protocol

Typically 0
(Units of Serial
Clock Cycles)

000000

Serial Encoder Transmission Frequency

Bits [23 – 12] specify the serial interface transmission frequency. This frequency (or range) is usually specified

by the encoder manufacturer and programmed by the user or pre-defined by the protocol.

Bit 9 specifies the trigger source; Phase clock is recommended (value 0).

Bit 8 specifies the active edge; rising edge is recommended (value 0).

Bits [7 – 4] specify the trigger delay (in units of serial clock cycles).

Bits [3 – 0] specify the encoder protocol of the serial encoder:

Protocol Value Protocol Value Protocol Value Protocol Value

– 0 – 4 Panasonic 8 - 12 ($C)

– 1 – 5 Mitutoyo 9 Mitsubishi 13 ($D)

SSI 2 Sigma II/III/V 6 – 10 ($A) 1S 14 ($E)

EnDat 3 Tamagawa 7 Biss-B/C 11 ($B) – 15 ($F)

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 100

Serial Encoder Command with ACC-84B

The Serial Encoder Command is a 24-bit, channel specific, structure element. It specifies the bit length

(resolution), status bits, data type, conversion method, trigger enable, trigger mode, parity, and command code

of the serial encoder channel.

Ch.# Serial Encoder Command Ch. # Serial Encoder Command

1 ACC84B[0].Chan[0].SerialEncCmd 5 ACC84B[1].Chan[0].SerialEncCmd

2 ACC84B[0].Chan[1].SerialEncCmd 6 ACC84B[1].Chan[1].SerialEncCmd

3 ACC84B[0].Chan[2].SerialEncCmd 7 ACC84B[1].Chan[2].SerialEncCmd

4 ACC84B[0].Chan[3].SerialEncCmd 8 ACC84B[1].Chan[3].SerialEncCmd

Bit #:

Binary:

0

Bit Length
(Resolution)

Hex ($):

123

0000

4567

0000

891011

0000

12131415

0000

16171819

0000

20212223

0000

000000

Status
BitsG

 t
o

 B

Tr
ig

 E
n

a

M
o

d
e

ParityCommand Code

Protocol Specific

00: None
01: Odd
10: Even

0: Continuous
1: One Shot

0: Disable
1: Enable

0: No Conversion
1: Gray to Binary

0: Disable
1: Enable

Single Turn +
Multi Turn

En
c

En
a

Bits [23 – 16] specify the command code. This field is protocol specific.

Bits [15 – 14] specify the parity type to be expected for the received data packet (for those protocols that

support parity checking).

Bit 13 specifies the trigger mode.

Bit 12 is the trigger enable toggle.

Bit 11 specifies the conversion type. This field is protocol specific.

Bit 10 is the data ready bit when read. When written it will be the serial circuitry enable bit.

Bits [9 – 6] specify the encoder status field. This field is protocol specific.

Bits [5 – 0] specify the serial encoder bit length (single-turn + multi-turn). Note that, Bit length is only required

for SSI, EnDat, and BiSS.

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 101

Following, are examples for setting up the control and command words for each of the supported protocols. Also,

the resulting data registers and their format.

SSI Configuration Example with ACC-84B

 SERIAL ENCODER CONTROL – SSI

No trigger delay, rising edge of phase, and 2.0 MHz transmission

M = 39 ($27)
N = 0

Bit #:

Binary:

0

Protocol

0: Rising
1: Falling

0: Phase
1: Servo

Hex ($):

1234567891011

0100

12131415

0000

16171819

0000

20212223

000011100100

Trigger
DelayEd

ge

C
lo

ck

R
e

se
rv

e
d

N DivisorM Divisor

Protocol
=2 SSI

200072

fSerial = 2.5 MHz
 = Delayµsec

x fSerialMHz

 SERIAL ENCODER COMMAND – SSI

A 25-bit SSI encoder in Gray code, with odd parity

Bit #:

Binary:

0

Bit Length
(Resolution)

Hex ($):

123

1001

4567

1000

891011

0011

12131415

1010

16171819

0000

20212223

0000

91C500

G
 t

o
 B

Tr
ig

 E
n

a

M
o

d
e

Parity

0: Disable
1: Enable

0: Continuous
1: One Shot

Single Turn +
Multi Turn = 25 ($19)

00: none
01: Odd
10: Even

0: No Conversion
1: Gray to Binary

En
c

En
a

0: Disable
1: Enable

ACC84[0].SerialEncCtrl = $270002

ACC84[0].Chan[0].SerialEncCmd = $005C19

 SERIAL DATA REGISTERS – SSI

The resulting position data, status, and error bits for SSI are found in the following Serial Data Registers:

Possible Single-Turn/Multi-turn Position

01234567891011121314151617181920212223

ACC84B[].Chan[].SerialEncDataA

01234567891011121314151617181920212223

P
ar

it
y

Er
r.

Possible Position Data

ACC84B[].Chan[].SerialEncDataB

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 102

BISS B/C Configuration Example with ACC-84B

 SERIAL ENCODER CONTROL EXAMPLE – BISS B/C

No trigger delay, rising edge of phase, and 1 MHz transmission

M = 99 ($63)
N = 0

Bit #:

Binary:

0

Protocol

0: Rising
1: Falling

0: Phase
1: Servo

Hex ($):

1234567891011

1101

12131415

0000

16171819

0000

20212223

000011000110

Trigger
DelayEd

ge

C
lo

ck

R
e

se
rv

e
d

N DivisorM Divisor

Protocol =
11 BISS

B00036

fSerial = 1 MHz
 = Delayµsec

x fSerialMHz

 SERIAL ENCODER COMMAND EXAMPLE – BISS C

For the BiSS-B/C protocols, the Command Code specifies the CRC polynomial used for error detection. It must

be set up to match the polynomial used for the particular BiSS encoder.

The mask bits M7 to M0 represent the coefficients for the terms x8 to x1, respectively, in the CRC polynomial:

M7x8 + M6x7 + M5x6 + M4x5 + M3x4 + M2x3 + M1x2 + M0x1 + 1

If the encoder uses a standard CRC polynomial of x6 + x1 + 1 (as with the Renishaw ResoluteTM encoders), the

CRC mask value M should be set to $21.

For the BiSS protocol, Parity is used to distinguish between the BiSS-B and BiSS-C protocol variants. Bit 1 of

the component is set to 0 for BiSS-C, and to 1 for BiSS-B. Bit 0 of the component is only used for BiSS-B. If it

is set to 1, it permits the acceptance of a “Multi-Cycle Data” (MCD) bit from the encoder.

A 36-bit BISS C encoder in binary, with 2 status bits and a standard CRC polynomial.

Bit #:

Binary:

0

Bit Length
(Resolution)

Hex ($):

123

0010

4567

0101

891011

0010

12131415

1000

16171819

1000

20212223

0100

4A4112

Tr
ig

 E
n

a

M
o

d
e

Parity

0: Disable
1: Enable

0: Continuous
1: One Shot

Single Turn +
Multi Turn = 36 ($24)

00: BISS C
10: BISS B
11: BISS B MCD

En
c

En
a

0: Disable
1: Enable

Status BitsCRC Polynomial

2

ACC84[0].SerialEncCtrl = $63000B

ACC84[0].Chan[0].SerialEncCmd = $2114A4

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 103

 SERIAL DATA REGISTERS – BISS B/C

The resulting position data, status, and error bits for SSI are found in the following Serial Data Registers:

Possible Single-Turn/Multi-turn Position

01234567891011121314151617181920212223

ACC84B[].Chan[].SerialEncDataA

01234567891011121314151617181920212223

Status Field

C
R

C
 E

rr
.

T
im

e
o

u
t

E
rr

.

Possible Single-Turn/Multi-turn Position

ACC84B[].Chan[].SerialEncDataB

Bit # Status Field (Renishaw Specific)

16 Indicates that the encoder scale should be cleaned. (active low)

17 Absolute position data not valid or temperature too high. (active low)

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 104

1S Configuration Example with ACC-84B

 SERIAL ENCODER CONTROL – 1S

No trigger delay, rising edge of phase.

Bit #:

Binary:

0

Protocol

0: Rising
1: Falling

0: Phase
1: Servo

Hex ($):

1234567891011

0100

12131415

0000

16171819

0000

20212223

000011100100

Trigger
DelayEd

ge

C
lo

ck

R
e

se
rv

e
d

N DivisorM Divisor

Protocol
=E 1S

E00000

Units of

20µsec

M = 0
N = 0

Always for 1S

 SERIAL ENCODER COMMAND – 1S

The ACC-84B interface to a 1S encoder supports the following command codes.

 00000000 ($00) for reporting full 40 bit absolute position.

 00001000 ($08) for reporting low 24 bits absolute of position.

 11011000 ($D8) for reporting low 24 bits absolute of position and alarm bits.

 11101000 ($E8) for reporting low 24 bits absolute of position and temperature.

 01000000 ($40) for clearing status bits.*

 01001000 ($48) for clearing alarm bits.*

 01011000 ($58) for setting encoder id to zero.*

* Do not issue the last 3 command codes while the motor is enabled or the encoder data is needed, position will

stop updating. The commands must be issues 8 times in a row with the trigger mode set to one shot.

Bit #:

Binary:

0

Hex ($):

123

1001

4567

1000

891011

0010

12131415

1000

16171819

0000

20212223

0000

004100

Tr
ig

 E
n

a

M
o

d
e

0: Disable
1: Enable

0: Continuous
1: One Shot

En
c

En
a

0: Disable
1: Enable

Command Code

ACC84[0].SerialEncCtrl = $E

ACC84[0].Chan[0].SerialEncCmd = $001400

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 105

 SERIAL DATA REGISTERS – 1S

The resulting position data, status, and error bits for 1S are found in the following Serial Data Registers:

Possible Single-Turn/Multi-turn Position

01234567891011121314151617181920212223

ACC84B[].Chan[].SerialEncDataA

01234567891011121314151617181920212223

Possible Position Data

ACC84B[].Chan[].SerialEncDataB

Alarm Code

01234567891011121314151617181920212223

ACC84B[].Chan[].SerialEncDataC

Alarm Code
or Temperature

Encoder IDStatus Field

C
R

C
 E

rr
.

Ti
m

eo
u

t
Er

r.

Bit # Alarm Code (SerialEndDataB)

16 Low Battery warning

17 Dead Battery

19 Over Speed error

20 EEPROM error

21 Position Mismatch

22 Position Mismatch Greater Than Single Turn

23 Busy error

Bit # Alarm Code (SerialEndDataC)

08 EEPROM Busy error

09 Over Temperature error

Note

Alarm codes and temperature are only present when the correct

command code is entered.

Bit # Status Field

24 Busy or EEPROM Busy

25 Low Battery warning

26 Over Speed, Over Temperature, or EEPROM Busy

27 Position Mismatch or Dead Battery

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 106

1S Configuration Example with ACC-84B

 SERIAL ENCODER CONTROL – 1S

No trigger delay, rising edge of phase.

Bit #:

Binary:

0

Protocol

0: Rising
1: Falling

0: Phase
1: Servo

Hex ($):

1234567891011

0100

12131415

0000

16171819

0000

20212223

000011100100

Trigger
DelayEd

ge

C
lo

ck

R
e

se
rv

e
d

N DivisorM Divisor

Protocol
=E 1S

E00000

Units of

20µsec

M = 0
N = 0

Always for 1S

 SERIAL ENCODER COMMAND – 1S

The ACC-84B interface to a 1S encoder supports the following command codes.

 00000000 ($00) for reporting full 40 bit absolute position.

 00001000 ($08) for reporting low 24 bits absolute of position.

 11011000 ($D8) for reporting low 24 bits absolute of position and alarm bits.

 11101000 ($E8) for reporting low 24 bits absolute of position and temperature.

 01000000 ($40) for clearing status bits.*

 01001000 ($48) for clearing alarm bits.*

 01011000 ($58) for setting encoder id to zero.*

* Do not issue the last 3 command codes while the motor is enabled or the encoder data is needed, position will

stop updating. The commands must be issues 8 times in a row with the trigger mode set to one shot.

Bit #:

Binary:

0

Hex ($):

123

1001

4567

1000

891011

0010

12131415

1000

16171819

0000

20212223

0000

004100

Tr
ig

 E
n

a

M
o

d
e

0: Disable
1: Enable

0: Continuous
1: One Shot

En
c

En
a

0: Disable
1: Enable

Command Code

ACC84[0].SerialEncCtrl = $E

ACC84[0].Chan[0].SerialEncCmd = $001400

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 107

 SERIAL DATA REGISTERS – 1S

The resulting position data, status, and error bits for 1S are found in the following Serial Data Registers:

Possible Single-Turn/Multi-turn Position

01234567891011121314151617181920212223

ACC84B[].Chan[].SerialEncDataA

01234567891011121314151617181920212223

Possible Position Data

ACC84B[].Chan[].SerialEncDataB

Alarm Code

01234567891011121314151617181920212223

ACC84B[].Chan[].SerialEncDataC

Alarm Code
or Temperature

Encoder IDStatus Field

C
R

C
 E

rr
.

Ti
m

eo
u

t
Er

r.

Bit # Alarm Code (SerialEndDataB)

16 Low Battery warning

17 Dead Battery

19 Over Speed error

20 EEPROM error

21 Position Mismatch

22 Position Mismatch Greater Than Single Turn

23 Busy error

Bit # Alarm Code (SerialEndDataC)

08 EEPROM Busy error

09 Over Temperature error

Note

Alarm codes and temperature are only present when the correct

command code is entered.

Bit # Status Field

24 Busy or EEPROM Busy

25 Low Battery warning

26 Over Speed, Over Temperature, or EEPROM Busy

27 Position Mismatch or Dead Battery

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 108

Serial Encoder Ongoing Position Setup with ACC-84B

For the on-going "incremental" position data, it is sufficient to process whatever position data (single-turn and/or

multi-turn) is available in Acc84B[].Chan[].SerialEncDataA. The PMAC firmware does not require processing

the entire bit length, the difference change in between servo cycles is used to compute the on-going position. This

will not limit the resolution or hinder the performance. Some people may choose to use strictly the single-turn

data in the Encoder Conversion Table for simplicity.

A key step is to make sure that unwanted data has been cleared and the Most Significant Bit (MSB) of the data

chosen is left-shifted to bit #31 in order to handle the rollover gracefully. EncTable[].index2 is set to the number

of unwanted bits to the right of the desired data, so that a right shift can be perfomed to clear that unwanted data.

EncTable[].index1 is then set to the number of bits the data must be shifted left (after the right shift) to make the

(MSB) of your position data bit #31.

The following settings are required to read on-going position in counts. These settings depend primarily on the

location of the position data in the SerialEncDataA.

Structure Element Value

EncTable[].type 1

EncTable[].pEnc Acc84B[].Chan[].SerialEncDataA.a

EncTable[].pEnc1 Sys.Pushm

EncTable[].index1 Number of bits to left shift (second operation)

EncTable[].index2 Number of bits to right shift (first operation)

EncTable[].index3 0

EncTable[].index4 0

EncTable[].index5 0

EncTable[].index6 0

EncTable[].ScaleFactor 1 / 2EncTable[].index1

Structure Element Value

Motor[].ServoCtrl 1

Motor[].pEnc EncTable[].a

Motor[].pEnc2 EncTable[].a

The following are examples for setting up the Encoder Conversion Table (ECT) for on-going position of various

serial encoders.

Although data may appear to start at bit 0 in the script environment, internally it is only 24 bits starting at bit 8.

This means data should be right shifted 8 bits more than would be expected from viewing

Acc84B[].Chan[].SerialEncDataA in the watch window or terminal.

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 109

Example 1: A binary serial encoder with 17 bits of single-turn (or an equivalent 1 μm linear scale) position data

starting at bit #0 of the 24 bit SerialEncDataA.

ACC84B[].Chan[].SerialEncDataA

01234567891011121314151617181920212223

The position data should be first shifted 8 bits to the right (using index2) to eliminate the 8 internal bits of

unwanted data. Next, the result is shifted 15 bits left (using index1) so that the Most Significant Bit (MSB) is at

bit #31 to handle the rollover gracefully. Finally, the scale factor should reflect the new location of the Least

Significant Bit (LSB).

After Shifting

31 2627282930 012345678910111213141516171819202122232425

EncTable[1].type = 1

EncTable[1].pEnc = ACC84B[0].Chan[0].SerialEncDataA.a

EncTable[1].pEnc1 = Sys.Pushm

EncTable[1].index1 = 15

EncTable[1].index2 = 8

EncTable[1].index3 = 0

EncTable[1].index4 = 0

EncTable[1].index5 = 0

EncTable[1].index6 = 0

EncTable[1].ScaleFactor = 1 / EXP2(15)

The settings below are sufficient to view motor position in the position window, in counts.

Motor[1].ServoCtrl = 1

Motor[1].pEnc = EncTable[1].a

Motor[1].pEnc2 = EncTable[1].a

In this case, the user will see 2SingleTurn = 217 = 131,072 counts per revolution for a rotary encoder. And 1/0.001 =

1,000 counts per mm for a linear encoder.

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 110

Example 2: A binary serial encoder with 16 bits of single-turn (or an equivalent 50 nm linear scale) position data

starting at bit #4 of the 24 bit SerialEncDataA. The low 4 bits may contain other information, irrelevant to

position data.

ACC84B[].Chan[].SerialEncDataA

01234567891011121314151617181920212223

The position data should be first shifted 12 bits to the right (using index2) to eliminate the 8 internal bits of

unwanted data as well as the 4 bits of unwanted data sent by the encoder. Next, the result is shifted 16 bits to the

left (using index1), so that the (MSB) is at bit #31 to handle the rollover gracefully. Finally, the scale factor

should reflect the new location of the (LSB).

After Shifting

31 2627282930 012345678910111213141516171819202122232425

EncTable[1].type = 1

EncTable[1].pEnc = ACC84B[0].Chan[0].SerialEncDataA.a

EncTable[1].pEnc1 = Sys.Pushm

EncTable[1].index1 = 16

EncTable[1].index2 = 12

EncTable[1].index3 = 0

EncTable[1].index4 = 0

EncTable[1].index5 = 0

EncTable[1].ScaleFactor = 1 / EXP2(16)

The settings below are sufficient to view motor position in the position window, in counts.

Motor[1].ServoCtrl = 1

Motor[1].pEnc = EncTable[1].a

Motor[1].pEnc2 = EncTable[1].a

In this case, the user will see 2SingleTurn = 216 = 65,536 counts per revolution for a rotary encoder. And 1/0.001 =

1,000 counts per mm for a linear encoder.

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 111

Example 3: A binary serial encoder with 36 bits of single-turn (or an equivalent 1 nm linear scale) position data

starting at bit #0 of the 24 bit SerialEncDataA and extending to bit #11 of SerialEncDataB.

ACC84B[].Chan[].SerialEncDataA

01234567891011121314151617181920212223

ACC84B[].Chan[].SerialEncDataB

01234567891011121314151617181920212223

Reading and processing the 24 bits of position data in SerialEncDataA is sufficient for producing the proper

ongoing position. The position data should be first shifted 8 bits to the right (using index2) to eliminate the 8

internal bits of unwanted data. Next, the result is shifted 8 bits to the left (using index1), so that the (MSB) is at

bit #31 to handle the rollover gracefully. Also, the scale factor should reflect the location of the (LSB).

31 2627282930 012345678910111213141516171819202122232425

After Shifting

EncTable[1].type = 1

EncTable[1].pEnc = ACC84B[0].Chan[0].SerialEncDataA.a

EncTable[1].pEnc1 = Sys.Pushm

EncTable[1].index1 = 8

EncTable[1].index2 = 8

EncTable[1].index3 = 0

EncTable[1].index4 = 0

EncTable[1].index5 = 0

EncTable[1].ScaleFactor = 1 / EXP2(8)

The settings below are sufficient to view motor position in the position window, in counts.

Motor[1].ServoCtrl = 1

Motor[1].pEnc = EncTable[1].a

Motor[1].pEnc2 = EncTable[1].a

In this case, the user will see 2SingleTurn = 228 = 268,435,456 counts per revolution for a rotary motor. And

1 / 0.000001 = 1,000,000 counts per mm for a linear motor.

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 112

Example 4: A 21-bit binary serial encoder with 17 bits of single-turn and 4 bits of multi-turn position data starting

at bit #0 of the 24 bit SerialEncDataA.

ACC84B[].Chan[].SerialEncDataA

15

Single-Turn Position Data

012345678910111213141617181920212223

Multi-Turn Data

Both single-turn and multi-turn data can be used for ongoing position. The position data should be first shifted 8

bits to the right (using index2) to eliminate the 8 internal bits of unwanted data. Next, the result is shifted 11 bits

to the left (using index1), so that the (MSB) is at bit #31 to handle the rollover gracefully. Finally, the scale factor

should reflect the new location of the (LSB).

Single-Turn Position Data

31 2627282930 012345678910111213141516171819202122232425

After Shifting

Multi-Turn Data

EncTable[1].type = 1

EncTable[1].pEnc = ACC84B[0].Chan[0].SerialEncDataA.a

EncTable[1].pEnc1 = Sys.Pushm

EncTable[1].index1 = 11

EncTable[1].index2 = 8

EncTable[1].index3 = 0

EncTable[1].index4 = 0

EncTable[1].index5 = 0

EncTable[1].ScaleFactor = 1 / EXP2(11)

The settings below are sufficient to view motor position in the position window, in counts.

Motor[1].ServoCtrl = 1

Motor[1].pEnc = EncTable[1].a

Motor[1].pEnc2 = EncTable[1].a

In this case, the user will see 2SingleTurn = 217 = 131,072 counts per revolution.

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 113

Example 5: A 32-bit binary serial encoder with 20 bits of single-turn and 12 bits of multi-turn position data

starting at bit #0 of the 24 bit SerialEncDataA and continuously extending to bit #7 of SerialEncDataB.

ACC84B[].Chan[].SerialEncDataA

Single-Turn Position Data

01234567891011121314151617181920212223

Multi-Turn Data

ACC84B[].Chan[].SerialEncDataB

01234567891011121314151617181920212223

Multi-Turn Data

For on-going position, we are only interested in the position data residing in SerialEncDataA. Some people may

elect to use only the single-turn data for on-going position processing. This would require shifting to the left an

extra 4 bits and a different scale factor.

But, also it is possible to simply process the 24-bit portion of single and multi-turn position data in

SerialEncDataA. The position data should be first shifted 8 bits to the right (using index2) to eliminate the 8

internal bits of unwanted data. Next, the result is shifted 8 bits to the left (using index1), so that the (MSB) is at

bit #31 to handle the rollover gracefully. Also, the scale factor should reflect the location of the (LSB).

Single-Turn Position Data

31 2627282930 012345678910111213141516171819202122232425

After Shifting

Multi-Turn Data

EncTable[1].type = 1

EncTable[1].pEnc = ACC84B[0].Chan[0].SerialEncDataA.a

EncTable[1].pEnc1 = Sys.Pushm

EncTable[1].index1 = 8

EncTable[1].index2 = 8

EncTable[1].index3 = 0

EncTable[1].index4 = 0

EncTable[1].index5 = 0

EncTable[1].index6 = 0

EncTable[1].ScaleFactor = 1 / EXP2(8)

The settings below are sufficient to view motor position in the position window, in counts.

Motor[1].ServoCtrl = 1

Motor[1].pEnc = EncTable[1].a

Motor[1].pEnc2 = EncTable[1].a

In this case, the user will see 2SingleTurn = 220 = 1,048,576 counts per revolution.

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 114

Serial Encoder Power-on Absolute Position Setup with ACC-84B

The absolute position is computed directly from the serial data registers, and set up using the following key

structure elements:

 Motor[].pAbsPos, typically = ACC84B[].Chan[].SerialEncDataA.a

 Motor[].AbsPosSf = Motor[].PosSf

 These settings should appear after Scaling to Engineering Units (in your motor setup file) so that

Motor[].PosSf is already set.

 Motor[].AbsPosFormat:

 Encoders with no multi-turn position data are unsigned. Rotary encoders with multi-turn position

data are signed.

a a b b c c d dMotor[].AbsPosFormat = $

Number of the starting bit
of the data from register A

Number of the starting bit
of the data from register B

Total Number of bits0 0 0 0 0 0 0 0

= 000 Unsigned binary
= 001 Signed binary
= 010 ($2) Gray Code, convert to unsigned binary
= 011 ($3) Gray code, convert to signed binaryShift Register A data left by this much first

= 0 No additional shift
= 1 Shift the data in Register A 16 more bits

 Motor[].HomeOffset = 0

Note

Motor[].PowerOnMode bit 2 (value of 4) specifies an absolute position

read on power up. Alternately, #1HMZ from the online terminal or a

HOMEZ 1 from a PLC can be issued to retrieve the absolute position.

Note

Gray code conversion should be omitted here if it had been already

implemented in ACC84B[].Chan[].SerialEncCmd.

Following, are examples for setting up the absolute position read with various serial encoders. These settings

depend primarily on the location of the position data in SerialEncDataA and SerialEncDataB.

Although data may appear to start at bit 0 in the script environment, internally it is only 24 bits starting at bit 8.

This means data should be right shifted 8 bits more than would be expected from viewing

Acc84B[].Chan[].SerialEncDataA in the watch window or terminal.

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 115

Example 1: A binary serial encoder with 17 bits of single-turn (or an equivalent 1 μm linear scale) position data

starting at bit #0 of the 24 bit SerialEncDataA.

ACC84B[].Chan[].SerialEncDataA

01234567891011121314151617181920212223

0 0 0 0 1 1 0 8Motor[].AbsPosFormat = $

Serial data A start at bit 8Serial data B: none

17 bits00: unsigned binary

Motor[1].pAbsPos = ACC84B[0].Chan[0].SerialEncDataA.a

Motor[1].AbsPosSf = Motor[1].PosSf

Motor[1].AbsPosFormat = $00001108

Motor[1].HomeOffset = 0

Example 2: A binary serial encoder with 16 bits of single-turn (or an equivalent 50 nm linear scale) position data

starting at bit #4 of the 24 bit SerialEncDataA. The low 4 bits may contain other information, irrelevant to

position data.

ACC84B[].Chan[].SerialEncDataA

01234567891011121314151617181920212223

0 0 0 0 1 0 0 CMotor[].AbsPosFormat = $

Serial data A start at bit 12Serial data B: none

16 bits00: unsigned binary

Motor[1].pAbsPos = ACC84B[0].Chan[0].SerialEncDataA.a

Motor[1].AbsPosSf = Motor[1].PosSf

Motor[1].AbsPosFormat = $0000100C

Motor[1].HomeOffset = 0

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 116

Example 3: A binary serial encoder with 36 bits of single-turn (or an equivalent 1 nm linear scale) position data

starting at bit #0 of the 24 bit SerialEncDataA and extending to bit #11 of SerialEncDataB.

ACC84B[].Chan[].SerialEncDataA

01234567891011121314151617181920212223

ACC84B[].Chan[].SerialEncDataB

01234567891011121314151617181920212223

0 0 0 8 2 4 0 8Motor[].AbsPosFormat = $

Serial data A start at bit 8Serial data B start at bit 8

36 bits00: unsigned binary

Motor[1].pAbsPos = ACC84B[0].Chan[0].SerialEncDataA.a

Motor[1].AbsPosSf = Motor[1].PosSf

Motor[1].AbsPosFormat = $00082408

Motor[1].HomeOffset = 0

Example 4: A 21-bit binary serial encoder with 17 bits of single-turn and 4 bits of multi-turn position data starting

at bit #0 of the 24 bit SerialEncDataA.

ACC84B[].Chan[].SerialEncDataA

15

Single-Turn Position Data

012345678910111213141617181920212223

Multi-Turn Data

0 1 0 0 1 5 0 8Motor[].AbsPosFormat = $

Serial data A start at bit 8Serial data B, none

21 bits01: signed binary

Motor[1].pAbsPos = ACC84B[0].Chan[0].SerialEncDataA.a

Motor[1].AbsPosSf = Motor[1].PosSf

Motor[1].AbsPosFormat = $01001508

Motor[1].HomeOffset = 0

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 117

Example 5: A 32-bit binary serial encoder with 20 bits of single-turn and 12 bits of multi-turn position data

starting at bit #0 of the 24 bit SerialEncDataA and continuously extending to bit #7 of SerialEncDataB.

ACC84B[].Chan[].SerialEncDataA

Single-Turn Position Data

01234567891011121314151617181920212223

Multi-Turn Data

ACC84B[].Chan[].SerialEncDataB

01234567891011121314151617181920212223

Multi-Turn Data

0 1 0 8 2 0 0 8Motor[].AbsPosFormat = $

Serial data A start at bit 8Serial data B start at bit 8

32 bits01: signed binary

Motor[1].pAbsPos = ACC84B[0].Chan[0].SerialEncDataA.a

Motor[1].AbsPosSf = Motor[1].PosSf

Motor[1].AbsPosFormat = $01082008

Motor[1].HomeOffset = 0

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 118

Example 6: A 28-bit binary serial encoder with 16 bits of single-turn in the lower fields of the 24 bit

SerialEncDataA, and 12 bits of multi-turn position data in the lower fields of the 24 bit SerialEncDataB.

PowerBrick[].Chan[].SerialEncDataA

01234567891011121314151617181920212223

Single-Turn Position Data

PowerBrick[].Chan[].SerialEncDataB

01234567891011121314151617181920212223

Multi-Turn Position Data

The single turn data must be shifted 8 bits left first, to make it contiguous with the multi-turn data. This shift is

done using the upper 5 bits of the $aa byte of Motor[].AbsPosFormat. The data would then look like:

31 2627282930 012345678910111213141516171819202122232425

31 2627282930 012345678910111213141516171819202122232425

8 1 0 8 1 C 1 0Motor[].AbsPosFormat = $

Serial data A start at bit 16Serial data B start at bit 8

28 bits01: signed binary

Shift data A left 8 bits

Motor[1].pAbsPos = ACC84B[0].Chan[0].SerialEncDataA.a

Motor[1].AbsPosSf = Motor[1].PosSf

Motor[1].AbsPosFormat = $81081C10

Motor[1].HomeOffset = 0

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 119

Example 7: A 28-bit Gray code serial encoder with 16 bits of single-turn data starting at bit #4 of the 24 bit

SerialEncDataA, and 12 bits of multi-turn position data starting at bit #4 of the 24 bit SerialEncDataB.

PowerBrick[].Chan[].SerialEncDataA

Single-Turn Position Data

01234567891011121314151617181920212223

PowerBrick[].Chan[].SerialEncDataB

Multi-Turn Position Data

01234567891011121314151617181920212223

The single turn data must be shifted 4 bits left to become contiguous with SerialEncDataB. This shift is done

using the upper 5 bits of the $aa byte of Motor[].AbsPosFormat. The data would then look like:

31 2627282930 012345678910111213141516171819202122232425

31 2627282930 012345678910111213141516171819202122232425

4 3 0 C 1 C 1 0Motor[].AbsPosFormat = $

Serial data A start at bit 16Serial data B start at bit 12

28 bits011 ($3) Gray Code

Shift data A left 4 bits

Motor[1].pAbsPos = ACC84B[0].Chan[0].SerialEncDataA.a

Motor[1].AbsPosSf = Motor[1].PosSf

Motor[1].AbsPosFormat = $430C1C10

Motor[1].HomeOffset = 0

Note

Encoders with multi-turn position data are typically set up as signed.

Note

Gray code conversion should be omitted here if it had been already

implemented in PowerBrick[].Chan[].SerialEncCmd.

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 120

Example 8: A 34-bit binary serial encoder (for example, Panasonic) with 16 bits of single-turn and 18 bits of

multi-turn position data in the following fields:

PowerBrick[].Chan[].SerialEncDataA

Single-Turn Position DataMulti-Turn Position Data

01234567891011121314151617181920212223

PowerBrick[].Chan[].SerialEncDataB

Multi-Turn Position Data

01234567891011121314151617181920212223

The automatic settings are not suitable for the discontinuity between the single-turn and multi-turn data.

We will assemble the absolute position word manually (in a background or initialization PLC), and hold the data

in two consecutive open memory registers to feed the automatic settings. Below is the example PLC for

performing this operation:

GLOBAL Enc1StData;

GLOBAL Enc1MtData;

GLOBAL Enc1Data;

#define Enc1AbsPos1 Sys.Udata[10]

#define Enc1AbsPos2 Sys.Udata[11]

OPEN PLC PanasonicAbsPosPLC

LOCAL Enc1MtDataA, Enc1MtDataB;

Enc1StData = (PowerBrick[0].Chan[0].SerialEncDataA & $00FFFF00) >> 8

Enc1MtDataA = (PowerBrick[0].Chan[0].SerialEncDataA & $FC000000) >> 26

Enc1MtDataB = (PowerBrick[0].Chan[0].SerialEncDataB & $000FFF00) >>8

Enc1MtData = Enc1MtDataA + Enc1MtDataB << 6

IF (Enc1MtData > EXP2(17)) // NEGATIVE?

{

 Enc1Data = (Enc1StData - EXP2(16)) + (Enc1MtData – EXP2(18)) << 16

}

ELSE // POSITIVE?

{

 Enc1Data = Enc1StData + Enc1MtData << 16

}

Enc1AbsPos1 = Enc1Data & $FFFFFFFF

Enc1AbsPos2 = (Enc1Data >> 32) & $3

DISABLE PLC PanasonicAbsPosPLC

CLOSE

The automatic settings can now be set up to read the absolute position at the first corresponding user defined

register:

0 1 0 0 1 E 0 0Motor[].AbsPosFormat = $

Sys.Udata[10] start at bit 0Sys.Udata[11] start at bit 0

34 bits01: signed binary

Motor[1].pAbsPos = Sys.Udata[10].a

Motor[1].AbsPosSf = Motor[1].PosSf

Motor[1].AbsPosFormat = $01001E00

Motor[1].HomeOffset = 0

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 121

Once the example code in the sample PLC is executed, an HMZ command can be issued for an absolute position

read.

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 122

XY2-100 Galvanometer Interface

For setup of XY2-100 Serial Link (also known as Serial Link 1 and XYZ-100), refer to the ACC-84E manual.

Power Brick AC ARM User Manual

Connections and Basic Settings – Encoder Connection (X1-X8) 123

Table Based Position Compare

For setup of Table Based Position Compare, refer to the ACC-84E manual.

Power Brick AC ARM User Manual

Connections and Basic Settings – Analog I/O (X9-X12) 124

Analog I/O (X9-X12)

The features described in this section are available if option O is non-zero.

P B - A 0 -A

O

0

Each of the analog I/O connectors (X9, X10, X11, and X12) provides:

 2 x 16-bit Analog Inputs

 2 x ~14-bit Analog Outputs

 2 x General Purpose Relays / Brakes

 2 x General Purpose Inputs / External Amp Faults

X9-X10: D-Sub DE-15 F

Mating: D-Sub DE-15 M

245 3

7 6910 8

12 111415 13

1

Pin # Symbol Function Description

1 AGND Ground Common Analog Ground

2 DAC1- Output Analog Output 1-

3 AE-NO1 Relay Normally Open GP Relay / Brake 1

4 ADC2+ Input Analog Input 2+

5 AE-COM2 Common GP Relay / Brake Common 2

6 ADC1- Input Analog Input 1-

7 DAC1+ Output Analog Output 1+

8 AMPFLT1 Input GP Input / Ext Amp Fault 1

9 DAC2- Output Analog Output 2-

10 AE-NO2 Relay Normally Open GP Relay / Brake 2

11 ADC1+ Input Analog Input 1+

12 AE-COM1 Common GP Relay / Brake Common 1

13 ADC2- Input Analog Input 2-

14 DAC2+ Output Analog Output 2+

15 AMPFLT2 Input GP / Amp Fault Input 2

Power Brick AC ARM User Manual

Connections and Basic Settings – Analog I/O (X9-X12) 125

Setting up the Analog (ADC) Inputs

The analog inputs accept ±5 V differential signals, or ±10 V single-ended signals.

 DIFFERENTIAL ANALOG INPUT SIGNAL SINGLE ENDED ANALOG INPUT SIGNAL

245 3

7 6910 8

12 111415 13

1

ADC1+

ADC1-

AGND

Note

For single-ended connections, tie the negative ADC pin to ground.

The ADC software data resides in the upper 16 bits of the 32-bit structure element

PowerBrick[].Chan[].AdcAmp[2]. The structure elements do not allow bit masking (of the upper 16 bits),

hence scaling (shifting) is required to obtain the raw ADC data. Using the explicit address registers makes bit

masking easier:

Channel/Connector Address Structure Element

ADC 1, X9 $900028 PowerBrick[0].Chan[0].AdcAmp[2]

ADC 2, X9 $9000A8 PowerBrick[0].Chan[1].AdcAmp[2]

ADC 1, X10 $900128 PowerBrick[0].Chan[2].AdcAmp[2]

ADC 2, X10 $9001A8 PowerBrick[0].Chan[3].AdcAmp[2]

Channel/Connector Address Structure Element

ADC 1, X11 $904028 PowerBrick[1].Chan[0].AdcAmp[2]

ADC 2, X11 $9040A8 PowerBrick[1].Chan[1].AdcAmp[2]

ADC 1, X12 $904128 PowerBrick[1].Chan[2].AdcAmp[2]

ADC 2, X12 $9041A8 PowerBrick[1].Chan[3].AdcAmp[2]

Note

The explicit address register(s) can be found by subtracting Sys.piom

from PowerBrick[].Chan[].AdcAmp[2].a

245 3

7 6910 8

12 111415 13

1

ADC1+

ADC1-

AGND

Power Brick AC ARM User Manual

Connections and Basic Settings – Analog I/O (X9-X12) 126

Note

The ADC input data must be in the “unpacked” format to be read properly;

use PowerBrick[].Chan[].PackInData = 0.

 RAW ADC DATA (BITS)

Sys.WpKey = $AAAAAAAA

PowerBrick[0].Chan[0].PackInData = 0

PowerBrick[0].Chan[1].PackInData = 0

PowerBrick[0].Chan[2].PackInData = 0

PowerBrick[0].Chan[3].PackInData = 0

PowerBrick[1].Chan[0].PackInData = 0

PowerBrick[1].Chan[1].PackInData = 0

PowerBrick[1].Chan[2].PackInData = 0

PowerBrick[1].Chan[3].PackInData = 0

PTR ADC1X9 ->S.IO:$900028.16.16

PTR ADC2X9 ->S.IO:$9000A8.16.16

PTR ADC1X10->S.IO:$900128.16.16

PTR ADC2X10->S.IO:$9001A8.16.16

PTR ADC1X11->S.IO:$904028.16.16

PTR ADC2X11->S.IO:$9040A8.16.16

PTR ADC1X12->S.IO:$904128.16.16

PTR ADC2X12->S.IO:$9041A8.16.16

// Disable Write-Protection

// Unpack Input Data, ADC1 X9

// Unpack Input Data, ADC2 X9

// Unpack Input Data, ADC1 X10

// Unpack Input Data, ADC2 X10

// Unpack Input Data, ADC1 X11

// Unpack Input Data, ADC2 X11

// Unpack Input Data, ADC1 X12

// Unpack Input Data, ADC2 X13

// ADC1 X9 [Counts]

// ADC2 X9 [Counts]

// ADC1 X10 [Counts]

// ADC2 X10 [Counts]

// ADC1 X11 [Counts]

// ADC2 X11 [Counts]

// ADC1 X12 [Counts]

// ADC2 X12 [Counts]

The analog inputs have 16 bits of resolution (65,536 software counts) spanning over the full range of the input

voltage. Wiring ±10 V voltage in single-ended, or ±5 V in differential mode produces the following counts in

software:

Single-Ended [VDC] Differential [VDC] Software Counts

-10 -5 -32768

0 0 0

10 5 +32768

 SCALING THE ANALOG INPUT DATA

For general purpose usage, the ADC data (reported in bits) can be easily scaled and converted into “user” voltage

or units (e.g. force, height). In the example PLC below:

 The global parameter ADCnXxxZeroOffset represents the voltage offset with a zero volt input. This

is user adjustable.

 The pointer ADCnXxx reports the raw ADC data in software counts, units of 16-bit (±32768).

 The global parameter ADCnXxxVolts reports the ADC data in “user” volts.

Where n is the ADC channel number (1 or 2) of the corresponding xx connector (X9, X10, X11, or X12).

Power Brick AC ARM User Manual

Connections and Basic Settings – Analog I/O (X9-X12) 127

GLOBAL ADC1X9Volts = 0

GLOBAL ADC2X9Volts = 0

GLOBAL ADC1X10Volts = 0

GLOBAL ADC2X10Volts = 0

GLOBAL ADC1X11Volts = 0

GLOBAL ADC2X11Volts = 0

GLOBAL ADC1X12Volts = 0

GLOBAL ADC2X12Volts = 0

GLOBAL ADC1X9ZeroOffset = 0.038

GLOBAL ADC2X9ZeroOffset = 0.038

GLOBAL ADC1X10ZeroOffset = 0.038

GLOBAL ADC2X10ZeroOffset = 0.038

GLOBAL ADC1X11ZeroOffset = 0.038

GLOBAL ADC2X11ZeroOffset = 0.038

GLOBAL ADC1X12ZeroOffset = 0.038

GLOBAL ADC2X12ZeroOffset = 0.038

// Voltage input, ADC1 X9 [volt]

// Voltage input, ADC2 X9 [volt]

// Voltage input, ADC1 X10 [volt]

// Voltage input, ADC2 X10 [volt]

// Voltage input, ADC1 X11 [volt]

// Voltage input, ADC2 X11 [volt]

// Voltage input, ADC1 X12 [volt]

// Voltage input, ADC2 X12 [volt]

// Zero Volt Offset, ADC1 X9 [volt] --USER ADJUSTABLE

// Zero Volt Offset, ADC2 X9 [volt] --USER ADJUSTABLE

// Zero Volt Offset, ADC1 X10 [volt] --USER ADJUSTABLE

// Zero Volt Offset, ADC2 X10 [volt] --USER ADJUSTABLE

// Zero Volt Offset, ADC1 X11 [volt] --USER ADJUSTABLE

// Zero Volt Offset, ADC2 X11 [volt] --USER ADJUSTABLE

// Zero Volt Offset, ADC1 X12 [volt] --USER ADJUSTABLE

// Zero Volt Offset, ADC2 X12 [volt] --USER ADJUSTABLE

OPEN PLC ExamplePLC

ADC1X9Volts = (ADC1X9 * 10 / 32768) - ADC1X9ZeroOffset

ADC2X9Volts = (ADC2X9 * 10 / 32768) - ADC2X9ZeroOffset

ADC1X10Volts = (ADC1X10 * 10 / 32768) - ADC1X10ZeroOffset

ADC2X10Volts = (ADC2X10 * 10 / 32768) - ADC2X10ZeroOffset

ADC1X11Volts = (ADC1X11 * 10 / 32768) - ADC1X11ZeroOffset

ADC2X11Volts = (ADC2X11 * 10 / 32768) - ADC2X11ZeroOffset

ADC1X12Volts = (ADC1X12 * 10 / 32768) - ADC1X12ZeroOffset

ADC2X12Volts = (ADC2X12 * 10 / 32768) - ADC2X12ZeroOffset

CLOSE

// ADC1, X9 [volts]

// ADC2, X9 [volts]

// ADC1, X10 [volts]

// ADC2, X10 [volts]

// ADC1, X11 [volts]

// ADC2, X11 [volts]

// ADC1, X12 [volts]

// ADC2, X12 [volts]

 USING THE ADC FOR SERVO FEEDBACK

Using the ADC data for servo feedback requires bringing it into the Encoder Conversion Table (ECT) into which

the motor’s position and velocity elements are assigned to.

 EXAMPLE:

EncTable[9].Type = 1

EncTable[9].pEnc = PowerBrick[0].Chan[0].AdcAmp[2].a

EncTable[9].pEnc1 = Sys.pushm

EncTable[9].index1 = 16

EncTable[9].index2 = 16

EncTable[9].index3 = 0

EncTable[9].index4 = 0

EncTable[9].index5 = 0

EncTable[9].ScaleFactor = 1 / EXP2(16)

Motor[9].ServoCtrl = 1

Motor[9].pEnc = EncTable[9].a

Motor[9].pEnc2 = EncTable[9].a

Power Brick AC ARM User Manual

Connections and Basic Settings – Analog I/O (X9-X12) 128

Setting up the Analog (DAC) Outputs

The analog outputs provide ±10 V signals interfacing to either differential or single-ended devices.

Differential DAC Output Signal Single Ended DAC Output Signal

The analog output circuitry is filtered PWM optimized (in hardware) for a cut off frequency of about 15 kHz.

The recommended PWM frequency of 10 kHz in the Power Brick AC should be enough for general purpose

usage.

Note

These analog outputs are synthesized filtered PWM. They are designed

for general purpose use; they are not industrially graded for servo use.

True DAC outputs are typically used in servo applications.

The analog output command data resides in the upper 16 bits of the 32-bit structure element

PowerBrick[].Chan[].Pwm[3]. The structure elements do not allow bit masking (of the upper 16 bits), hence

scaling (shifting) is required to write to the outputs properly. Using the explicit address registers makes it easier

for bit masking:

Channel/Connector Address Channel/Connector Address

Channel 1, X9 $90004C Channel 1, X11 $90404C

Channel 2, X9 $9000CC Channel 2, X11 $9040CC

Channel 1, X10 $90014C Channel 1, X12 $90414C

Channel 2, X10 $9001CC Channel 2, X12 $9041CC

Note

The explicit address register(s) can be found by subtracting Sys.piom

from PowerBrick[].Chan[].Pwm[3].a

Note

Writing directly into PowerBrick[].Chan[].Pwm[3] register to produce

voltage output requires shifting left by 16 bits (or multiplying by 65536).

2
4

5
3

7
6

9
1

0
8

1
2

1
1

1
4

1
5

1
3

1

DAC1+

DAC1-

AGND

Analog
Device

2
4

5
3

7
6

9
1

0
8

1
2

1
1

1
4

1
5

1
3

1

DAC1+

AGND

Analog
Device

Power Brick AC ARM User Manual

Connections and Basic Settings – Analog I/O (X9-X12) 129

Note

The command output data must be in the “unpacked” format;

PowerBrick[].Chan[].PackOutData = 0.

Note

This output comes out of phase D. It must be set for PWM. Therefore, bit

#3 of PowerBrick[].Chan[].OutputMode must be set to 0 (default).

 COMMAND REGISTER POINTERS

Sys.WpKey = $AAAAAAAA

PowerBrick[0].Chan[0].PackOutData = 0

PowerBrick[0].Chan[1].PackOutData = 0

PowerBrick[0].Chan[2].PackOutData = 0

PowerBrick[0].Chan[3].PackOutData = 0

PowerBrick[1].Chan[0].PackOutData = 0

PowerBrick[1].Chan[1].PackOutData = 0

PowerBrick[1].Chan[2].PackOutData = 0

PowerBrick[1].Chan[3].PackOutData = 0

PTR DAC1X9-> S.IO:$90004C.16.16

PTR DAC2X9-> S.IO:$9000CC.16.16

PTR DAC1X10->S.IO:$90014C.16.16

PTR DAC2X10->S.IO:$9001CC.16.16

PTR DAC1X11->S.IO:$90404C.16.16

PTR DAC2X11->S.IO:$9040CC.16.16

PTR DAC1X12->S.IO:$90414C.16.16

PTR DAC2X12->S.IO:$9041CC.16.16

// Disable Write-Protection

// DAC1, X9, Unpack Output Data

// DAC2, X9, Unpack Output Data

// DAC1, X10, Unpack Output Data

// DAC2, X10, Unpack Output Data

// DAC1, X11, Unpack Output Data

// DAC2, X11, Unpack Output Data

// DAC1, X12, Unpack Output Data

// DAC2, X12, Unpack Output Data

// DAC Channel 1, X9 [Counts]

// DAC Channel 2, X9 [Counts]

// DAC Channel 1, X10 [Counts]

// DAC Channel 2, X10 [Counts]

// DAC Channel 1, X11 [Counts]

// DAC Channel 2, X11 [Counts]

// DAC Channel 1, X12 [Counts]

// DAC Channel 2, X12 [Counts]

The effective resolution of the analog output circuitry is about ~13.5 bits (±13380 software counts) spanning over

the full output range of ±10V (saturates at about ~10.5 Volts). Writing to the user defined DACnXxxInBits

pointer produces the following voltage output:

DACnXxxInBits Single Ended [VDC] Differential [VDC]

-13380 -10 -20

0 0 0

13380 +10 +20

Note

The output voltage is measured between AGND and DAC+ in single-

ended mode. And between DAC- and DAC+ in differential mode.

Power Brick AC ARM User Manual

Connections and Basic Settings – Analog I/O (X9-X12) 130

 SCALED DAC OUTPUT (IN VOLTS)

The outputs can be scaled and converted into “user” voltage units. The following example PLC scales the data

as needed to allow the user to command the output in units of volts:

 The global parameter(s) DACnXxxZeroOffset represents the voltage offset (as seen on a digital multi-

meter or scope) when an output of zero is commanded. This is user adjustable.

 The global parameter DACnXxxCtPerVolt acts a software adjustment pot which the user can calibrate

for at the rails (±10 VDC) of the output.

 The global parameter DACnXxxVolts is the output command in volts

Where n is the DAC channel number (1 or 2) of the corresponding xx connector (X9, X10, X11, or X12).

Example

GLOBAL DAC1X9Volts = 0

GLOBAL DAC2X9Volts = 0

GLOBAL DAC1X10Volts = 0

GLOBAL DAC2X10Volts = 0

GLOBAL DAC1X11Volts = 0

GLOBAL DAC2X11Volts = 0

GLOBAL DAC1X12Volts = 0

GLOBAL DAC2X12Volts = 0

GLOBAL DAC1X9ZeroOffset = 0.05

GLOBAL DAC2X9ZeroOffset = 0.05

GLOBAL DAC1X10ZeroOffset = 0.05

GLOBAL DAC2X10ZeroOffset = 0.05

GLOBAL DAC1X11ZeroOffset = 0.05

GLOBAL DAC2X11ZeroOffset = 0.05

GLOBAL DAC1X12ZeroOffset = 0.05

GLOBAL DAC2X12ZeroOffset = 0.05

GLOBAL DAC1X9CtPerVolt = 1338

GLOBAL DAC2X9CtPerVolt = 1338

GLOBAL DAC1X10CtPerVolt = 1338

GLOBAL DAC2X10CtPerVolt = 1338

GLOBAL DAC1X11CtPerVolt = 1338

GLOBAL DAC2X11CtPerVolt = 1338

GLOBAL DAC1X12CtPerVolt = 1338

GLOBAL DAC2X12CtPerVolt = 1338

// DAC Channel 1, X9 [volts]

// DAC Channel 2, X9 [volts]

// DAC Channel 1, X10 [volts]

// DAC Channel 2, X10 [volts]

// DAC Channel 1, X11 [volts]

// DAC Channel 2, X11 [volts]

// DAC Channel 1, X12 [volts]

// DAC Channel 2, X12 [volts]

// DAC1 X9, Zero Volt offset [volts] --USER ADJUSTABLE

// DAC2 X9, Zero Volt offset [volts] --USER ADJUSTABLE

// DAC1 X10, Zero Volt offset [volts] --USER ADJUSTABLE

// DAC2 X10, Zero Volt offset [volts] --USER ADJUSTABLE

// DAC1 X11, Zero Volt offset [volts] --USER ADJUSTABLE

// DAC2 X11, Zero Volt offset [volts] --USER ADJUSTABLE

// DAC1 X12, Zero Volt offset [volts] --USER ADJUSTABLE

// DAC2 X12, Zero Volt offset [volts] --USER ADJUSTABLE

// DAC1 X9, Scale Factor Counts/Volt --USER ADJUSTABLE

// DAC2 X9, Scale Factor Counts/Volt --USER ADJUSTABLE

// DAC1 X10, Scale Factor Counts/Volt --USER ADJUSTABLE

// DAC2 X10, Scale Factor Counts/Volt --USER ADJUSTABLE

// DAC1 X11, Scale Factor Counts/Volt --USER ADJUSTABLE

// DAC2 X11, Scale Factor Counts/Volt --USER ADJUSTABLE

// DAC1 X12, Scale Factor Counts/Volt --USER ADJUSTABLE

// DAC2 X12, Scale Factor Counts/Volt --USER ADJUSTABLE

OPEN PLC ExamplePLC

DAC1X9 = (DAC1X9Volts - DAC1X9ZeroOffset) * ABS(DAC1X9CtPerVolt)

DAC2X9 = (DAC2X9Volts - DAC2X9ZeroOffset) * ABS(DAC2X9CtPerVolt)

DAC1X10 = (DAC1X100Volts - DAC1X10ZeroOffset) * ABS(DAC1X10CtPerVolt)

DAC2X10 = (DAC2X100Volts - DAC2X10ZeroOffset) * ABS(DAC2X10CtPerVolt)

DAC1X11 = (DAC1X111Volts - DAC1X11ZeroOffset) * ABS(DAC1X11CtPerVolt)

DAC2X11 = (DAC2X111Volts - DAC2X11ZeroOffset) * ABS(DAC2X11CtPerVolt)

DAC1X12 = (DAC1X122Volts - DAC1X12ZeroOffset) * ABS(DAC1X12CtPerVolt)

DAC2X12 = (DAC2X122Volts - DAC2X12ZeroOffset) * ABS(DAC2X12CtPerVolt)

CLOSE

Note

Using this example code, the user can command the output by writing to

DACnXxxVolts in units of volts.

Power Brick AC ARM User Manual

Connections and Basic Settings – Analog I/O (X9-X12) 131

Setting up the General Purpose Relay

This normally open relay can be used as a general purpose relay, motor brake control, or external amplifier enable

signal. It is operated by the structure element bit PowerBrick[].Chan[].OutFlagC.

Channel

Connector
Structure element bit

Channel

Connector
Structure element bit

Relay 1, X9 PowerBrick[0].Chan[0].OutFlagC Relay 1, X9 PowerBrick[1].Chan[0].OutFlagC

Relay 2, X9 PowerBrick[0].Chan[1].OutFlagC Relay 2, X9 PowerBrick[1].Chan[1].OutFlagC

Relay 1, X10 PowerBrick[0].Chan[2].OutFlagC Relay 1, X10 PowerBrick[1].Chan[2].OutFlagC

Relay 2, X10 PowerBrick[0].Chan[3].OutFlagC Relay 2, X10 PowerBrick[1].Chan[3].OutFlagC

If PowerBrick[].Chan[].OutFlagC = 0, the circuit between the common pin and the Relay pin is open.

If PowerBrick[].Chan[].OutFlagC = 1, the circuit between the common pin and the Relay pin is closed.

Structure Element Bit
Connection between

Pin #3 and Pin #12

Connection between

Pin #10 and Pin #5

PowerBrick[].Chan[].OutFlagC = 0 Open Open

PowerBrick[].Chan[].OutFlagC = 1 Closed Closed

The relay can be wired so that the current is either sourcing from or sinking into the Power Brick AC.

SOURCING SINKING

Caution

Do not pass through current more than 2A. In sourcing mode, do NOT

pass through voltage higher than 24VDC.

2
4

5
3

7
6

9
1

0
8

1
2

1
1

1
4

1
5

1
3

1

Logic Device
/ Brake+24V

RET

Power Supply

+24V COM

Rly COM1

NO Rly1

2
4

5
3

7
6

9
10

8

12
11

14
15

13

1

Logic Device
/ BrakeRET

+24V

Power Supply

COM +24V

Rly COM1

NO Rly1

Power Brick AC ARM User Manual

Connections and Basic Settings – Analog I/O (X9-X12) 132

Note

The commons of the general purpose inputs / amp faults (pins #8, and

#15) are tied internally to relay commons 1 and 2 respectively. If the relay

is wired in sourcing mode, that general purpose input cannot be used.

The structure element bits can be assigned to user defined pointers:

PTR GPRelay1X9->PowerBrick[0].Chan[0].OutFlagC

PTR GPRelay2X9->PowerBrick[0].Chan[1].OutFlagC

PTR GPRelay1X10->PowerBrick[0].Chan[2].OutFlagC

PTR GPRelay2X10->PowerBrick[0].Chan[3].OutFlagC

PTR GPRelay1X11->PowerBrick[1].Chan[0].OutFlagC

PTR GPRelay2X11->PowerBrick[1].Chan[1].OutFlagC

PTR GPRelay1X12->PowerBrick[1].Chan[2].OutFlagC

PTR GPRelay2X12->PowerBrick[1].Chan[3].OutFlagC

// GP Relay 1, X9 =0 Open, =1 Closed

// GP Relay 2, X9 =0 Open, =1 Closed

// GP Relay 1, X10 =0 Open, =1 Closed

// GP Relay 2, X10 =0 Open, =1 Closed

// GP Relay 1, X11 =0 Open, =1 Closed

// GP Relay 2, X11 =0 Open, =1 Closed

// GP Relay 1, X12 =0 Open, =1 Closed

// GP Relay 2, X12 =0 Open, =1 Closed

If used for motor brake control (or external amplifier enable), the following settings are necessary to ensure

proper synchronization with the motor channel enable/disable functions:

 EXAMPLE

Motor[1].pBrakeOut = PowerBrick[0].Chan[0].OutFlagC.a

Motor[1].BrakeOffDelay = 5

Motor[1].BrakeOnDelay = 5

Motor[1].BrakeOutBit = 10

//

// msec, Brake Off Delay --USER INPUT

// msec, Brake On Delay --USER INPUT

//

Power Brick AC ARM User Manual

Connections and Basic Settings – Analog I/O (X9-X12) 133

Setting up the GP Input

This input provides a general purpose input coming from an external device (e.g. amplifier fault). It is a single-

ended optically isolated input. Although 5 V is intended, a minimum voltage of only 3.5 V is required to

receive the signal.

Note

The commons of the general purpose inputs / amp faults (pins #8 and #15)

are tied internally to relay commons 1 and 2 respectively (pins #5 and

#12). If the relay is wired in sourcing mode, creating voltage potential at

the common, this GP input cannot be used.

The structure element bit reflecting the status of this input is PowerBrick[].Chan[].T. It is a low true input,

meaning it is =1 when 0 V is connected and =0 when +5 V is connected.

PTR GpIn1X9->PowerBrick[0].Chan[0].T

PTR GpIn2X9->PowerBrick[0].Chan[1].T

PTR GpIn1X10->PowerBrick[0].Chan[2].T

PTR GpIn2X10->PowerBrick[0].Chan[3].T

PTR GpIn1X11->PowerBrick[1].Chan[0].T

PTR GpIn2X11->PowerBrick[1].Chan[1].T

PTR GpIn1X12->PowerBrick[1].Chan[2].T

PTR GpIn2X12->PowerBrick[1].Chan[3].T

// Channel 1, X9 Input

// Channel 2, X9 Input

// Channel 1, X10 Input

// Channel 2, X10 Input

// Channel 1, X11 Input

// Channel 2, X11 Input

// Channel 1, X12 Input

// Channel 2, X12 Input

2
4

5
3

7
6

9
1

0
8

1
2

1
1

1
4

1
5

1
3

1
Power Supply

COM

Input
Switch 1

Input
Switch 2

+5V

Power Brick AC ARM User Manual

Connections and Basic Settings – Limits, Flags, and EQU (X13-X14) 134

Limits, Flags, and EQU (X13-X14)

X13 is used to wire the limits, flags, and EQU for axes 1 – 4.

X14 is used to wire the limits, flags, and EQU for axes 5 – 8.

Per channel, there are 2 limit inputs (Plus and Minus), 2 flag inputs (Home and User), and 1 EQU output. The

limits and flags are auto-regulating in the 5 – 24 VDC range. The current draw for each input is about 6 – 10 mA

in the 5 – 24 VDC range. The EQU output is 5 VDC TTL level and its rise time is on the order of nanoseconds.

X13/X14: D-sub DB-25F

Mating: D-sub DB-25M

12345678910111213

141516171819202122232425

Pin # Symbol Function Description

1 USER1/5 Input User Flag 1/5

2 MLIM1/5 Input Negative Limit 1/5

3 FL_RT1/5 Input Flag Return 1/5

4 USER2/6 Input User Flag 2/6

5 MLIM26 Input Negative Limit 2/6

6 FL_RT2/6 Input Flag Return 2/6

7 USER3/7 Input User Flag 3/7

8 MLIM3/7 Input Negative Limit 3/7

9 FL_RT3/7 Input Flag Return 3/7

10 USER4/8 Input User Flag 4/8

11 MLIM4/8 Input Negative Limit 4/8

12 FL_RT4/8 Input Flag Return 4/8

13 GND Common

14 PLIM1/5 Input Positive Limit 1/5

15 HOME1/5 Input Home Flag 1/5

16 EQU1/5 Output Compare Output, EQU 1/5 TTL (5V) level

17 PLIM2/6 Input Positive Limit 2/6

18 HOME2/6 Input Home Flag 2/6

19 EQU2/6 Output Compare Output, EQU 2/6 TTL (5V) level

20 PLIM3/7 Input Positive Limit 3/7

21 HOME3/7 Input Home Flag 3/7

22 EQU3/7 Output Compare Output, EQU 3/7 TTL (5V) level

23 PLIM4/8 Input Positive Limit 4/8

24 HOME4/8 Input Home Flag 4/8

25 EQU4/8 Output Compare Output, EQU 4/8 TTL (5V) level

Power Brick AC ARM User Manual

Connections and Basic Settings – Limits, Flags, and EQU (X13-X14) 135

Wiring the Limits and Flags

The Power Brick allows the use of sinking or sourcing limits and flags (per channel). The current flow can be

from return to flag (sinking) or from flag to return (sourcing).

The overtravel limits must be normally closed switches. They can be disabled in software by setting

Motor[].pLimits = 0 but their polarity is not software configurable.

SOURCING LIMITS AND FLAGS SINKING LIMITS AND FLAGS

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

5 - 24 VDC
Power supply

USER 1/5

NC POS. LIMIT 1/5

NC NEG. LIMIT 1/5

HOME 1/5

USER 2/6

NC POS. LIMIT 2/6

NC NEG. LIMIT 2/6

HOME 2/6

USER 3/7

NC POS. LIMIT 3/7

NC NEG. LIMIT 3/7

HOME 3/7

USER 4/8

NC POS. LIMIT 4/8

NC NEG. LIMIT 4/8

HOME 4/8

EQU 1/5

EQU 2/6

EQU 3/7

EQU 4/8

C
O

M

+
5

V
D

C
 /

+

2
4

V
D

C

FLAG RETURN 1/5

FLAG RETURN 2/6

FLAG RETURN 3/7

FLAG RETURN 4/8

Note

The overtravel limits must be normally closed switches. They can be

disabled in software, but their polarity is not configurable.

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

5 - 24 VDC
Power supply

USER 1/5

NC POS. LIMIT 1/5

NC NEG. LIMIT 1/5

HOME 1/5

USER 2/6

NC POS. LIMIT 2/6

NC NEG. LIMIT 2/6

HOME 2/6

USER 3/7

NC POS. LIMIT 3/7

NC NEG. LIMIT 3/7

HOME 3/7

USER 4/8

NC POS. LIMIT 4/8

NC NEG. LIMIT 4/8

HOME 4/8

EQU 1/5

EQU 2/6

EQU 3/7

EQU 4/8

C
O

M

+
5

V
D

C
 /

+

2
4

V
D

C

FLAG RETURN 1/5

FLAG RETURN 2/6

FLAG RETURN 3/7

FLAG RETURN 4/8

Power Brick AC ARM User Manual

Connections and Basic Settings – Limits, Flags, and EQU (X13-X14) 136

Limits and Flags Suggested Pointers

Typically, and if the corresponding channel is activated

(Motor[].ServoCtrl = 1), the overtravel limits are

monitored in the motor status window in the IDE software

and the motor structure elements (i.e.

Motor[].PlusLimit) are used in logic programming.

However, if the channel is not activated, the overtravel

limit inputs can be accessed through the ASIC structure

elements shown below.

The User / Home flags, and EQU output are a function of

the ASIC; they can always be accessed through the ASIC

structure elements.

 CHANNELS 1 – 4 LIMITS AND FLAGS SUGGESTED POINTERS (X13)

PTR Ch1PlusLimit->PowerBrick[0].Chan[0].PlusLimit

PTR Ch1MinusLimit->PowerBrick[0].Chan[0].MinusLimit

PTR Ch1UserFlag->PowerBrick[0].Chan[0].UserFlag

PTR Ch1HomeFlag->PowerBrick[0].Chan[0].HomeFlag

PTR Ch1EQU->PowerBrick[0].Chan[0].Equ

PTR Ch2PlusLimit->PowerBrick[0].Chan[1].PlusLimit

PTR Ch2MinusLimit->PowerBrick[0].Chan[1].MinusLimit

PTR Ch2UserFlag->PowerBrick[0].Chan[1].UserFlag

PTR Ch2HomeFlag->PowerBrick[0].Chan[1].HomeFlag

PTR Ch2EQU->PowerBrick[0].Chan[1].Equ

PTR Ch3PlusLimit->PowerBrick[0].Chan[2].PlusLimit

PTR Ch3MinusLimit->PowerBrick[0].Chan[2].MinusLimit

PTR Ch3UserFlag->PowerBrick[0].Chan[2].UserFlag

PTR Ch3HomeFlag->PowerBrick[0].Chan[2].HomeFlag

PTR Ch3EQU->PowerBrick[0].Chan[2].Equ

PTR Ch4PlusLimit->PowerBrick[0].Chan[3].PlusLimit

PTR Ch4MinusLimit->PowerBrick[0].Chan[3].MinusLimit

PTR Ch4UserFlag->PowerBrick[0].Chan[3].UserFlag

PTR Ch4HomeFlag->PowerBrick[0].Chan[3].HomeFlag

PTR Ch4EQU->PowerBrick[0].Chan[3].Equ

// Channel 1 Positive Limit

// Channel 1 Negative Limit

// Channel 1 User Flag

// Channel 1 Home Flag

// Channel 1 EQU

// Channel 2 Positive Limit

// Channel 2 Negative Limit

// Channel 2 User Flag

// Channel 2 Home Flag

// Channel 2 EQU

// Channel 3 Positive Limit

// Channel 3 Negative Limit

// Channel 3 User Flag

// Channel 3 Home Flag

// Channel 3 EQU

// Channel 4 Positive Limit

// Channel 4 Negative Limit

// Channel 4 User Flag

// Channel 4 Home Flag

// Channel 4 EQU

Power Brick AC ARM User Manual

Connections and Basic Settings – Limits, Flags, and EQU (X13-X14) 137

 CHANNELS 5 – 8 LIMITS AND FLAGS SUGGESTED POINTERS (X14)

PTR Ch5PlusLimit->PowerBrick[1].Chan[0].PlusLimit

PTR Ch5MinusLimit->PowerBrick[1].Chan[0].MinusLimit

PTR Ch5UserFlag->PowerBrick[1].Chan[0].UserFlag

PTR Ch5HomeFlag->PowerBrick[1].Chan[0].HomeFlag

PTR Ch5EQU->PowerBrick[1].Chan[0].Equ

PTR Ch6PlusLimit->PowerBrick[1].Chan[1].PlusLimit

PTR Ch6MinusLimit->PowerBrick[1].Chan[1].MinusLimit

PTR Ch6UserFlag->PowerBrick[1].Chan[1].UserFlag

PTR Ch6HomeFlag->PowerBrick[1].Chan[1].HomeFlag

PTR Ch6EQU->PowerBrick[1].Chan[1].Equ

PTR Ch7PlusLimit->PowerBrick[1].Chan[2].PlusLimit

PTR Ch7MinusLimit->PowerBrick[1].Chan[2].MinusLimit

PTR Ch7UserFlag->PowerBrick[1].Chan[2].UserFlag

PTR Ch7HomeFlag->PowerBrick[1].Chan[2].HomeFlag

PTR Ch7EQU->PowerBrick[1].Chan[2].Equ

PTR Ch8PlusLimit->PowerBrick[1].Chan[3].PlusLimit

PTR Ch8MinusLimit->PowerBrick[1].Chan[3].MinusLimit

PTR Ch8UserFlag->PowerBrick[1].Chan[3].UserFlag

PTR Ch8HomeFlag->PowerBrick[1].Chan[3].HomeFlag

PTR Ch8EQU->PowerBrick[1].Chan[3].Equ

// Channel 5 Positive Limit

// Channel 5 Negative Limit

// Channel 5 User Flag

// Channel 5 Home Flag

// Channel 5 EQU

// Channel 6 Positive Limit

// Channel 6 Negative Limit

// Channel 6 User Flag

// Channel 6 Home Flag

// Channel 6 EQU

// Channel 7 Positive Limit

// Channel 7 Negative Limit

// Channel 7 User Flag

// Channel 7 Home Flag

// Channel 7 EQU

// Channel 8 Positive Limit

// Channel 8 Negative Limit

// Channel 8 User Flag

// Channel 8 Home Flag

// Channel 8 EQU

Power Brick AC ARM User Manual

Connections and Basic Settings – Digital I/O (X15-X16) 138

Digital I/O (X15-X16)

X15 is used to wire the general purpose digital I/Os (16 inputs and 8 outputs).

X15: D-sub DC-37F

Mating: D-sub DC-37M

Pin # Symbol Function Description

1 GPI1 Input Input 1

2 GPI3 Input Input 3

3 GPI5 Input Input 5

4 GPI7 Input Input 7

5 GPI9 Input Input 9

6 GPI11 Input Input 11

7 GPI13 Input Input 13

8 GPI15 Input Input 15

9 IN_COM1-8 Common 01-08 Input 01 to 08 Common

10 OUT_RET Return Outputs Return

11 COM_EMT Common Outputs Common

12 GP01- Output Sourcing Output 1

13 GP02- Output Sourcing Output 2

14 GP03- Output Sourcing Output 3

15 GP04- Output Sourcing Output 4

16 GP05- Output Sourcing Output 5

17 GP06- Output Sourcing Output 6

18 GP07- Output Sourcing Output 7

19 GP08- Output Sourcing Output 8

20 GPI2 Input Input 2

21 GPI4 Input Input 4

22 GPI6 Input Input 6

23 GPI8 Input Input 8

24 GPI10 Input Input 10

25 GPI12 Input Input 12

26 GPI14 Input Input 14

27 GPI16 Input Input 16

28 IN_COM9-16 Common 09-16 Input 09 to 16 Common

29 COM_COL Common Outputs Common

30 GP01+ Output Sinking Output 1

31 GP02+ Output Sinking Output 2

32 GP03+ Output Sinking Output 3

33 GP04+ Output Sinking Output 4

34 GP05+ Output Sinking Output 5

35 GP06+ Output Sinking Output 6

36 GP07+ Output Sinking Output 7

37 GP08+ Output Sinking Output 8

12345678910111213

202122232425262728293031

141516171819

323334353637

Power Brick AC ARM User Manual

Connections and Basic Settings – Digital I/O (X15-X16) 139

X16 is used to wire the additional general purpose digital I/Os (16 inputs, and 8 outputs).

X16: D-sub DC-37F

Mating: D-sub DC-37M

Pin # Symbol Function Description

1 GPI17 Input Input 17

2 GPI19 Input Input 19

3 GPI21 Input Input 21

4 GPI23 Input Input 23

5 GPI25 Input Input 25

6 GPI27 Input Input 27

7 GPI29 Input Input 29

8 GPI31 Input Input 31

9 IN_COM 17-24 Common 17 – 24 Input 17 to 24 Common

10 OUT_RET Return Outputs Return

11 COM_EMT Common Outputs Common

12 GPO9- Output Sourcing Output 9

13 GPO10- Output Sourcing Output 10

14 GPO11- Output Sourcing Output 11

15 GPO12- Output Sourcing Output 12

16 GPO13- Output Sourcing Output 13

17 GPO14- Output Sourcing Output 14

18 GPO15- Output Sourcing Output 15

19 GPO16- Output Sourcing Output 16

20 GPI18 Input Input 18

21 GPI20 Input Input 20

22 GPI22 Input Input 22

23 GPI24 Input Input 24

24 GPI26 Input Input 26

25 GPI28 Input Input 28

26 GPI30 Input Input 30

27 GPI32 Input Input 32

28 IN_COM_25-32 Common 25 – 32 Input 25 to 32 Common

29 COM_COL Common Outputs Common

30 GPO9+ Output Sinking Output 9

31 GPO10+ Output Sinking Output 10

32 GPO11+ Output Sinking Output 11

33 GPO12+ Output Sinking Output 12

34 GPO13+ Output Sinking Output 13

35 GPO14+ Output Sinking Output 14

36 GPO15+ Output Sinking Output 15

37 GPO16+ Output Sinking Output 16

12345678910111213

202122232425262728293031

141516171819

323334353637

Power Brick AC ARM User Manual

Connections and Basic Settings – Digital I/O (X15-X16) 140

About the Digital Inputs and Outputs

All general purpose inputs and outputs are optically isolated. They operate in the 12 – 24 VDC range, and can be

wired to be either sinking into or sourcing out of the Power Brick.

Inputs

The inputs use the PS2705-1NEC photocoupler.

For sourcing inputs, connect the common lines to 12 – 24 VDC of an external power supply. The input devices

are then connected to the 0V of the power supply at one end, and to the Power Brick at the other.

For sinking inputs, connect the common lines to 0V of an external power supply. The input devices are then

connected to 12 – 24V of an external power supply at one end, and to the Power Brick at the other.

Note

The inputs can be wired either sourcing or sinking in sets of eight; each

set possesses its own common.

Outputs

The outputs use the PS2701-1NEC photocoupler. They are protected with a ZXMS6006DG; an enhancement

mode MOSFET - diode incorporated. The protection involves over-voltage, over-current, I2T and short circuit.

For sourcing outputs, connect the common lines to 12 – 24 VDC of an external power supply. The output devices

are then connected to 0V of the power supply at one end, and to the Power Brick at the other.

For sinking outputs, connect the common lines to 0 VDC of an external power supply. The output devices are

then connected to the 12 – 24V of the power supply at one end, and to the Power Brick at the other.

Note

Do not mix topologies for outputs. They are all either sinking or sourcing

per connector (X16 / X17).

http://pdf1.alldatasheet.com/datasheet-pdf/view/6468/NEC/PS2705-1.html
http://pdf1.alldatasheet.com/datasheet-pdf/view/6465/NEC/PS2701-1.html
http://www.alldatasheet.com/datasheet-pdf/pdf/402961/DIODES/ZXMS6006DG.html

Power Brick AC ARM User Manual

Connections and Basic Settings – Digital I/O (X15-X16) 141

Wiring the Digital Inputs and Outputs

 SOURCING INPUTS / OUTPUTS SINKING INPUTS / OUTPUTS

Note

To use outputs as PNP, wire for sourcing. To use ouputs as NPN, wire

for sinking.

Power Brick AC ARM User Manual

Connections and Basic Settings – Digital I/O (X15-X16) 142

Digital I/O Pointers

// X15 INPUTS

PTR Input1->PowerBrick[0].GpioData[0].0.1

PTR Input2->PowerBrick[0].GpioData[0].1.1

PTR Input3->PowerBrick[0].GpioData[0].2.1

PTR Input4->PowerBrick[0].GpioData[0].3.1

PTR Input5->PowerBrick[0].GpioData[0].4.1

PTR Input6->PowerBrick[0].GpioData[0].5.1

PTR Input7->PowerBrick[0].GpioData[0].6.1

PTR Input8->PowerBrick[0].GpioData[0].7.1

PTR Input9->PowerBrick[0].GpioData[0].8.1

PTR Input10->PowerBrick[0].GpioData[0].9.1

PTR Input11->PowerBrick[0].GpioData[0].10.1

PTR Input12->PowerBrick[0].GpioData[0].11.1

PTR Input13->PowerBrick[0].GpioData[0].12.1

PTR Input14->PowerBrick[0].GpioData[0].13.1

PTR Input15->PowerBrick[0].GpioData[0].14.1

PTR Input16->PowerBrick[0].GpioData[0].15.1

// X15 OUTPUTS

PTR Output1->PowerBrick[0].GpioData[0].16.1

PTR Output2->PowerBrick[0].GpioData[0].17.1

PTR Output3->PowerBrick[0].GpioData[0].18.1

PTR Output4->PowerBrick[0].GpioData[0].19.1

PTR Output5->PowerBrick[0].GpioData[0].20.1

PTR Output6->PowerBrick[0].GpioData[0].21.1

PTR Output7->PowerBrick[0].GpioData[0].22.1

PTR Output8->PowerBrick[0].GpioData[0].23.1

// Input #1, X15 Pin#1

// Input #2, X15 Pin#20

// Input #3, X15 Pin#2

// Input #4, X15 Pin#21

// Input #5, X15 Pin#3

// Input #6, X15 Pin#22

// Input #7, X15 Pin#4

// Input #8, X15 Pin#23

// Input #9, X15 Pin#5

// Input #10,X15 Pin#24

// Input #11,X15 Pin#6

// Input #12,X15 Pin#25

// Input #13,X15 Pin#7

// Input #14,X15 Pin#26

// Input #15,X15 Pin#8

// Input #16,X15 Pin#27

 Sourcing Sinking

// Output #1,X15 Pin#12 Pin#30

// Output #2,X15 Pin#13 Pin#31

// Output #3,X15 Pin#14 Pin#32

// Output #4,X15 Pin#15 Pin#33

// Output #5,X15 Pin#16 Pin#34

// Output #6,X15 Pin#17 Pin#35

// Output #7,X15 Pin#18 Pin#36

// Output #8,X15 Pin#19 Pin#37

// X16 INPUTS

PTR Input17->PowerBrick[1].GpioData[0].0.1

PTR Input18->PowerBrick[1].GpioData[0].1.1

PTR Input19->PowerBrick[1].GpioData[0].2.1

PTR Input20->PowerBrick[1].GpioData[0].3.1

PTR Input21->PowerBrick[1].GpioData[0].4.1

PTR Input22->PowerBrick[1].GpioData[0].5.1

PTR Input23->PowerBrick[1].GpioData[0].6.1

PTR Input24->PowerBrick[1].GpioData[0].7.1

PTR Input25->PowerBrick[1].GpioData[0].8.1

PTR Input26->PowerBrick[1].GpioData[0].9.1

PTR Input27->PowerBrick[1].GpioData[0].10.1

PTR Input28->PowerBrick[1].GpioData[0].11.1

PTR Input29->PowerBrick[1].GpioData[0].12.1

PTR Input30->PowerBrick[1].GpioData[0].13.1

PTR Input31->PowerBrick[1].GpioData[0].14.1

PTR Input32->PowerBrick[1].GpioData[0].15.1

// X16 OUTPUTS

PTR Output9->PowerBrick[1].GpioData[0].16.1

PTR Output10->PowerBrick[1].GpioData[0].17.1

PTR Output11->PowerBrick[1].GpioData[0].18.1

PTR Output12->PowerBrick[1].GpioData[0].19.1

PTR Output13->PowerBrick[1].GpioData[0].20.1

PTR Output14->PowerBrick[1].GpioData[0].21.1

PTR Output15->PowerBrick[1].GpioData[0].22.1

PTR Output16->PowerBrick[1].GpioData[0].23.1

// Input #17,X16 Pin#1

// Input #18,X16 Pin#20

// Input #19,X16 Pin#2

// Input #20,X16 Pin#21

// Input #21,X16 Pin#3

// Input #22,X16 Pin#22

// Input #23,X16 Pin#4

// Input #24,X16 Pin#23

// Input #25,X16 Pin#5

// Input #26,X16 Pin#24

// Input #27,X16 Pin#6

// Input #28,X16 Pin#25

// Input #29,X16 Pin#7

// Input #30,X16 Pin#26

// Input #31,X16 Pin#8

// Input #32,X16 Pin#27

 Sourcing Sinking

// Output #9, X16 Pin#12 Pin#30

// Output #10,X16 Pin#13 Pin#31

// Output #11,X16 Pin#14 Pin#32

// Output #12,X16 Pin#15 Pin#33

// Output #13,X16 Pin#16 Pin#34

// Output #14,X16 Pin#17 Pin#35

// Output #15,X16 Pin#18 Pin#36

// Output #16,X16 Pin#19 Pin#37

Power Brick AC ARM User Manual

Connections and Basic Settings – MACRO (X17) 143

MACRO (X17)

If a MACRO option was selected, the Power Brick AC provides the following connector for MACRO

communications:

MACRO SC-Style Fiber Connector

Pin # Symbol Function

1 IN MACRO Ring Receiver

2 OUT MACRO Ring Transmitter

Note

The fiber optic version of MACRO uses 62.5/125 multi-mode glass fiber

optic cable terminated in an SC-style connector. The optical wavelength

is 1,300 nm.

The input connector must be inserted into the MACRO output connector of the previous device on the MACRO

ring. The output connector must be inserted into the input MACRO connector of the next device on the MACRO

ring.

OUT IN

Power Brick AC ARM User Manual

Connections and Basic Settings – Abort and Watchdog (X18) 144

Abort and Watchdog (X18)

X18 has two essential functions:

 Global abort input.

 Watchdog output.

X15: Phoenix 5-pin TB Female

Mating: Phoenix 5-pin TB Male

Pin # Symbol Function Notes

1 ABORT- Input ABORT Return

2 ABORT+ Input ABORT Input 24VDC

3 WD N.O. Output Watchdog (normally open contact)

4 WD N.C. Output Watchdog (normally closed contact)

5 WD COM Common Watchdog common

Phoenix Contact Mating Connector Part #1850699

Abort Input

The 24 VDC abort input provides a "category 2" controlled safe stop under the IEC-61800-5-2 machine safety

standard, suitable for applications such as aborting motion for opening machine door, or replacing tool(s). If an

Abort input button is used, it must be a normally closed switch:

Abort-

Abort+

WD N.O.

1

X18

3

2

WD N.C.
4

WD COM
5

24 VDC

If a "Category 1" safe stop under this standard – a controlled stop followed by a software-free disabling – is

desired, the same action that toggles this input should also start a qualified time-delay relay which will then drop

out power from a key circuit; usually either bus power (E-Stop circuit) or gate-driver power (STO).

Note

This "global abort" function is not suitable by itself in cases where power

must be removed from the motor (such as Category 0 or 1 under the IEC-

61800-5-2 machine safety standard) is required.

1 2 3 4 5

TB-5: 016-PL0F05-38P

Power Brick AC ARM User Manual

Connections and Basic Settings – Abort and Watchdog (X18) 145

 GLOBAL ABORT KEY SETTINGS

The global abort input is enabled / disabled in software through Sys.pAbortAll.

Sys.pAbortAll
= PowerBrick[0].GpioData[0].a Global abort input enabled

= 0 Global abort input disabled

Sys.pAbortAll = PowerBrick[0].GpioData[0].a // =0 global abort disabled

Sys.AbortAllBit = 31 // Default, do not change

Sys.AbortAllLimit = 5 // Scan count limit threshold

The status of the global abort input can be monitored in the global status window in the IDE software, also it can

be queried using the system element Sys.AbortAll (=0 deactivated or armed, =1 triggered).

The structure element Coord[].AbortAllMode specifies how a group of motors in a coordinate system behaves

in the event of an abort trigger:

Coord[].AbortAllMode Global Abort Trigger Action

Equivalent

Software

Command

= 0
All motors in the coordinate system are brought to a closed-loop

controlled stop.
Abort

= 1
All motors in the coordinate system are immediately disabled

(killed) without delay for brake engagement.
Disable

= 2

All motors in the coordinate system are first brought to a closed-

loop controlled stop then as each motor reaches a desired velocity of

zero, it executes a “delayed kill”, with an immediate engagement of

the brake (specified by Motor[].pBrakeOut) followed by a

disabling of the motor after the interval specified by

Motor[].BrakeOnDelay.

Adisable

= 3 The coordinate system is not affected by the global abort input. -

Note

By default, all motors are assigned to coordinate system 0.

Power Brick AC ARM User Manual

Connections and Basic Settings – Abort and Watchdog (X18) 146

Watchdog Relay

The Watchdog relay(s) allows the user to connect to safety circuit in order to bring the machine to a stop in a safe

manner in the occurrence of a watchdog. Normally open or closed contacts are available:

NORMALLY OPEN NORMALLY CLOSED

35

24 VDC
Power Supply

COM 24 VDC

Logic device
(safe shutdown)

COM 24 VDC

45

24 VDC
Power Supply

COM 24 VDC

Logic device
(safe shutdown)

COM 24 VDC

The watchdog relay(s) are triggered when:

 A hard watchdog occurs, interrupting communication and killing all tasks.

 A soft watchdog occurs, killing all tasks (Sys.WDTFault = 1 or 2). Communication remains alive in this

case.

Operation Mode
Connection between pins

#5 and #3

Connection between pins

#5 and #4

Watchdog
Not Triggered Closed Open

Triggered Open Closed

Power Brick AC ARM User Manual

Connections and Basic Settings – External Encoder Power Supply (X19) 147

External Encoder Power Supply (X19)

Typically, feedback devices power is supplied through the X1 – X8 connectors using the internal +5VDC power

supply. However, if the total feedback devices power budget exceeds ~ 2 amperes, this connector can be used to

bring in the power supply from an external source.

Caution

Encoders requiring voltage supply levels other than +5 VDC must be

supplied externally, neither through X1 – X8 nor through X19.

Caution

The maximum current draw out of a single encoder channel must not

exceed 500 mA.

Wiring the Encoder Supply

Pin# Symbol Description Note

1 5 VDC External +5 VDC Input when using external supply

2 – +5 VDC Output Tie to pin#1 to use internal power supply

3 GND 0 VDC Input when using external supply

Mating Connector Phoenix Contact P/N: 1778845

Caution

Only two of the three available pins should be used at one time. Do not

daisy-chain the internal 5V power supply with an external one.

By default, pins 1 – 2 are tied together to use the internal power supply. To wire an external power supply, remove

the jumper tying pins 1 – 2 and connect the external +5 V to pin #1, and 0 V to pin #3:

Internal Power Supply

Wiring (Default)

External Power Supply Wiring

1

2

3

+5 V External

0 V External

1

2

3

+5 V External

0 V External

External 5 V
Supply

+5 V

0 V

Power Brick AC ARM User Manual

Connections and Basic Settings – External Encoder Power Supply (X19) 148

Note

A jumper tying pins 1 and 2 is the default configuration. This is the

configuration in which the Power Brick AC is shipped.

Note

The controller’s (PMAC’s) 5 VDC logic is independent of this scheme,

so if no encoder power is provided the PMAC will remain powered-up

(provided the standard 24 volts is brought in).

Functionality and Safety Considerations

There are a couple of safety and functionality measures to take into account when an external encoder power

supply is utilized:

 Power sequence: encoders versus controller/drive

It is highly recommended to power up the encoders before applying power to the Power Brick AC

 Encoder Power Loss (i.e. power supply failure, loose wire/connector)

The Power Brick AC, with certain feedback devices, can be set up to read absolute position or perform phasing

on power-up (either automatic firmware functions, or user written PLCs). If the encoder power is not available,

these functions will not be performed properly. Trying to close the loop on a motor without encoder feedback

could be dangerous.

Caution

Make sure that the encoders are powered-up before executing any

motor/motion commands.

Losing encoder power can lead to dangerous runaway conditions; setting up encoder loss protection, fatal

following error limits, and I2T protection are highly advised.

Caution

Make sure that the encoder loss protection is active, fatal following error

limit is set tightly, and I2T is configured.

With commutated motors (i.e. DC brushless), a loss of encoder generally breaks the commutation cycle causing

a fatal following error or I2T fault either in PMAC or amplifier side. However, with non-commutated motors

(i.e. DC brush), losing encoder signal can more likely cause dangerous runway conditions.

Power Brick AC ARM User Manual

Connections and Basic Settings – RTETH and Fieldbus (X20-X23) 149

RTETH and Fieldbus (X20-X23)

Refer to the ACC-72EX Manual for this connector’s pinout and functionality.

Power Brick AC ARM User Manual

Connections and Basic Settings – ETH0 and ETH1/ECAT 150

ETH0 and ETH1/ECAT

The Power Brick AC comes with two RJ-45 ports on the front panel: ETH 0 and ETH1/ECAT. A Category 5e

network cable should be used for these connections. Both ports provide transformer isolation to prevent

ground-loop problems.

ETH0 and ETH1/ECAT:

8-Pin RJ45 Receptacle

Blinking = Activity

1000 Mbps (Orange for 10 or 100)

Pin # Symbol Function Description

1 P0MDI0+ BIDIR LINE 0 POS

2 P0MDI0- BIDIR LINE 0 NEG

3 P0MDI1+ BIDIR LINE 1 POS

4 P0MDI1- BIDIR LINE 1 NEG

5 P0MDI2+ BIDIR LINE 2 POS

6 P0MDI2- BIDIR LINE 2 NEG

7 P0MDI3+ BIDIR LINE 3 POS

8 P0MDI3- BIDIR LINE 3 NEG

A blinking amber light on the top side of the connector indicates activity. Ethernet speed will be auto-

negotiated and prefer 1000 Mbps, which is indicated by a solid green light on the bottom side of the connector.

A solid orange light instead indicates a 10 or 100 Mbps connection.

ETH0 Ethernet Port

The ETH 0 port is the bottom Ethernet connector on the front panel. It is the primary port for communicating

with the CPU board from a host computer, as when using the Integrated Development Environment (IDE)

program running on a WindowsTM PC for developing your application.

Note

Multiple computers on a single network can independently

communicate to the Power PMAC board through this single hardware

port.

ETH1/ECAT Port

The ETH1/ECAT port is the second-to-bottom-connector on the front panel. If the option for no EtherCAT was

purchased, it is the auxiliary Ethernet port and not intended for primary host communications, but can be used

to communicate to peripheral devices. If any option for EtherCAT was purchased, it can be used to connect to

EtherCAT devices in a line or star topology.

This port is configured for EtherCAT by default. To change to ethernet, contact Omron Technical Support.

Power Brick AC ARM User Manual

Connections and Basic Settings – USB and Diagnostic 151

USB and Diagnostic

The Power Brick AC provides two USB ports on the front panel, one host port labled “USB“ and one

serial/device port labeled “DIAG.”. Both provide USB 2.0 protocol communications.

Caution

USB ports are not electrically isolated, so care must be taken in the

grounding scheme when any separately powered device is connected

to one of these ports. Poor-quality communications and even

permanent component damage is possible when ground loop issues or

significant differences in ground potential exist.

USB Host Port

The USB “host” port is labeled “USB 1” on the front panel. It is a “Standard-A” format connector located just

above the Ethernet ports and has a horizontal orientation. With this port, the Power PMAC CPU acts as the host

computer and various peripheral devices can be connected through this port. This connector should be used for

Host PC to Power PMAC communication.

Probably the most common peripheral device used on this port is the “USB stick” flash drive. The Power

PMAC CPU board will automatically recognize standardly formatted flash drives connected to this port. It is

even possible to boot the CPU from this drive if the proper boot files are present on the drive. It is also possible

to use USB peripheral devices such as true disk drives and keyboards.

USB 1: 4-Pin Receptacle

Pin # Symbol Function Description Notes

1 VCC OUTPUT SUPPLY VOLTAGE

2 D- BIDIRECT. DATA NEG.

3 D+ BIDIRECT. DATA POS.

4 GND COMMON REF. VOLTAGE

This connector provides a USB “host” interface on a Standard A connector. It is suitable for standard USB

connectors to external devices.

USB-Serial UART Diagnostic Port

The second USB port is labeled “DIAG.” on the front panel. It is a “Micro-B” format connector located just

above the USB host port. The function of this port in controlled by the “DIAG. MODE SELECT” LED (top)

and button (bottom) just to the right of the USB ports.

When the port is in its default position, indicated by a green light, it acts as a serial communications port. The

following settings can be used to connect through PuTTY once the COM number is found in the device

manger.

Power Brick AC ARM User Manual

Connections and Basic Settings – USB and Diagnostic 152

Note

This is a debug terminal that can be used for communicating with Power

PMAC in the event that Ethernet communication fails (e.g. to acquire

an IP address when unknown). In general, this port should not be used

to communicate to external peripherals, but rather left in case of the

need to debug.

Press the button with a bent paperclip or small screwdriver to put the port into mass storage mode, indicated by

a yellow light. In this mode, the Power PMAC CPU board acts as a peripheral device when it is powered off.

That is, you can access Power PMAC’s flash memory with a host computer by first powering down Power

PMAC, connecting it to the host device through this USB port and pressing the diagnostic mode select button.

Power PMAC will then act just like a USB flash drive. This is useful for device imaging and for recovering

Power PMAC projects which were stored in flash memory in the event that the Power PMAC is somehow

damaged or stops functioning.

Its pinout is below:

USB 2: 5-Pin Receptacle

Pin # Symbol Function Description Notes

1 VCC OUTPUT SUPPLY VOLTAGE

2 D- BIDIRECT. DATA NEG.

3 D+ BIDIRECT. DATA POS.

4 ID OUTPUT BUS TYPE IDENT

5 GND COMMON REF. VOLTAGE

USB Accessory

Due to dimension requirements of the Micro USB connector, customers may be advised to purchase the following

USB cable, sold by Delta Tau for use with the Power Brick AC ARM for diagnostic purposes:

Part Number Description Image

100-000058 USB A MALE TO MICRO MALE 3 FT CABLE WITH

10 MM MICRO USB TIP

Power Brick AC ARM User Manual

Manual Motor Configuration – Step 1: Creating an IDE Project 153

MANUAL MOTOR CONFIGURATION

This section describes the step-by-step procedure for setting up motors with the Power Brick AC.

Step 1: Creating an IDE Project

Reset

For new projects, starting from factory default settings is highly recommended to ensure a clean starting point.

This is performed by issuing a global (factory default) reset $$$***, followed by a SAVE, and a normal reset

$$$. The IDE toolbar offers shortcuts to these commands as an alternative to typing them in the terminal window.

$$$*** SAVE $$$

New Project

To create a new project:

 File

 New

 Project

 Choose Power Brick AC Template based (per model type)

 Give the project a name and folder location >> OK

Power Brick AC ARM User Manual

Manual Motor Configuration – Step 1: Creating an IDE Project 154

Disable Systemsetup Download

Setting up motors manually does not require using the System Setup tool. The configuration resulting from the

System Setup tool must be disabled in this method.

 Right-click on project name

 Properties

 Download Systemsetup.cfg File >> NO >> OK

Power Brick AC ARM User Manual

Manual Motor Configuration – Step 1: Creating an IDE Project 155

Recommended Project Layout

The majority of the parameters described in the following sections are typically placed under Global Includes.

Files in this folder can be managed per the user preference. They can be added, deleted, inserted from an existing

project, re-named, organized (moved up and down) etc… Refer to the IDE Manual to learn about these

manipulations. One recommended layout is as follows:

File Typical Content Example

System Gates System parameters Sys.MaxMotors

Gate parameters Gate3[0].PhaseFreq

Channel parameters Gate3[0].Chan[0].PwmFreqMult

Power Brick AC specific BrickAC.SinglePhaseIn

IOs
Digital I/O pointers PTR Input1->PowerBrick[0].GpioData[0].0.1

Analog I/O pointers PTR ADC1X9->S.IO:$900028.16.16

Global Definitions User-defined variables GLOBAL MyVar

ECT Encoder Conversion Table EncTable[1].Type

Motor (e.g. Mtr1 X) Motor parameters Motor[1].ServoCtrl

Power Brick AC ARM User Manual

Manual Motor Configuration – Step 2: Basic Optimization and System Gates Settings 156

Step 2: Basic Optimization and System Gates Settings

The parameters in this sections are typically placed in the System Gates.pmh file.

Write Protect Key, Sys.WpKey

Many DSPGATE Gate3[] or the alias PowerBrick[] structures are write-protected by the firmware. They cannot

be changed unless Sys.WpKey is set to the proper value. To disable write-protection:

Sys.WpKey = $AAAAAAAA

It is best to place this parameter setting in the beginning of the System Gates.pmh file. This will affect all

subsequent script files, and reduces the risk of forgetting to set it up in subsequent sections.

Example

Note

Changing write-protected structures with the write-protection

ENABLED does NOT produce an error. It is the user’s responsibility

to make sure that Sys.WpKey is set up accordingly.

Power Brick AC ARM User Manual

Manual Motor Configuration – Step 2: Basic Optimization and System Gates Settings 157

Abort All Input, Sys.pAbortAll

Caution

If the abort input X18 is not wired or disabled in software

(Sys.pAbortAll = 0), PMAC will try to close the loop on the motor

every time it is enabled which could cause the motor the move or jump

if it has not been set up correctly yet.

The abort input X18 must be wired or disabled in software (Sys.pAbortAll = 0) prior to attempting to set up or

enable a motor.

If the +24 VDC abort input is not wired or disabled in software (Sys.pAbortAll = 0), PMAC will try to close the

loop on the motor every time it is enabled. This could prevent setting up a motor properly, such as phasing

manually or performing an open loop test. If the abort input is triggered, the global status bit AbortAll will be

true.

Power Brick AC ARM User Manual

Manual Motor Configuration – Step 2: Basic Optimization and System Gates Settings 158

Maximum Number of Motors, Sys.MaxMotors

One of the basic and important optimization parameters for CPU load management is Sys.MaxMotors which

specifies the highest number of motor (plus 1 including the built-in Motor #0).

Examples

 For setting up motors 1 through 4, Sys.MaxMotors should be set to 5.

 For setting up motors 1 through 9, Sys.MaxMotors should be set to 10.

Maximum Number of Coordinate Systems, Sys.MaxCoords

One of the basic and important optimization parameters for CPU load management is Sys.MaxCoords which

specifies the highest number of Coordinate System CS (plus 1 including the built-in CS 0).

Examples

 For setting up two coordinate systems 1 and 2, Sys.MaxCoords should be set to 3.

 For setting up 4 coordinates systems 1, 2, 3, and 4, Sys.MaxCoords should be set to 5.

Power Brick AC ARM User Manual

Manual Motor Configuration – Step 2: Basic Optimization and System Gates Settings 159

Dominant Clock Frequencies

The choice of clock frequencies relies typically on the system requirements, hardware, and type of application.

Phase: The phase clock governs the current loop calculation, current sensor readings, and user written

phase routine. Typically, the maximum phase clock frequency should not exceed twice that of

the PWM. Setting it faster is meaningless and will not result in any performance enhancement.

PWM: The PWM clock governs the command output to the amplifier. In motor applications, it is

directly related to the inductance and resistance of the motor. It can be determined empirically

as shown in the equation below.

Servo: The Servo clock governs primarily the servo process (encoder read, motor command), and user

written servo routine(s). Higher servo frequencies result, in general, in improved performance.

The need for increasing the servo clock could come from several factors such as high

speed/precision applications, synchronizing to external events, high speed position

capture/compare, and kinematics calculation. High resolution encoders (e.g. serial, sinusoidal),

linear motors, and galvanometers are usually set up with higher servo rates for best results.

Hardware: The hardware clocks govern the sampling rate of encoders, digital /analog converters, and

control the pulse frequency modulation PFM output.

Minimum PWM Frequency

The minimum PWM frequency for a motor application can be computed empirically using the time constant of

the motor. In general, the lower the time constant, the higher the PWM frequency should be. The motor time

constant is calculated dividing the motor inductance by the resistance (phase-phase). The minimum PWM

Frequency is then determined using the following relationship:

OhmsR

H
L

sec
sec

2

20
)(

2

20

 HzPWM

PWM

Example: A motor with an inductance of 2.80 mH and a resistance of 14 (phase-phase) yields a time constant

of 200 sec. Therefore, the minimum PWM Frequency should be about ~16 kHz.

Note

For many motors the Minimum PWM Frequency is low enough not to

matter. In this case, the recommended frequency, 10 kHz, may be used.

Power Brick AC ARM User Manual

Manual Motor Configuration – Step 2: Basic Optimization and System Gates Settings 160

Recommended Clock Frequencies

The recommended clock frequency settings for the Power Brick AC are 10 kHz Phase, 10 kHz PWM, and 5 kHz

Servo.

 Sys.ServoPeriod and Sys.PhaseOverServoPeriod are critical for proper implementation of the clock

settings. Make sure equations are computed.

 Sys.RtIntPeriod specifies the cycle of the “real-time interrupt”.

 The Servo frequency is determined from the phase clock using the following equation:

fservo =
fPhase

PowerBrick[].Chan[].ServoClockDiv + 1

 The PWM frequency is determined from the phase clock using the following equation:

fPWM =
PowerBrick[].Chan[].PwmFreqMult + 1

2
 × fPhase

Note

A Save, followed by a $$$ or power cycle is strongly advised after

changing clock settings.

Note

Clock setting parameters require DISABLING write-protection

Sys.WpKey = $AAAAAAAA in order to take effect.

Data Unpacking

The ADC inputs and motor phase outputs’ data is packed by default in the Power PMAC firmware into single

32-bit registers. Typically, this improves the efficiency of the computation algorithms, especially in extremely

high performance applications or with a large number of axes (up to 256).

However, this enhancement may not be as noteworthy with the Power Brick AC considering the significantly

lower number of axes it is usually controlling. Also, the Power Brick AC offers many functions that do not

support packed data which mandates unpacking them:

Note

Unpacking the IN and OUT data is critical for the proper operation of the

Power Brick AC.

Power Brick AC ARM User Manual

Manual Motor Configuration – Step 2: Basic Optimization and System Gates Settings 161

Setting up the BrickAC Structure Elements

The BrickAC data structure elements are setup / status parameters pertaining to the Power Brick AC firmware.

They allow direct communication with the amplifier processor.

The BrickAC data structure elements consist of global (affecting all motor channels) and channel specific

parameters. Certain elements can be saved others are read-only, volatile, or self-resetting.

The complete list and description of the BrickAC data structure elements can be found in the BrickAC Structure

Elements section of this manual.

Starting from factory default settings, the necessary and sufficient BrickAC elements for setting up a motor

safely and properly are:

BrickAC.SinglePhaseIn
= 0 For three phase AC input operation

= 1 For single phase AC input operation

BrickAC.Chan[].I2tWarnOnly
= 0 Kill motor, display fault (default)

= 1 Don’t kill motor, report warning to the status register

BrickAC.Reset = 1
To clear faults and save BrickAC settings. Must wait for

fail/pass confirmation of the operation.

Caution

As shown in the Power-On Reset PLC example, it is strongly

recommended for users to confirm the pass/fail status of the reset

(BrickAC.Reset = 1) process.

Caution

Querying the value of the BrickAC structures elements does NOT

guarantee that the returned value is what it is actually set to.

BrickAC.Reset = 1 must have executed at least once successfully for the

BrickAC structure element settings to be applied and saved.

Caution

BrickAC.Reset should NOT be saved = 1, but rather set in the power-on

reset plc.

Note

The SinglePhaseIn and I2TWarnOnly elements can be saved into the

active memory.

Power Brick AC ARM User Manual

Manual Motor Configuration – Step 2: Basic Optimization and System Gates Settings 162

System Gates Sample File for PBA4

Sys.WpKey = $AAAAAAAA

Sys.pAbortAll = 0

BrickAC.SinglePhaseIn = 1

Sys.MaxCoords = 2

Sys.MaxMotors = 5

PowerBrick[0].PhaseFreq = 10000

PowerBrick[0].ServoClockDiv = 1

Sys.RtIntPeriod = 0

Sys.ServoPeriod = 1000 * (PowerBrick[0].ServoClockDiv + 1) / PowerBrick[0].PhaseFreq

Sys.PhaseOverServoPeriod = 1 / (PowerBrick[0].ServoClockDiv + 1)

PowerBrick[0].Chan[0].PwmFreqMult = 1

PowerBrick[0].Chan[1].PwmFreqMult = 1

PowerBrick[0].Chan[2].PwmFreqMult = 1

PowerBrick[0].Chan[3].PwmFreqMult = 1

PowerBrick[0].Chan[0].PackOutData = 0

PowerBrick[0].Chan[1].PackOutData = 0

PowerBrick[0].Chan[2].PackOutData = 0

PowerBrick[0].Chan[3].PackOutData = 0

PowerBrick[0].Chan[0].PackInData = 0

PowerBrick[0].Chan[1].PackInData = 0

PowerBrick[0].Chan[2].PackInData = 0

PowerBrick[0].Chan[3].PackInData = 0

Power Brick AC ARM User Manual

Manual Motor Configuration – Step 2: Basic Optimization and System Gates Settings 163

System Gates Sample File for PBA8

Sys.WpKey = $AAAAAAAA

Sys.pAbortAll = 0

BrickAC.SinglePhaseIn = 1

Sys.MaxCoords = 2

Sys.MaxMotors = 9

PowerBrick[1].PhaseFreq = 10000

PowerBrick[1].ServoClockDiv = 1

PowerBrick[0].PhaseFreq = 10000

PowerBrick[0].ServoClockDiv = 1

Sys.RtIntPeriod = 0

Sys.ServoPeriod = 1000 * (PowerBrick[0].ServoClockDiv + 1) / PowerBrick[0].PhaseFreq

Sys.PhaseOverServoPeriod = 1 / (PowerBrick[0].ServoClockDiv + 1)

PowerBrick[0].Chan[0].PwmFreqMult = 1

PowerBrick[0].Chan[1].PwmFreqMult = 1

PowerBrick[0].Chan[2].PwmFreqMult = 1

PowerBrick[0].Chan[3].PwmFreqMult = 1

PowerBrick[1].Chan[0].PwmFreqMult = 1

PowerBrick[1].Chan[1].PwmFreqMult = 1

PowerBrick[1].Chan[2].PwmFreqMult = 1

PowerBrick[1].Chan[3].PwmFreqMult = 1

PowerBrick[0].Chan[0].PackOutData = 0

PowerBrick[0].Chan[1].PackOutData = 0

PowerBrick[0].Chan[2].PackOutData = 0

PowerBrick[0].Chan[3].PackOutData = 0

PowerBrick[1].Chan[0].PackOutData = 0

PowerBrick[1].Chan[1].PackOutData = 0

PowerBrick[1].Chan[2].PackOutData = 0

PowerBrick[1].Chan[3].PackOutData = 0

PowerBrick[0].Chan[0].PackInData = 0

PowerBrick[0].Chan[1].PackInData = 0

PowerBrick[0].Chan[2].PackInData = 0

PowerBrick[0].Chan[3].PackInData = 0

PowerBrick[1].Chan[0].PackInData = 0

PowerBrick[1].Chan[1].PackInData = 0

PowerBrick[1].Chan[2].PackInData = 0

PowerBrick[1].Chan[3].PackInData = 0

Power Brick AC ARM User Manual

Manual Motor Configuration – Step 3: Power-On Reset PLC 164

Step 3: Power-On Reset PLC

The Power-on reset PLC serves two purposes:

 Clearing amplifier faults.

 Applying and saving (any) changes made to the BrickAC saved structure elements, such as

BrickAC.Chan[].I2TWarnOnly.

This PLC may already be a part of the Power Brick AC Template in IDE.

Power-On Reset PLC Sample for PBA4

OPEN PLC PowerOnResetPLC

Sys.WDTReset = 5000 / (Sys.ServoPeriod * 2.258)

CALL DelayTimer.msec(5)

BrickAC.Reset = 1

CALL DelayTimer.msec(5)

WHILE (BrickAC.Reset == 1){}

IF (BrickAC.Reset == 0)

{

 // HOUSEKEEPING

 PowerBrick[0].Chan[0].CountError = 0

 PowerBrick[0].Chan[1].CountError = 0

 PowerBrick[0].Chan[2].CountError = 0

 PowerBrick[0].Chan[3].CountError = 0

 Sys.MaxPhaseTime = 0

 Sys.MaxServoTime = 0

 Sys.MaxRtIntTime = 0

 Sys.MaxBgTime = 0

 CALL DelayTimer.msec(5)

 // HERE, ENABLE SUBSEQUENT APPLICATION PLCs

 Sys.WDTReset = 0

 DISABLE PLC PowerOnResetPLC

 CALL DelayTimer.msec(5)

}

ELSE

{

 // RESET FAILED? TAKE ACTION

 KILL 1..4

 DISABLE PLC 0,2..31

 SEND 1"BRICK AC RESET FAILED !!!"

 Sys.WDTReset = 0

 DISABLE PLC PowerOnResetPLC

 CALL DelayTimer.msec(5)

}

CLOSE

Power Brick AC ARM User Manual

Manual Motor Configuration – Step 3: Power-On Reset PLC 165

Power-On Reset PLC Sample for PBA8

OPEN PLC PowerOnResetPLC

Sys.WDTReset = 5000 / (Sys.ServoPeriod * 2.258)

CALL DelayTimer.msec(5)

BrickAC.Reset = 1

CALL DelayTimer.msec(5)

WHILE (BrickAC.Reset == 1){}

IF (BrickAC.Reset == 0)

{

 // HOUSEKEEPING

 PowerBrick[0].Chan[0].CountError = 0

 PowerBrick[0].Chan[1].CountError = 0

 PowerBrick[0].Chan[2].CountError = 0

 PowerBrick[0].Chan[3].CountError = 0

 PowerBrick[1].Chan[0].CountError = 0

 PowerBrick[1].Chan[1].CountError = 0

 PowerBrick[1].Chan[2].CountError = 0

 PowerBrick[1].Chan[3].CountError = 0

 Sys.MaxPhaseTime = 0

 Sys.MaxServoTime = 0

 Sys.MaxRtIntTime = 0

 Sys.MaxBgTime = 0

 CALL DelayTimer.msec(5)

 // HERE, ENABLE SUBSEQUENT APPLICATION PLCs

 Sys.WDTReset = 0

 DISABLE PLC PowerOnResetPLC

 CALL DelayTimer.msec(5)

}

ELSE

{

 // RESET FAILED? TAKE ACTION

 KILL 1..8

 DISABLE PLC 0,2..31

 SEND 1"BRICK AC RESET FAILED !!!"

 Sys.WDTReset = 0

 DISABLE PLC PowerOnResetPLC

 CALL DelayTimer.msec(5)

}

CLOSE

The process of waiting for the BrickAC.Reset to execute in a PLC consumes a significant amount of background

cycles and risks triggering a foreground soft watchdog fault (Sys.WDTFault = 1). Setting Sys.WDTReset

temporarily to a larger value alleviates this issue.

Note

The Sys.WDTReset expression stated in the PLC example should ensure

the proper setting regardless of the user specified clock frequencies.

Power Brick AC ARM User Manual

Manual Motor Configuration – Step 3: Power-On Reset PLC 166

The power-on reset PLC must execute on power-up/reset. This is done by enabling the PLC in the pp_startup.txt

file under the Configuration folder.

Power Brick AC ARM User Manual

Manual Motor Configuration – Step 4: Applying Power-On Reset PLC and System Gates Settings 167

Step 4: Applying Power-On Reset PLC and System Gates Settings

Some System Gates file settings such as clock speeds may require a reset to completely take effect. The Power-

On Reset PLC must be run quickly after start up. To solve both of these problems, after changing the global

settings in the “System Gates” file and verifying the Power-On Reset PLC will run, do the following.

1. Build and Download

2. Save

3. $$$

Power Brick AC ARM User Manual

Manual Motor Configuration – Step 5: Scaling and Verifying Encoder Feedback 168

Step 5: Scaling and Verifying Encoder Feedback

Scaling to Engineering Units

This section describes how to verify functionality and scale motor units into engineering units.

Note

This section assumes that the encoder device has been wired and

configured properly per the encoder type (e.g. Digital Quadrature,

Sinusoidal, etc…) section.

Motor[].PosSf and Motor[].Pos2Sf are part of the motor structure

elements, including servo loop. If they are changed, many other elements

need to be adjusted such as acceleration, speed settings as well as servo

loop gains. Warning

The three motor elements relevant to scaling raw counts into engineering units are:

 Motor[].PosSf

 Motor[].Pos2Sf

 Motor[].PosUnit

Care must be taken, Motor[].PosSf and Motor[].Pos2Sf are part of the motor structure elements, including

servo loop. If they are changed, many other elements need to be adjusted such as acceleration, speed settings as

well as servo loop gains.

Motor[].PosUnit changes the unit display in the IDE position window. It does not affect the operation of the

motor.

Motor[].PosUnit Unit Name Motor[].PosUnit Unit Name

0 m.u. (motor unit) 8 Mil (in/1000)

1 Count (ct) 9 Revolution

2 Meter (m) 10 Radian (rad)

3 Millimeter (mm) 11 Degree (deg)

4 Micrometer (μm) 12 Gradian (grad)

5 Nanometer (nm) 13 Arcminute (')

6 Picometer (pm) 14 Arcsecond (")

7 Inch (in)

When Motor[].PosSf and Motor[].Pos2Sf are changed, all elements described in the Software Reference

Manual referring to m.u. (motor unit) now become engineering units instead. For example, if a user changes

scaling to mm, Motor[].JogSpeed unit is now mm/msec instead of mu/msec. Below, are scaling examples:

Power Brick AC ARM User Manual

Manual Motor Configuration – Step 5: Scaling and Verifying Encoder Feedback 169

Direct drive rotary motor/encoder in degrees

A 23-bit rotary encoder/motor (yielding 8,388,608 counts per revolution) tied directly to the load.

GLOBAL Mtr1CtsPerRev = 8388608

GLOBAL Mtr1DegsPerRev = 360

Motor[1].PosSf = Mtr1DegsPerRev / Mtr1CtsPerRev

Motor[1].Pos2Sf = Mtr1DegsPerRev / Mtr1CtsPerRev

Motor[1].PosUnit = 11

Geared rotary motor/encoder in inches

A 17-bit rotary encoder/motor (yielding 131,072 counts per revolution) with a 5:1 gear reduction to the load.

GLOBAL Mtr1CtsPerRev = 131072

GLOBAL Mtr1RevsPerInch = 5 / 1

Motor[1].PosSf = Mtr1RevsPerInch / Mtr1CtsPerRev

Motor[1].Pos2Sf = Mtr1RevsPerInch / Mtr1CtsPerRev

Motor[1].PosUnit = 7

Linear motor/encoder in millimeters

A 1nm BiSS linear encoder scale.

GLOBAL Mtr1ResMm = 0.000001

Motor[1].PosSf = Mtr1ResMm

Motor[1].Pos2Sf = Mtr1ResMm

Motor[1].PosUnit = 3

Note

Motor[].Pos2Sf is not always equal to Motor[].PosSf such as in a dual-

feedback system.

Note

For Coordinate System assignments, care must be taken now since the

motor is scaled in engineering units and in most cases the scaling would

simply be one to one e.g. &1#1->X.

Power Brick AC ARM User Manual

Manual Motor Configuration – Step 5: Scaling and Verifying Encoder Feedback 170

Verifying Encoder Feedback

Warning

The absence of encoder data is potentially a very dangerous condition in

closed-loop control, because the servo loop no longer has any idea what

the true physical position of the motor is – usually it thinks it is "stuck" –

and it can react wildly, often causing a runaway condition.

The goal of this section is to verify, before continuing with the motor setup, that the encoder is:

 Counting in both directions of travel

 Reporting the correct distance of rotation/travel

Counting in both directions

This can be done by moving the motor by hand e.g. clockwise, counter-clockwise, positive or negative while

monitoring the position window in the IDE.

Note

The user must also check if the position stable (within an inherent

dithering amount) at standstill.

For troubleshooting purposes, the user can always look at the “raw count data”. Depending on the type of

encoder, the following table shows which register to check:

Encoder Type Raw Count Register(s)

Digital Quadrature PowerBrick[].Chan[].ServoCapt

Sinusoidal PowerBrick[].Chan[].ServoCapt

Sinusoidal ACI PowerBrick[].Chan[].ServoCapt

Resolver PowerBrick[].Chan[].ServoCapt

Serial with Gate3 PowerBrick[].Chan[].SerialEncDataA

PowerBrick[].Chan[].SerialEncDataB (optional)

Serial with ACC-84B ACC-84B[].Chan[].SerialEncDataA

ACC-84B [].Chan[].SerialEncDataB (optional)

Note, that the primary registers shown above are the source of the corresponding Encoder Conversion Table.

Secondarily, the output of the Encoder Conversion Table itself can be verified using the structure element

EncTable[].PrevEnc. Note, that EncTable[].PrevEnc is not multiplied by EncTable[].ScaleFactor.

Reporting the Correct Distance

The user can verify if the feedback device is counting correctly by moving the motor a known amount and

recording the elapsed distance shown in the position window in the IDE. In some cases, the #nHMZ (where n

is the motor number) command can be used to zero the position display.

If the counting is incorrect, make sure that the following is set up correctly:

 EncTable[].ScaleFactor

 Motor[].PosSf

 Motor[].Pos2Sf

 Motor[].EncType

Power Brick AC ARM User Manual

Manual Motor Configuration – Step 6: Motor Setup 171

Step 6: Motor Setup

Caution

If the +24 VDC abort input is not wired in or disabled in software

(Sys.pAbortAll = 0), PMAC will try to close the loop on the motor every

time it is enabled which could cause the motor the move or jump if it has

not been fully set up.

Having performed steps 1 through 4 of the Manual Motor Setup Section, Motor and channel specific parameters

can now be configured to finalize the commissioning of a motor by type.

Note

A motor or channel parameter which is not discussed in the structure

elements below is assumed – and should typically be left – at default.

All the motor structure elements in subsequent examples of this section refer to a generic Motor[] or Motor[1].

It is the user’s responsibility to modify for the appropriate Motor number being set up.

Common Structure Element Settings

Brushless Motor

Motor[1].pLimits = PowerBrick[0].Chan[0].Status.a // =0 if limits are not wired

Motor[1].AdcMask = $FFFC0000

Motor[1].AmpFaultLevel = 1

Motor[1].PhaseCtrl = 4

Motor[1].PhaseOffset = 683

Brushed Motor

Motor[1].pLimits = PowerBrick[0].Chan[0].Status.a

Motor[1].AdcMask = $FFFC0000

Motor[1].AmpFaultLevel = 1

Motor[1].PhaseCtrl = 4

Motor[1].PhaseMode = 3

Motor[1].PhaseOffset = 512

Motor[1].PhasePosSf = 0

Motor[1].pAbsPhasePos = Sys.pushm

Motor[1].PowerOnMode = 2

AC Induction Motor

Motor[1].pLimits = PowerBrick[0].Chan[0].Status.a // =0 if limits are not wired

Motor[1].AdcMask = $FFFC0000

Motor[1].AmpFaultLevel = 1

Motor[1].PhaseCtrl = 6

Motor[1].PhaseOffset = 683

Power Brick AC ARM User Manual

Manual Motor Configuration – Step 6: Motor Setup 172

PWM Scale Factor

For all types of motors, the PWM scale factor specifies the maximum command output (voltage limiter).

 If the motor rated voltage is greater than or equal to ≥ the input DC voltage:

Motor[1].PwmSf = 0.95 * 16384

 If the input DC voltage is greater than > the motor rated voltage:

GLOBAL DcBusInput = 340 // DC Bus input voltage [VDC] –User Input

GLOBAL Mtr1DCVoltage = 170 // Motor #1 DC rated voltage [VDC] –User Input

Motor[1].PwmSf = 0.95 * 16384 * Mtr1DCVoltage / DcBusInput

Power Brick AC ARM User Manual

Manual Motor Configuration – Step 6: Motor Setup 173

On-going Phase Position

Stepper Motor without Encoder – Direct Microstepping

Setting up the on-going phase position for stepper motors using the direct micro-stepping technique is not

necessary, Motor[].PhasePosSf is already set to 0 in common motor settings section.

Brushed Motor

Setting up the on-going phase position for brushed motors is not necessary, Motor[].PhasePosSf is already set to

0 in common motor settings section.

Stepper Motor with Encoder

The ongoing phase position for stepper motors with encoders is set up similarly to brushless motors. The number

of poles pairs (NoOfPolePairs) is computed as follows:

NoOfPolePairs = 360 / (Step Angle * 4).

Example: A 1.8° step motors yields 50 pair poles.

Brushless Motor

Following are guidelines for setting up the ongoing phase position (Motor[].PhasePosSf) with various types of

encoders. Some motor and encoder data sheet information is necessary to compute Motor[].PhasePosSf

properly:

NoOfPolePairs is the number of pair poles of a rotary motor.

CountsPerRevolution is the number of raw quadrature encoder counts per revolution of a rotary motor.

LinesPerRevolution is the number of sine cycles of a sinusoidal rotary encoder/motor.

ECLmm is the linear motor electrical cycle length or magnetic pitch (e.g. 60.96 mm).

RESmm is the linear encoder resolution (a.k.a. pitch) in the same unit as the ECL (e.g. 1 µm = 0.001 mm).

ResPolePairs is the resolver number of pole pairs.

SingleTurnBits is the number of bits of single turn position data for rotary serial encoder.

 QUADRATURE ENCODER

Structure Element Value

Motor[].pPhaseEnc PowerBrick[].Chan[].PhaseCapt.a

Motor[].PhaseEncLeftshift 0

Motor[].PhaseEncRightshift 0

Rotary: Motor[].PhasePosSf 2048 * NoOfPolePairs / (256 * CountsPerRevolution)

Linear: Motor[].PhasePosSf 2048 * RESmm / (256 * ECLmm)

Power Brick AC ARM User Manual

Manual Motor Configuration – Step 6: Motor Setup 174

 SINUSOIDAL ENCODER (WITH STANDARD INTERPOLATOR)

Structure Element Value

Motor[].pPhaseEnc PowerBrick[].Chan[].PhaseCapt.a

Motor[].PhaseEncLeftshift 0

Motor[].PhaseEncRightshift 0

Rotary: Motor[].PhasePosSf 2048 * NoOfPolePairs / (LinesPerRevolution * 16384)

Linear: Motor[].PhasePosSf 2048 * RESmm / (16384 * ECLmm)

 SINUSOIDAL ENCODER (WITH ACI INTERPOLATOR)

Structure Element Value

Motor[].pPhaseEnc PowerBrick[].Chan[].PhaseCapt.a

Motor[].PhaseEncLeftshift 0

Motor[].PhaseEncRightshift 0

Rotary: Motor[].PhasePosSf 2048 * 4 * NoOfPolePairs / (LinesPerRevolution * 65536)

Linear: Motor[].PhasePosSf 2048 * 4 * RESmm / (65536 * ECLmm)

 RESOLVER ENCODER

Structure Element Value

Motor[].pPhaseEnc PowerBrick[].Chan[].AtanSumOfSqr.a

Motor[].PhaseEncLeftshift 0

Motor[].PhaseEncRightshift 0

Rotary: Motor[].PhasePosSf 2048 * NoOfPolePairs / (ResPolePairs * 4294967298)

Power Brick AC ARM User Manual

Manual Motor Configuration – Step 6: Motor Setup 175

 SERIAL ENCODER WITH GATE3

For ongoing phase position, it is simplest to process only the portion of single-turn position data that is available

in PowerBrick[].Chan[].SerialEncDataA. This will not limit the resolution or hinder the performance.

Motor[].PhaseEncRightshift is set to the number of unwanted bits to the right of the desired data, so that a right

shift can be performed to clear that unwanted data. Motor[].PhaseEncLeftshift is then set to the number of bits

the data must be shifted left (after the right shift) to make the Most Significant Bit (MSB) of your position data

bit #31.

Structure Element Value

Motor[].pPhaseEnc PowerBrick[].Chan[].SerialEncDataA.a

Motor[].PhaseEncLeftshift Number of bits to left shift (second operation)

Motor[].PhaseEncRightshift Number of bits to right shift (first operation)

Rotary: Motor[].PhasePosSf 2048 * NoOfPolePairs / 2(PhaseEncLeftshift + SingleTurnBits)

Linear: Motor[].PhasePosSf 2048 * RESmm / (ECLmm * 2PhaseEncLeftshift)

Example 1: A binary serial encoder with 17 bits of single-turn (or an equivalent 1 μm linear scale) position data

starting at bit #0 of SerialEncDataA.

PowerBrick[].Chan[].SerialEncDataA

31 2627282930 012345678910111213141516171819202122232425

Shift left 15 bits to MSB for rollover.

After Shifting

31 2627282930 012345678910111213141516171819202122232425

Motor[].pPhaseEnc = PowerBrick[].Chan[].SerialEncDataA.a

Motor[].PhaseEncLeftshift = 15

Motor[].PhaseEncRightshift = 0

Rotary: Motor[].PhasePosSf = 2048 * NoOfPolePairs / 2(15 + 17)

Linear: Motor[].PhasePosSf = 2048 * RESmm / (ECLmm * 215)

Example 2: A binary serial encoder with 20 bits of single-turn (or an equivalent 50 nm linear scale) position data

starting at bit #4 of SerialEncDataA. The low 4 bits may contain other information, irrelevant to position data.
PowerBrick[].Chan[].SerialEncDataA

31 2627282930 012345678910111213141516171819202122232425

Shift right 4 bits first to get rid of unwanted data. Shift left 12 bits to MSB for rollover.

After Shifting

31 2627282930 012345678910111213141516171819202122232425

Motor[].pPhaseEnc = PowerBrick[].Chan[].SerialEncDataA.a

Motor[].PhaseEncLeftshift = 12

Motor[].PhaseEncRightshift = 4

Rotary: Motor[].PhasePosSf = 2048 * NoOfPolePairs / 2(12 + 20)

Linear: Motor[].PhasePosSf = 2048 * RESmm / (ECLmm * 212)

Power Brick AC ARM User Manual

Manual Motor Configuration – Step 6: Motor Setup 176

Example 3: A binary serial encoder with 36 bits of single-turn (or an equivalent 1 nm linear scale) position data

starting at bit #0 of SerialEncDataA and extending to bit #3 of SerialEncDataB.

PowerBrick[].Chan[].SerialEncDataA

31 2627282930 012345678910111213141516171819202122232425

PowerBrick[].Chan[].SerialEncDataB

31 2627282930 012345678910111213141516171819202122232425

No shifting is required.

31 2627282930 012345678910111213141516171819202122232425

After Shifting

Motor[].pPhaseEnc = PowerBrick[].Chan[].SerialEncDataA.a

Motor[].PhaseEncLeftshift = 0

Motor[].PhaseEncRightshift = 0

Rotary: Motor[].PhasePosSf = 2048 * NoOfPolePairs / 2(0 + 32)

Linear: Motor[].PhasePosSf = 2048 * RESmm / (ECLmm * 20)

Example 4: A 29-bit binary serial encoder with 17 bits of single-turn and 12 bits of multi-turn position data

starting at bit #0 of SerialEncDataA.

PowerBrick[].Chan[].SerialEncDataA

31 2627282930 012345678910111213141516171819202122232425

Single-Turn Position DataMulti-Turn Position Data

Shift left 15 bits to MSB for rollover.

31 2627282930 012345678910111213141516171819202122232425

Single-Turn Position Data

After Shifting

Motor[].pPhaseEnc = PowerBrick[].Chan[].SerialEncDataA.a

Motor[].PhaseEncLeftshift = 15

Motor[].PhaseEncRightshift = 0

Motor[].PhasePosSf = 2048 * NoOfPolePairs / 2(15 + 17)

Power Brick AC ARM User Manual

Manual Motor Configuration – Step 6: Motor Setup 177

Example 5: A 36-bit binary serial encoder with 24 bits of single-turn and 12 bits of multi-turn position data

starting at bit #0 of SerialEncDataA and continuously extending to bit #3 of SerialEncDataB.

PowerBrick[].Chan[].SerialEncDataA

31 2627282930 012345678910111213141516171819202122232425

Single-Turn Position DataMulti-Turn Position Data

PowerBrick[].Chan[].SerialEncDataB

31 2627282930 012345678910111213141516171819202122232425

Multi-Turn Position Data

Shift left 8 bits to MSB for rollover.

31 2627282930 012345678910111213141516171819202122232425

Single-Turn Position Data

After Shifting

Motor[].pPhaseEnc = PowerBrick[].Chan[].SerialEncDataA.a

Motor[].PhaseEncLeftshift = 8

Motor[].PhaseEncRightshift = 0

Motor[].PhasePosSf = 2048 * NoOfPolePairs / 2(8 + 24)

Note

The Motor[].PhasePosSf is best entered as an expression (e.g. a ratio of

integers) to let the Power PMAC calculate the exact value.

Power Brick AC ARM User Manual

Manual Motor Configuration – Step 6: Motor Setup 178

 SERIAL ENCODER WITH ACC-84B

For ongoing phase position, it is simplest to process only the portion of single-turn position data that is available

in PowerBrick[].Chan[].SerialEncDataA. This will not limit the resolution or hinder the performance.

Motor[].PhaseEncRightshift is set to the number of unwanted bits to the right of the desired data, so that a right

shift can be performed to clear that unwanted data. Motor[].PhaseEncLeftshift is then set to the number of bits

the data must be shifted left (after the right shift) to make the Most Significant Bit (MSB) of your position data

bit #31.

Although data may appear to start at bit 0 in the script environment, internally it is only 24 bits starting at bit 8.

This means data should be right shifted 8 bits more than would be expected from viewing

Acc84B[].Chan[].SerialEncDataA in the watch window or terminal.

Structure Element Value

Motor[].pPhaseEnc ACC84B[].Chan[].SerialEncDataA.a

Motor[].PhaseEncLeftshift Number of bits to left shift (second operation)

Motor[].PhaseEncRightshift Number of bits to right shift (first operation)

Rotary: Motor[].PhasePosSf 2048 * NoOfPolePairs / 2(PhaseEncLeftshift + SingleTurnBits)

Linear: Motor[].PhasePosSf 2048 * RESmm / (ECLmm * 2PhaseEncLeftshift)

Example 1: A binary serial encoder with 17 bits of single-turn (or an equivalent 1 μm linear scale) position data

starting at bit #0 of the 24 bit SerialEncDataA.

ACC84B[].Chan[].SerialEncDataA

01234567891011121314151617181920212223

Shift right 8 bits first to get rid of unwanted data. Shift left 15 bits to MSB for rollover.

After Shifting

31 2627282930 012345678910111213141516171819202122232425

Motor[].pPhaseEnc = ACC84B[].Chan[].SerialEncDataA.a

Motor[].PhaseEncLeftshift = 15

Motor[].PhaseEncRightshift = 8

Rotary: Motor[].PhasePosSf = 2048 * NoOfPolePairs / 2(15 + 17)

Linear: Motor[].PhasePosSf = 2048 * RESmm / (ECLmm * 215)

Power Brick AC ARM User Manual

Manual Motor Configuration – Step 6: Motor Setup 179

Example 2: A binary serial encoder with 16 bits of single-turn (or an equivalent 50 nm linear scale) position data

starting at bit #4 of the 24 bit SerialEncDataA. The low 4 bits may contain other information, irrelevant to

position data.

ACC84B[].Chan[].SerialEncDataA

01234567891011121314151617181920212223

Shift right 12 bits first to get rid of unwanted data. Shift left 16 bits to MSB for rollover.

After Shifting

31 2627282930 012345678910111213141516171819202122232425

Motor[].pPhaseEnc = ACC84B[].Chan[].SerialEncDataA.a

Motor[].PhaseEncLeftshift = 16

Motor[].PhaseEncRightshift = 12

Rotary: Motor[].PhasePosSf = 2048 * NoOfPolePairs / 2(16 + 16)

Linear: Motor[].PhasePosSf = 2048 * RESmm / (ECLmm * 216)

Example 3: A binary serial encoder with 36 bits of single-turn (or an equivalent 1 nm linear scale) position data

starting at bit #0 of the 24 bit SerialEncDataA and extending to bit #11 of SerialEncDataB.

ACC84B[].Chan[].SerialEncDataA

01234567891011121314151617181920212223

ACC84B[].Chan[].SerialEncDataB

01234567891011121314151617181920212223

Shift right 8 bits first to get rid of unwanted data. Shift left 8 bits to MSB for rollover.

31 2627282930 012345678910111213141516171819202122232425

After Shifting

Motor[].pPhaseEnc = ACC84B[].Chan[].SerialEncDataA.a

Motor[].PhaseEncLeftshift = 8

Motor[].PhaseEncRightshift = 8

Rotary: Motor[].PhasePosSf = 2048 * NoOfPolePairs / 2(8 + 36)

Linear: Motor[].PhasePosSf = 2048 * RESmm / (ECLmm *28)

Power Brick AC ARM User Manual

Manual Motor Configuration – Step 6: Motor Setup 180

Example 4: A 21-bit binary serial encoder with 17 bits of single-turn and 4 bits of multi-turn position data starting

at bit #0 of the 24 bit SerialEncDataA.

ACC84B[].Chan[].SerialEncDataA

15

Single-Turn Position Data

012345678910111213141617181920212223

Multi-Turn Data

Single-Turn Position Data

31 2627282930 012345678910111213141516171819202122232425

After Shifting

Motor[].pPhaseEnc = ACC84B[].Chan[].SerialEncDataA.a

Motor[].PhaseEncLeftshift = 15

Motor[].PhaseEncRightshift = 8

Motor[].PhasePosSf = 2048 * NoOfPolePairs / 2(15 + 17)

Example 5: A 32-bit binary serial encoder with 20 bits of single-turn and 12 bits of multi-turn position data

starting at bit #0 of the 24 bit SerialEncDataA and continuously extending to bit #7 of SerialEncDataB.

ACC84B[].Chan[].SerialEncDataA

Single-Turn Position Data

01234567891011121314151617181920212223

Multi-Turn Data

ACC84B[].Chan[].SerialEncDataB

01234567891011121314151617181920212223

Multi-Turn Data

Shift right 8 bits first to get rid of unwanted data. Shift left 12 bits to Single Turn MSB for rollover.

Single-Turn Position Data

31 2627282930 012345678910111213141516171819202122232425

After Shifting

Motor[].pPhaseEnc = ACC84B[].Chan[].SerialEncDataA.a

Motor[].PhaseEncLeftshift = 12

Motor[].PhaseEncRightshift = 8

Motor[].PhasePosSf = 2048 * NoOfPolePairs / 2(12 + 20)

Note

The Motor[].PhasePosSf is best entered as an expression (e.g. a ratio of

integers) to let the Power PMAC calculate the exact value.

Power Brick AC ARM User Manual

Manual Motor Configuration – Step 6: Motor Setup 181

I2T Protection and Direct Magnetization Current

The Power Brick AC can be set up to fault a motor if

the time-integrated current levels exceed a certain

threshold. This can protect the motor (and drive)

from damage due to overheating. It integrates the

square of current over time – commonly known as

I2T ("eye-squared-tee") protection.

For maximum protection, the Power PMAC performs

the I2T calculations even when the motor is killed. In

normal operation, measured currents should be very

near zero in the killed state, and this is not important.

However, it is possible during initial setup that

incorrect settings cause Power PMAC to detect high

current values, and it may take some time even after

the settings have been corrected for the integrated

values to “decay” to permit the amplifier to be

enabled.

When an I2T fault occurs, the motor is killed, the amplifier fault and I2tFault bits are set (as seen in the

motor status window in the IDE software). These bits can be accessed using the motor structure elements

Motor[].AmpFault and Motor[].I2TFault.

The stricter current specifications (lower) between the motor and the Power Brick AC channel should be used

in the I2T calculations:

Peak Current Limit Continuous Current Limit

Current rating Value to use Time at peak Current rating Value to use

Motor < Drive That of Motor That of motor Motor < Drive That of Motor

Motor > Drive That of Drive That of drive (1 second) Motor > Drive That of Drive

The max ADC, or full current reading, is specified by the power rating of the channel:

Channel Rating Max ADC

5 A / 10 A 15.625 A

8 A / 16 A 25.0 A

Note

Power PMAC’s I2T is a motor thermal protection feature; the Power

Brick AC amplifier(s) has its own built-in I2T model which protects the

power transistors.

Power Brick AC ARM User Manual

Manual Motor Configuration – Step 6: Motor Setup 182

Brushless Motor

Example 1: Motor current limits given in RMS values or using those of the Power Brick AC

GLOBAL Ch1MaxAdc = 15.625

GLOBAL Ch1RmsPeakCur = 7.2

GLOBAL Ch1RmsContCur = 3.6

GLOBAL Ch1TimeAtPeak = 1

// Max ADC reading [A peak] -–User Input

// RMS Peak Current [A rms] -–User Input

// RMS Continuous Current [A rms]--User Input

// Time Allowed at peak [sec] --User Input

Motor[1].MaxDac = Ch1RmsPeakCur * 32768 * SQRT(2) * COSD(30) / Ch1MaxAdc

Motor[1].I2TSet = Ch1RmsContCur * 32768 * SQRT(2) * COSD(30) / Ch1MaxAdc

Motor[1].I2tTrip = (POW(Motor[1].MaxDac,2) - POW(Motor[1].I2TSet,2)) * Ch1TimeAtPeak

Example 2: Motor current limits given in peak values

GLOBAL Ch1MaxAdc = 15.625

GLOBAL Ch1PeakCur = 7.2

GLOBAL Ch1ContCur = 3.6

GLOBAL Ch1TimeAtPeak = 1

// Max ADC reading [A peak] -–User Input

// Peak Current [A peak] -–User Input

// Continuous Current [A peak] --User Input

// Time Allowed at peak [sec] --User Input

Motor[1].MaxDac = Ch1PeakCur * 32768 * COSD(30) / Ch1MaxAdc

Motor[1].I2TSet = Ch1ContCur * 32768 * COSD(30) / Ch1MaxAdc

Motor[1].I2tTrip = (POW(Motor[1].MaxDac,2) - POW(Motor[1].I2TSet,2)) * Ch1TimeAtPeak

Caution

If the current limits of the motor are given as peak values, there is no need

to multiply by √2 (1.414).

Brushed Motor

GLOBAL Ch1MaxAdc = 15.625

GLOBAL Ch1PeakCur = 2.92

GLOBAL Ch1ContCur = 0.75

GLOBAL Ch1TimeAtPeak = 1

// Max ADC reading [A peak] -–User Input

// Peak Current [A peak] -–User Input

// Continuous Current [A peak] --User Input

// Time Allowed at peak [sec] --User Input

Motor[1].MaxDac = Ch1PeakCur * 32768 / Ch1MaxAdc

Motor[1].I2TSet = Ch1ContCur * 32768 / Ch1MaxAdc

Motor[1].I2tTrip = (POW(Motor[1].MaxDac,2) - POW(Motor[1].I2TSet,2)) * Ch1TimeAtPeak

Power Brick AC ARM User Manual

Manual Motor Configuration – Step 6: Motor Setup 183

AC Induction Motor

Example 1: Motor current limits given in RMS values or using those of the Power Brick AC

GLOBAL Ch1MaxAdc = 15.625

GLOBAL Ch1RmsPeakCur = 7.2

GLOBAL Ch1RmsContCur = 3.6

GLOBAL Ch1TimeAtPeak = 1

// Max ADC reading [A peak] -–User Input

// RMS Peak Current [A rms] -–User Input

// RMS Continuous Current [A rms]--User Input

// Time Allowed at peak [sec] --User Input

GLOBAL Ch1TempMaxDac = Ch1RmsPeakCur * 32768 * SQRT(2) * COSD(30) / Ch1MaxAdc

GLOBAL Ch1TempI2TSet = Ch1RmsContCur * 32768 * SQRT(2) * COSD(30) / Ch1MaxAdc

Motor[1].IdCmd = 0.5 * Ch1TempI2TSet

Motor[1].MaxDac = SQRT(POW(Ch1TempMaxDac,2) - POW(Motor[1].IdCmd,2))

Motor[1].I2TSet = SQRT(POW(Ch1TempI2TSet,2) - POW(Motor[1].IdCmd,2))

Motor[1].I2tTrip = (POW(Motor[1].MaxDac,2) - POW(Motor[1].I2TSet,2)) * Ch1TimeAtPeak

Example 2: Motor current limits given in peak values

GLOBAL Ch1MaxAdc = 15.625

GLOBAL Ch1PeakCur = 7.2

GLOBAL Ch1ContCur = 3.6

GLOBAL Ch1TimeAtPeak = 1

// Max ADC reading [A peak] -–User Input

// Peak Current [A peak] -–User Input

// Continuous Current [A peak] --User Input

// Time Allowed at peak [sec] --User Input

GLOBAL Ch1TempMaxDac = Ch1RmsPeakCur * 32768 * COSD(30) / Ch1MaxAdc

GLOBAL Ch1TempI2TSet = Ch1RmsContCur * 32768 * COSD(30) / Ch1MaxAdc

Motor[1].IdCmd = 0.5 * Ch1TempI2TSet

Motor[1].MaxDac = SQRT(POW(Ch1TempMaxDac,2) - POW(Motor[1].IdCmd,2))

Motor[1].I2TSet = SQRT(POW(Ch1TempI2TSet,2) - POW(Motor[1].IdCmd,2))

Motor[1].I2tTrip = (POW(Motor[1].MaxDac,2) - POW(Motor[1].I2TSet,2)) * Ch1TimeAtPeak

Note

The value given for Motor[].IdCmd is just a starting point. I2T settings

should be recomputed once an empirical value is found in the “Optimizing

Magnetization Current” section.

Caution

If the current limits of the motor are given as peak values, there is no need

to multiply by √2 (1.414).

Power Brick AC ARM User Manual

Manual Motor Configuration – Step 6: Motor Setup 184

Slip Gain

Brushless Motor

Slip gain is not necessary for brushless motors.

Brushed Motor

Slip gain is not necessary for brushed motors.

AC Induction Motor

Once Motor[].IdCmd has been configured, the slip gain, Motor[].DtOverRotorTc, can be computed with

additional information from the faceplate as in the following example code:

GLOBAL Ch1Freq = 60

GLOBAL Ch1NumPoles = 4

GLOBAL Ch1RatedRPM = 1760

GLOBAL PI = 3.14159265359

// Motor Rated Frequency [Hz] -–User Input

// Numbr of Poles -–User Input

// Motor Rated Speed [RPM] --User Input

GLOBAL we = 2 * PI * Ch1Freq

GLOBAL wm = PI / 60 * Ch1RatedRPM * Ch1NumPoles

Motor[1].DtOverRotorTc = (we - wm) * Motor[1].IdCmd / (32768 * PowerBrick[0].PhaseFreq)

Note

After refining Motor[].IdCmd, Motor[].DtOverRotorTc should be

recalculated using the new value.

Power Brick AC ARM User Manual

Manual Motor Configuration – Step 6: Motor Setup 185

Current Loop Tuning

Brushed Motor

Current loop tuning for brushed motors is performed similarly to brushless motors. However, the IDE tuning

software injects "direct" current to perform a current loop step response. To use this tool successfully with DC

brush motors:

 Motor[].PhaseTableBias must be set manually to ±512 (90° electrical angle) so that direct current

corresponds to A-phase current. The sign of ±512 is typically chosen so that a positive step response is

produced.

 Motor[].PhaseMode must be set to 1 so that bit 1 is zero forcing the Id integrator to be on during tuning.

Note

Remember to set Motor[].PhaseTableBias back to 0, and

Motor[].PhaseMode to 3 for normal motor operation.

AC Induction Motor

Current loop tuning for AC induction motors with encoder is performed similarly to brushless motors.

Brushless Motor

Current loop tuning is typically performed using the tuning tool in the IDE software.

Note

With some basic knowledge of motor and amplifier parameters, it is

possible to calculate the current-loop gains empirically. This is described

in the Power PMAC User manual.

The "Simple Auto-tune" and "Auto-tune" tools are straight forward tools which may be used effectively.

Following, is a practical description of the "Interactive tune" utility.

The current loop step test magnitude and rough phasing are typically in the range of:

Motor[].I2TSet / 2 < Magnitude < Motor[].I2TSet

This allows enough current to overcome static non-linear components for a good response without the risk of

overheating the motor or triggering an over-current fault.

The "Dwell Time" is typically in the 50 – 100 msec range. This may be extended for slower response motors

(high inductance).

Power Brick AC ARM User Manual

Manual Motor Configuration – Step 6: Motor Setup 186

Conservative start < 0.15

Conservative Start: IiGain * 10

[I2TSet/2 – I2TSet]

[I2TSet/2 – I2TSet]

[20 – 100]

Brushless motors’ current loop can be, virtually, tuned using exclusively Motor[].IiGain and Motor[].IpfGain.

In the Power PMAC digital current loop algorithm these gains can be thought of as:

Motor[].IiGain: The transient effort (in reality integral gain).

Motor[].IpfGain: The damping gain (in reality forward path proportional gain).

Motor[].IpbGain can be optionally used in conjunction with Motor[].IpfGain.

Current-Loop response with natural Frequencies in the range of 200 – 500 Hz and a rise time of about 1 msec are

adequate for most applications. With higher performance motors (e.g. linear), the current loop’s natural frequency

can be pushed higher. However, tightening the current loop with a lower performance system could have

deteriorating effects on the overall position closed-loop performance.

An acceptable current-loop step response should look like:

Power Brick AC ARM User Manual

Manual Motor Configuration – Step 6: Motor Setup 187

Establishing Phase Reference

Brushed Motor

Establishing phase reference is not necessary for brushed motors.

AC Induction Motor

Establishing phase reference for AC induction motors with encoder is performed similarly to brushless motors.

Brushless Motor

When commutating a synchronous multi-phase motor such as a permanent-magnet brushless servo motor, the

commutation algorithm must know the absolute position of the rotor within a single commutation cycle so it

knows the magnetic field orientation of the rotor. The process of establishing this absolute position sense is

known as "phase referencing" or "phasing".

An unreliable phasing search method can lead to a runaway condition.

Test the phasing search method carefully to make sure it works properly

under all conceivable conditions, and various locations of the travel.

Make sure the fatal following error limit Motor[].FatalFeLimit is

active and as tight as possible so the motor will be killed quickly in the

event of a serious phasing search error.
Warning

Setting up a new motor/encoder requires performing an automatic or manual phase referencing routine. In the

absence of an absolute phase reference reporting device such as digital hall sensors or absolute encoder, this

phase referencing routine may be saved and implemented permanently.

With digital hall sensors, absolute power-on phasing can be configured to perform the phase referencing without

the need of moving or energizing the motor. A manual force phasing routine is used to correct for hall sensors’

phasing error one time per motor/encoder setup.

With absolute encoders, absolute power-on phasing can be configured to perform the phase referencing without

the need of moving or energizing the motor. A manual force phasing routine is used to compute the absolute

phase offset one time per motor/encoder setup.

Note

The available torque from a motor is directly proportional to the accuracy

of the phase reference. The better the phasing is the less torque loss,

current dissipation, and motor/drive thermal losses are.

Note

For best performance, the initial phasing routine (any method) should be

done on an unloaded/uncoupled motor.

Note

Vertical axes phasing may require higher output current to overcome

gravity, it is strongly advised to implement a balancing mechanism (e.g.

weight, air) for these cases.

Power Brick AC ARM User Manual

Manual Motor Configuration – Step 6: Motor Setup 188

The following phasing methods are discussed in this section:

 Automatic Stepper Phasing

 Manual "Force" Phasing

 Custom "PLC" Phasing

Choosing a phasing method depends on the feedback device used with the brushless motor. The following table

is a summary of the suggested phasing method to use with respect to each type of feedback device:

Type of Feedback Device
Initial Phasing /

Getting Started

Final Implementation /

Saved Configuration

Quadrature / Sinusoidal – No Halls

Stepper / Manual

Stepper / Manual / PLC

Quadrature / Sinusoidal – With Halls
Absolute Phasing.

Halls phasing correction recommended.

Resolver Absolute Phasing.

Serial Incremental Stepper / Manual / PLC

Serial Absolute Absolute Phasing.

Power Brick AC ARM User Manual

Manual Motor Configuration – Step 6: Motor Setup 189

 AUTOMATIC STEPPER PHASING

The automatic Stepper phasing technique is one of two phase referencing routines built into the Power PMAC

firmware (the other one is the four-guess technique, not discussed here). The automatic stepper method can be

used with any type of feedback device. It is simple to set up and can establish a very accurate phase reference.

Without the presence of digital hall sensors or an absolute encoder, the automatic stepper method can be saved

and used in the power-up routine of the motor. Prior to implementing it permanently, it is highly recommended

to test the automatic stepper method for consistency at random locations of the travel. Setting up the automatic

stepper phasing technique requires configuring the following motor structure elements:

 Motor[].PhaseFindingDac specifies the magnitude of the output (current) used in the search move.

Motor[].I2Tset / 2 is a "good" conservative value to start with.

 Motor[].PhaseFindingTime specifies the amount of time (in real time interrupts) allowed for the

search move. This can be computed in milliseconds, per the example equation below.

 Motor[].AbsPhasePosOffset specifies the minimum motion that qualifies the search as being a valid

search. Typically set to 1/5th of a commutation cycle (2048 / 5).

 Motor[].PowerOnMode specifies whether a search move is applied on power-up. This is not advised

with the automatic stepper phasing since the main bus power may not be available when the PMAC

powers up. Leave bit 1 = 0.

Caution

The Stepper phasing technique is a search operation which requires the

motor to move, typically in small steps. Nevertheless, caution should

be taken.

Example

GLOBAL Mtr1PhasingTime = 3000 // Total phasing time [msec] --User Input

Motor[1].PhaseFindingTime = Mtr1PhasingTime * 0.5 / (Sys.ServoPeriod * (Sys.RtIntPeriod + 1))

Motor[1].PhaseFindingDac = Motor[1].I2TSet / 2 // Phasing search magnitude --User Input

Motor[1].AbsPhasePosOffset = 2048 / 5 // Qualifying motor movement

Note

The computed Motor[].PhaseFindingTime must be greater than 255 and

less than 32,768 for the proper implementation of the automatic stepper

phasing technique.

Issuing a #n$ or setting Motor[].PhaseFindingStep = 1 launches the stepper phasing search move. The

pass/fail of the operation is reported by the motor status Motor[].PhaseFound bit. If the phasing fails

(Motor[].PhaseFound = 0) repeatedly:

 Try increasing the magnitude, Motor[].PhaseFindingDac.

 Try extending the time allowed for phasing, Motor[].PhaseFindingTime.

 Try reversing the encoder decode PowerBrick[].Chan[].EncCtrl (e.g. 7 to 3 or vice versa).

o Not applicable to serial encoders.

 Try swapping two of the motor leads.

 Decouple the motor from the load and try again.

Power Brick AC ARM User Manual

Manual Motor Configuration – Step 6: Motor Setup 190

 MANUAL "FORCE" PHASING

The manual phasing method consists of locking up the motor tightly onto the zero position of the commutation

cycle by forcing current into the offset of its B phase. This manual phasing works with any type of feedback

device. It is particularly useful in:

 Establishing a phase reference manually.

 Troubleshooting phasing difficulties.

 Finding the absolute phase offset with absolute serial encoders.

Caution

The manual phasing technique is a search operation which requires the

motor to move, typically in small steps. Nevertheless, caution should

be taken.

Note

The tighter the motor is locked, the better is the phase reference.

Following, are the basic steps for performing a manual "force" phasing:

 Make sure the motor is killed and steady.

 Set Motor[].IbBias to a value corresponding to the amount of current to force into the phase.

 A conservative start is = Motor[].I2TSet / 2.

 Issue a #nOut0 (where n is the motor number). The motor should lock into a position and exhibit some

stiffness when trying to move it by hand.

Increase Motor[].IbBias as necessary until the motor is locked tightly. Exceeding the value of

Motor[].I2TSet indicates that there is a problem with the amplifier output or that the motor or drive is not

sized properly for the load.

Wait for the motor to settle. In some instances, it may oscillate for an extended amount of time. Some

motors may be small enough to safely stabilize by hand.

 Zero the phase position register if performing a phasing routine; Motor[].PhasePos = 0. Or record the

corresponding serial data for finding the absolute phase offset with absolute serial encoders.

 Kill the motor; #nK.

 Reset Motor[].IbBias = 0

 Set the phase found status bit; Motor[].PhaseFound = 1 if performing a phasing routine.

The motor should be phased at this point, and could be verified with an open loop test. Below are a few

troubleshooting tips in case of difficulty:

 Try increasing the magnitude of Motor[].IbBias.

 Try reversing the encoder decode PowerBrick[].Chan[].EncCtrl (e.g. 7 to 3 or vice versa).

o Not applicable to serial encoders.

 Try swapping two of the motor leads.

 Decouple the motor from the load, and try again.

Power Brick AC ARM User Manual

Manual Motor Configuration – Step 6: Motor Setup 191

 CUSTOM "PLC" PHASING

Some system may require a more specialized phasing technique due to uneven loads or friction along the travel.

This manual phasing PLC may be more desirable for advanced users due to flexibility and more customization

capabilities.

This travel distance should theoretically correspond to 1/6 of a commutation cycle size (in motor/encoder

units). This is checked against at the end of the routine, and recorded in a pass/fail flag.

 MtrxPhasingMag is the amount of current to use for step phasing the motor.

o Conservative starting estimate Motor[].I2TSet / 2.

 MtrxPhaseAPos is the actual position of the motor when locked on to phase A.

 MtrxPhaseBPos is the actual position of the motor when locked on to phase B.

 MtrxPhasingDis is the displacement during the phasing routine.

 MtrxDisThres is the minimum travel indicating a successful phasing. 5th of a commutation cycle =

2048 * EncTable[].ScaleFactor / (5 * Motor[].PhasePosSf)

 MtrxPhasingPass is a flag indicating the pass or fail of the phasing routine.

o =1 pass, =0 fail.

Note

If the motor does not settle between lock-ups, increase the delay time. The

threshold with which the filtered velocity is compared to may need to be

tweaked as well.

Note

It is highly advised to test the motor phasing with the stepper or manual

force phasing method before attempting to use a custom PLC.

Power Brick AC ARM User Manual

Manual Motor Configuration – Step 6: Motor Setup 192

GLOBAL Mtr1PhasingMag = Motor[1].I2TSet

GLOBAL Mtr1PhaseAPos = 0

GLOBAL Mtr1PhaseBPos = 0

GLOBAL Mtr1PhasingDis = 0

GLOBAL Mtr1DisThres = 2048 * EncTable[1].ScaleFactor / (5 * Motor[1].PhasePosSf)

GLOBAL Mtr1PhasingPass = 0

OPEN PLC CustomPhasingPLC

Mtr1PhasingPass = 0

Motor[1].PhaseFound = 0

Motor[1].IaBias = 0 Motor[1].IbBias = 0

COUT 1:0

CALL DelayTimer.msec(100)

WHILE (ABS(Motor[1].FltrVel) > 5){}

WHILE (Motor[1].IaBias !> Mtr1PhasingMag)

{

 Motor[1].IaBias += 1 Motor[1].IbBias = 0

 CALL DelayTimer.msec(1)

}

CALL DelayTimer.sec(2)

WHILE (ABS(Motor[1].FltrVel) > 5){}

Mtr1PhaseAPos = ABS(Motor[1].ActPos - Motor[1].HomePos)

CALL DelayTimer.msec(250)

WHILE (Motor[1].IbBias !> Mtr1PhasingMag)

{

 Motor[1].IaBias -= 1 Motor[1].IbBias += 1

 CALL DelayTimer.msec(1)

}

CALL DelayTimer.sec(2)

WHILE (ABS(Motor[1].FltrVel) > 5){}

Mtr1PhaseBPos = ABS(Motor[1].ActPos - Motor[1].HomePos)

CALL DelayTimer.msec(250)

Mtr1PhasingDis = ABS(Mtr1PhaseBPos - Mtr1PhaseAPos)

IF(Mtr1PhasingDis >= Mtr1DisThres)

{

 Motor[1].PhasePos = 0

 Motor[1].PhaseFound = 1

 Mtr1PhasingPass = 1

}

ELSE

{

 Mtr1PhasingPass = 0

}

CALL DelayTimer.msec(250)

KILL 1

Motor[1].IaBias = 0 Motor[1].IbBias = 0

DISABLE PLC CustomPhasingPLC

CLOSE

Power Brick AC ARM User Manual

Manual Motor Configuration – Step 6: Motor Setup 193

Open Loop Test

Brushed Motor

The open loop test for brushed motors with encoder is performed similarly to brushless motors.

AC Induction Motor

The open loop test for AC Induction motors is performed similarly to brushless motors.

Brushless Motor

The open loop test is a critical step in verifying the proper implementation of the:

 Current loop

 Commutation

 Encoder decode/sense

 Encoder functionality

The open loop test can be executed using the open-loop test tab in the tuning utility in the IDE software.

The test amplitude depends on the load/gearing of the motor. Conservative values between 1 – 10% are good

starting estimates. The test time is typically under 500 msec, nominally 100 msec. The number of repetitions is

user configurable and may depend on the allowed amount of travel.

Caution

Do not attempt to close the position loop on a motor which open loop test

has not passed, or shows an inverted saw tooth velocity. This may lead to

dangerous runaway conditions.

Power Brick AC ARM User Manual

Manual Motor Configuration – Step 6: Motor Setup 194

A positive command should create a velocity and position counting in the positive direction; a negative command

should create a velocity and position counting in the negative direction. This is typically observed in the response

plot as a velocity saw tooth. A successful open-loop test response looks like:

 TROUBLESHOOTING TIPS:

The open loop test can fail in two ways:

 Motor cogs to a phase (locks up)

 Plot shows an inverted saw tooth.

This indicates that one or a combination of the following:

 Incorrect commutation cycle size; review Motor[].PhasePosSf.

 Reversed encoder direction sense; review PowerBrick[].Chan[].EncCtrl (e.g. 7 to 3).

o Not applicable to serial encoders.

 Phasing was not preformed successfully; phase and try again.

 Reversed commutation direction; can be reversed in two ways:

o Swapping any two of the motor leads

o Setting Motor[].PwmSf, and Motor[]PhaseOffset simultaneously to the opposite sign

Power Brick AC ARM User Manual

Manual Motor Configuration – Step 6: Motor Setup 195

Optimizing Magnetization Current

Brushless Motor

Magnetization current is not necessary for brushless motors.

Brushed Motor

Magnetization current is not necessary for brushed motors.

AC Induction Motor

At this point in the setup, the magnetization current parameter, Motor[].IdCmd, can be optimized for better

torque output. The goal is to vary Motor[].IdCmd until the motor achieves its rated speed from the

faceplate/datasheet of the motor (e.g. 1760 RPM) with an open loop output command. Assuming the motor has

been properly configured up to this point, the following procedure can be used:

1. Issue an open loop output command (e.g. #nout25, where n is the motor number) and wait for the motor

to reach a steady state speed (i.e. a speed that no longer varies).

2. If the motor’s speed is below the rated speed, decrease Motor[].IdCmd by a small amount. If the motor’s

speed is above the rated speed, increase Motor[].IdCmd by a small amount.

3. Repeat step 2 until the rated speed is stably reached.

4. Save the final Motor[].IdCmd value to your project files.

5. Reprogram Motor[].I2tTrip and Motor[].DtRotorOverTc using the new Motor[].IdCmd.

If the user wants the motor to run faster than the rated speed, a field weakening algorithm can be used. The

following diagram illustrates how magnetization current affects the motor’s maximum achievable speed for a

given voltage:

Mag. Current
Motor[x].IdCmd

Voltage/
Speed
(RPM)Base

Speed

Nominal Field
Weakening

Nominal, at full motor voltage (230 V)

208 VAC bus, Higher IdCmd

208 VAC bus, Optimized IdCmd

208 VAC bus, Lower IdCmd

Max Speed(s)
Before Field
Weakening

Power Brick AC ARM User Manual

Manual Motor Configuration – Step 6: Motor Setup 196

Position Loop Tuning

Brushed Motor

Position loop tuning of brushed motors is performed similarly to brushless motors.

AC Induction Motor

Position loop tuning of AC induction motors is performed similarly to brushless motors.

Brushless Motor

Position loop tuning is performed using the tuning utility in the IDE Software.

Caution

Do not attempt to close the position loop or perform position loop

tuning on a motor which open-loop test has failed. This may lead to

dangerous runaway conditions.

There are three main tuning sub-utilities in the tuning tool:

 Simple auto-tune.

 Advanced Auto-Tune.

 Position-Loop interactive tuning.

Simple Auto-tune Advanced Auto-tune

For brushless motors, with the Power Brick AC, the amplifier type is always set to PWM.

The simple auto-tune is self-explanatory; move the slide left for a slower natural frequency and right for a higher

natural frequency. Checking the "enable feedforward" box will also estimate the feedforward gains. This tuning

technique may be more suitable for lightly loaded motors, and lower resolution encoders.

Power Brick AC ARM User Manual

Manual Motor Configuration – Step 6: Motor Setup 197

The advanced auto-tune introduces more user specific inputs, such as specifying the desired natural frequency,

damping ratio, and integral action. The excitation magnitude and time are typically the same as the ones used

successfully in the open-loop test.

Note

The automatic tuning techniques are conceived for rough tuning, which

may be suitable for most applications. Fine tuning is typically performed

using the interactive utility.

The Position-loop interactive tuning is the fully fletched tuning interface, introducing all the gains used in the

servo algorithm, various pre-configured command profiles, and filter tools. The two most common move profiles

used in tuning are Step and Parabolic.

Interactive Tuning

An acceptable step move response would look like:

Power Brick AC ARM User Manual

Manual Motor Configuration – Step 6: Motor Setup 198

And an acceptable parabolic move response would look like:

Desirable characteristics to note: following error (green curve above) centered about 0 with minimal amplitude.

Note

With higher resolution encoders, the Motor[].Servo.MaxPosErr may

need to be set to a higher than the default value allowing larger position

error in the servo filter.

Power Brick AC ARM User Manual

Manual Motor Configuration – Step 6: Motor Setup 199

Absolute Power-on Phasing

Brushed Motor

The absolute power-on phasing is not necessary as per this section for brushed motors.

AC Induction Motor

The absolute power-on phasing for stepper motors with encoder is performed similarly to brushless motors.

Brushless Motor

Absolute power-on phasing is configurable with feedback devices providing an absolute reference capability;

devices such as hall sensors, resolvers, or absolute serial encoders.

The absolute power-on phasing allows the phasing (figuring out the commutation rotor-angle position) of a motor

without the need of a search move (motion) or energizing the motor.

With the 4 key motor structure elements (described in the examples below) configured and saved, issuing a #n$

or Motor[].PhaseFindingStep = 1 will initiate the absolute phasing computation.

A successful operation sets the Motor[].PhaseFound bit of the motor status to 1.

Alternately, automatic power-on absolute phasing can be configured (and saved) by setting bit #1 of the motor

structure element PowerOnMode. Example: Motor[].PowerOnMode = Motor[].PowerOnMode | $2.

Note

If the encoder power (5 VDC) is supplied from the X1 – X8 connectors,

then the encoder is ensured to receive power by the time the PMAC

boots up. However, if the encoder power is wired external, the user must

ensure that this supply is turned on by the time the PMAC boots up and

before phasing.

Power Brick AC ARM User Manual

Manual Motor Configuration – Step 6: Motor Setup 200

 HALL EFFECT PHASING

Digital Hall Effect sensors can be used for computing a rough absolute phase reference on power-up without the

need for a phasing search move. They provide absolute information about where the motor is positioned with

respect to its commutation cycle. They are desirable because, just like with absolute encoders, the motor can be

phased on power-up without any movement.

Note

Inherently, digital hall sensors have an error of about ±30°, resulting in a

loss of torque of about 15%. This should be corrected (fine phasing) for

top operation.

The Power Brick AC supports both the conventional 120°, and less common 60° spacing. This section focuses

on the more standard 120° spacing, each signal nominally with 50% duty cycle, and nominally 1/3 cycle apart.

 -60° 0° 60° 120° 180° -120° -60° 0° 60°

Channel W

Channel V

Channel U

Setting up digital Hall Effect sensors’ absolute phasing requires:

 The motor to be phased initially (using the stepper/manual technique)

 Moving the motor either by hand or with jog commands.

Moving the motor by hand with geared or loaded motors may not be possible. In these cases, it is

recommended to perform the open loop test and rough position loop tuning first then come back for

setting up the Hall sensors.

The key motor structure elements necessary for configuring Hall sensors’ absolute phasing are:

 Motor[].pAbsPhasePos = PowerBrick[].Chan[].Status.a

 Motor[].AbsPhasePosFormat = $400030C (always for halls 120° spacing)

 Motor[].AbsPhasePosSf. The Motor[].AbsPhasePosSf reflects the direction sense of the halls with

respect to the commutation counting direction. This is the UVW transition when moving the motor in

the positive direction of the encoder:

= 2048 / 12 if the PowerBrick[].Chan[].UVW transition is from 1 to 3

= -2048 / 12 if the PowerBrick[].Chan[].UVW transition is from 3 to 1

 Motor[].AbsPhasePosOffset

The Motor[].AbsPhasePosOffset is the phase position at that transition.

Power Brick AC ARM User Manual

Manual Motor Configuration – Step 6: Motor Setup 201

These settings can be configured using the plot utility in the IDE software. Moving or jogging the motor by hand

in the positive direction while gathering Motor[].PhasePos and the corresponding PowerBrick[].Chan[].UVW

should produce the following:

1

3

2

4

5

6

Motor[].AbsPhasePosSF =
 2048 / 12 If the transition is 1-3

–2048 / 12 If the transition is 3-1

Motor[].AbsPhasePosOffset is equal to Motor[].PhasePos at the transition.

Example:

Motor[1].pAbsPhasePos = PowerBrick[0].Chan[0].Status.a

Motor[1].AbsPhasePosFormat = $400030C

Motor[1].AbsPhasePosSF = 2048 / 12 // --UserInput

Motor[1].AbsPhasePosOffset = 1362 // --UserInput

Power Brick AC ARM User Manual

Manual Motor Configuration – Step 6: Motor Setup 202

 GENERATING HALL EFFECT PHASING PARAMETERS USING A PLC

Alternately, the following PLC example configures the Motor[].AbsPhasePosSf, and

Motor[].AbsPhasePosOffset automatically.

 Enable the PLC

 Move the motor at a slow to average speed (by hand or using jog commands) in the positive direction

of the encoder.

 Once Motor[].AbsPhasePosOffset is posted, your Halls settings are finished. Discard the PLC and save

the four key motor structure parameters in the project as well as in the PMAC.

Example:

PTR Ch1Halls->PowerBrick[0].Chan[0].UVW

OPEN PLC HallsPLC

Motor[1].AbsPhasePosSF = 0

Motor[1].AbsPhasePosOffset = 0

// Check Direction

WHILE (Motor[1].AbsPhasePosSF == 0)

{

 IF (Ch1Halls == 1)

 {

 WHILE (Ch1Halls == 1){}

 IF (Ch1Halls == 3) {Motor[1].AbsPhasePosSF = 2048 / 12}

 ELSE {Motor[1].AbsPhasePosSF = -2048 / 12}

 }

}

// Capture Motor[].PhasePos at Transition

WHILE (Motor[1].AbsPhasePosOffset == 0)

{

 IF (Motor[1].AbsPhasePosSF > 0 && Ch1Halls == 1 && Motor[1].AbsPhasePosOffset == 0)

 {

 WHILE (Ch1Halls == 1){}

 Motor[1].AbsPhasePosOffset = Motor[1].PhasePos

 }

 IF (Motor[1].AbsPhasePosSF < 0 && Ch1Halls == 3 && Motor[1].AbsPhasePosOffset == 0)

 {

 WHILE (Ch1Halls == 3){}

 Motor[1].AbsPhasePosOffset = Motor[1].PhasePos

 }

}

DISABLE PLC HallsPLC

CLOSE

Power Brick AC ARM User Manual

Manual Motor Configuration – Step 6: Motor Setup 203

 HALL PHASING CORRECTION (FINE PHASING)

Inherently, digital hall sensors have an error of about ±30° resulting in a loss of torque of about 15%. Correcting

for hall sensors’ error can be achieved with a simple procedure. For better efficiency, this correction is strongly

recommended for all applications using hall sensors for "absolute" phasing.

The hall phasing correction requires homing the motor. If the motor’s position loop has not been tuned for closed

loop commands it may be more practical, after phasing with the stepper/manual technique, to carry on to the open

loop test and position loop tuning then come back for hall phasing correction.

Note

Hall phasing correction requires homing the motor.

The following are the necessary steps to implement the hall phasing correction:

1. Phase the motor, as best as possible, using the stepper / manual technique.

2. Home the motor to a reliable reference; encoder index or combination of flag and index.

Not to be changed after the initial installation.

3. Record Motor[].PhasePos.

This value can be saved in Motor[].AbsPhasePosForce.

After saving Motor[].AbsPhasePosForce in the project and the PMAC, and on the next power cycle:

 Phase the motor using halls by issuing #n$ or Motor[].PhaseFindingStep = 1

 Home the motor to the same reference used in the phase correction routine.

 Once homed and settled, set Motor[].PhasePos = Motor[].AbsPhasePosForce.

o The hall phasing correction is now complete.

Power Brick AC ARM User Manual

Manual Motor Configuration – Step 6: Motor Setup 204

 ABSOLUTE SERIAL ENCODER PHASING WITH GATE3

With absolute serial encoders, the four key elements for setting up absolute phasing are:

 Motor[].pAbsPhasePos = PowerBrick[].Chan[].SerialEncDataA.a

 Motor[].AbsPhasePosFormat

 Encoders with no multi-turn position data are unsigned. Rotary encoders with multi-turn position

data are signed.

 Only 32 bits of position data can be used for absolute phasing. This should be the upper 32 bits of

(single-turn) positon data.

a a b b c c d dMotor[].AbsPhasePosFormat = $

Number of the starting bit
of the data from register A

Number of the starting bit
of the data from register B

Number of bits to use

= 00 Numerical binary
= 02 Gray code, convert to Binary
= 04 Halls 120 degree spacing
= 05 Halls 60 degree spacing

 Motor[].AbsPhasePosSf

If less than 32 SingleTurnBits

Rotary: = 2048 * NoOfPolesPairs / 2SingleTurnBits

Linear: = 2048 * RESmm / ECLmm

If more than 32 SingleTurnBits

Rotary: = 2048 * NoOfPolesPairs / 232

Linear: = 2048 * RESmm * 2SingleTurnBits-32 / ECLmm

 Motor[].AbsPhasePosOffset = –PhaseForceTest * Motor[].AbsPhasePosSf
Where:

 NoOfPolePairs is the number of pole pairs of a rotary motor

 SingleTurnBits is the number of bits of single turn position data for rotary serial encoder.

 ECLmm is the linear motor electrical cycle length or magnetic pitch (e.g. 60.96 mm)

 RESmm is the linear encoder resolution in the same unit as the ECL (e.g. 1 µm = 0.001 mm)

 PhaseforceTest is the position value recorded from the Stepper Phasing Force Test.

Note

Only 32 bits of position data can be used for absolute phasing.

Note

Gray code conversion should be omitted here if it had been already

implemented in PowerBrick[].Chan[].SerialEncCmd.

Power Brick AC ARM User Manual

Manual Motor Configuration – Step 6: Motor Setup 205

Stepper Phasing Force Test
The following, are the basic steps for performing the stepper phasing force test, which is similar to manual motor

phasing:

1. Make sure the motor is killed and steady.

2. Set Motor[].IbBias to a value corresponding to the amount of current to force into the phase.

A conservative start is = Motor[].I2TSet / 2.

3. Issue a #nOut0 (where n is the motor number). The motor should lock into a position and exhibit some

stiffness when trying to move it by hand.

Increase Motor[].IbBias as necessary until the motor is locked tightly. Exceeding the value of

Motor[].I2TSet indicates that there is a problem with the amplifier output or that the motor or drive is

not sized properly for the load.

Wait for the motor to settle. In some instances, it may oscillate for an extended amount of time. Some

motors may be small enough to safely stabilize by hand.

4. Record the entire position from Serial Data registers. See examples below for PhaseForceTest equations

with masking and shifting.

5. Kill the motor; #nK.

6. Reset Motor[].IbBias = 0

Example 1: A binary serial encoder with 17 bits of single-turn (or an equivalent 1 μm linear scale) position data

starting at bit #0 of SerialEncDataA.

PowerBrick[].Chan[].SerialEncDataA

31 2627282930 012345678910111213141516171819202122232425

0 0 0 0 1 1 0 0Motor[].AbsPhasePosFormat = $

Serial data A start at bit 0Serial data B: none

17 bits00: unsigned binary

Motor[].pAbsPhasePos = PowerBrick[].Chan[].SerialEncDataA.a

Motor[].AbsPhasePosFormat = $00001100

Rotary: Motor[].AbsPhasePosSf = 2048 * NoOfPolePairs / 217

Linear: Motor[].AbsPhasePosSf = 2048 * RESmm / ECLmm

Motor[].AbsPhasePosOffset = –PhaseForceTest * Motor[].AbsPhasePosSf

The PhaseForceTest value can be found by performing a Stepper Phasing Force Test. The following command

can be used to find the value at the correct step. The returned value should be used in the project.

L0 = PowerBrick[].Chan[].SerialEncDataA & $0001FFFF L0

Power Brick AC ARM User Manual

Manual Motor Configuration – Step 6: Motor Setup 206

Example 2: A binary serial encoder with 20 bits of single-turn (or an equivalent 50 nm linear scale) position data

starting at bit #4 of SerialEncDataA. The low 4 bits may contain other information, irrelevant to position data.

PowerBrick[].Chan[].SerialEncDataA

31 2627282930 012345678910111213141516171819202122232425

0 0 0 0 1 4 0 4Motor[].AbsPhasePosFormat = $

Serial data A start at bit 4Serial data B: none

16 bits00: unsigned binary

Motor[].pAbsPhasePos = PowerBrick[].Chan[].SerialEncDataA.a

Motor[].AbsPhasePosFormat = $00001404

Rotary: Motor[].AbsPhasePosSf = 2048 * NoOfPolePairs / 220

Linear: Motor[].AbsPhasePosSf = 2048 * RESmm / ECLmm

Motor[].AbsPhasePosOffset = –PhaseForceTest * Motor[].AbsPhasePosSf

The PhaseForceTest value can be found by performing a Stepper Phasing Force Test. The following command

can be used to find the value at the correct step. The returned value should be used in the project.

L0 = (PowerBrick[].Chan[].SerialEncDataA & $00FFFFF0) >> L0

Power Brick AC ARM User Manual

Manual Motor Configuration – Step 6: Motor Setup 207

Example 3: A binary serial encoder with 36 bits of single-turn (or an equivalent 1 nm linear scale) position data

starting at bit #0 of SerialEncDataA and extending to bit #3 of SerialEncDataB. We will use the upper 32 bits;

that is the maximum allowed number of bits for the power-on absolute commutation.

PowerBrick[].Chan[].SerialEncDataA

31 2627282930 012345678910111213141516171819202122232425

PowerBrick[].Chan[].SerialEncDataB

31 2627282930 012345678910111213141516171819202122232425

0 0 0 0 2 0 0 4Motor[].AbsPhasePosFormat = $

Serial data A start at bit 4Serial data B: none

32 bits00: unsigned binary

Motor[].pAbsPhasePos = PowerBrick[].Chan[].SerialEncDataA.a

Motor[].AbsPhasePosFormat = $00002004

Rotary: Motor[].AbsPhasePosSf = 2048 * NoOfPolePairs / 232

Linear: Motor[].AbsPhasePosSf = 2048 * (RESmm * 2(36 - 32)) / ECLmm

Motor[].AbsPhasePosOffset = –PhaseForceTest * Motor[].AbsPhasePosSf

The PhaseForceTest value can be found by performing a Stepper Phasing Force Test. The following command

can be used to find the value at the correct step. The returned value should be used in the project.

L0 = (PowerBrick [].Chan[].SerialEncDataB & $0000000F) << 28 +

 (PowerBrick [].Chan[].SerialEncDataA & $FFFFFFF0) >> 4 L0

Note

Because this encoder is more than 32 bits, only the highest 32 bits are

used. This requires alternate equations for AbsPhasePosSf.

Power Brick AC ARM User Manual

Manual Motor Configuration – Step 6: Motor Setup 208

Example 4: A 29-bit binary serial encoder with 17 bits of single-turn and 12 bits of multi-turn position data

starting at bit #0 of SerialEncDataA.

PowerBrick[].Chan[].SerialEncDataA

31 2627282930 012345678910111213141516171819202122232425

Single-Turn Position DataMulti-Turn Position Data

0 0 0 0 1 1 0 0Motor[].AbsPhasePosFormat = $

Serial data A start at bit 0Serial data B: none

17 bits00: unsigned binary

Motor[].pAbsPhasePos = PowerBrick[].Chan[].SerialEncDataA.a

Motor[].AbsPhasePosFormat = $00001100

Motor[].AbsPhasePosSf = 2048 * NoOfPolePairs / 217

Motor[].AbsPhasePosOffset = –PhaseForceTest * Motor[].AbsPhasePosSf

The PhaseForceTest value can be found by performing a Stepper Phasing Force Test. The following command

can be used to find the value at the correct step. The returned value should be used in the project.

L0 = PowerBrick[].Chan[].SerialEncDataA & $0001FFFF L0

Power Brick AC ARM User Manual

Manual Motor Configuration – Step 6: Motor Setup 209

Example 5: A 36-bit binary serial encoder with 24 bits of single-turn and 12 bits of multi-turn position data

starting at bit #0 of SerialEncDataA and continuously extending to bit #3 of SerialEncDataB.

PowerBrick[].Chan[].SerialEncDataA

31 2627282930 012345678910111213141516171819202122232425

Single-Turn Position DataMulti-Turn Position Data

PowerBrick[].Chan[].SerialEncDataB

31 2627282930 012345678910111213141516171819202122232425

Multi-Turn Position Data

0 0 0 0 1 8 0 0Motor[].AbsPhasePosFormat = $

Serial data A start at bit 0Serial data B: none

24 bits00: unsigned binary

Motor[].pAbsPhasePos = PowerBrick[].Chan[].SerialEncDataA.a

Motor[].AbsPhasePosFormat = $00001800

Motor[].AbsPhasePosSf = 2048 * NoOfPolePairs / 224

Motor[].AbsPhasePosOffset = –PhaseForceTest * Motor[].AbsPhasePosSf

The PhaseForceTest value can be found by performing a Stepper Phasing Force Test. The following command

can be used to find the value at the correct step. The returned value should be used in the project.

L0 = PowerBrick[].Chan[].SerialEncDataA & $00FFFFFF L0

Power Brick AC ARM User Manual

Manual Motor Configuration – Step 6: Motor Setup 210

 ABSOLUTE SERIAL ENCODER PHASING WITH ACC-84B

With absolute serial encoders, the four key elements for setting up absolute phasing are:

 Motor[].pAbsPhasePos = ACC84B[].Chan[].SerialEncDataA.a

 Motor[].AbsPhasePosFormat

 Encoders with no multi-turn position data are unsigned. Rotary encoders with multi-turn position

data are signed.

 Only 32 bits of position data can be used for absolute phasing. This should be the upper 32 bits of

(single-turn) positon data.

a a b b c c d dMotor[].AbsPhasePosFormat = $

Number of the starting bit
of the data from register A

Number of the starting bit
of the data from register B

Number of bits to use

= 00 Numerical binary
= 02 Gray code, convert to Binary
= 04 Halls 120 degree spacing
= 05 Halls 60 degree spacing

 Motor[].AbsPhasePosSf

If less than 32 SingleTurnBits

Rotary: = 2048 * NoOfPolesPairs / 2SingleTurnBits

Linear: = 2048 * RESmm / ECLmm

If more than 32 SingleTurnBits

Rotary: = 2048 * NoOfPolesPairs / 232

Linear: = 2048 * RESmm * 2SingleTurnBits-32 / ECLmm

 Motor[].AbsPhasePosOffset = –PhaseForceTest * Motor[].AbsPhasePosSf
Where:

 NoOfPolePairs is the number of pole pairs of a rotary motor

 SingleTurnBits is the number of bits of single turn position data for rotary serial encoder.

 ECLmm is the linear motor electrical cycle length or magnetic pitch (e.g. 60.96 mm)

 RESmm is the linear encoder resolution in the same unit as the ECL (e.g. 1 µm = 0.001 mm)

 PhaseforceTest is the position value recorded from the Stepper Phasing Force Test.

Note

Only 32 bits of position data can be used for absolute phasing.

Note

Gray code conversion should be omitted here if it had been already

implemented in ACC84B[].Chan[].SerialEncCmd.

Although data may appear to start at bit 0 in the script environment, internally it is only 24 bits starting at bit 8.

This means the starting bit number is 8 more than would be expected from viewing

Acc84B[].Chan[].SerialEncDataA in the watch window or terminal.

Power Brick AC ARM User Manual

Manual Motor Configuration – Step 6: Motor Setup 211

Stepper Phasing Force Test
The following, are the basic steps for performing the stepper phasing force test, which is similar to manual motor

phasing:

1. Make sure the motor is killed and steady.

2. Set Motor[].IbBias to a value corresponding to the amount of current to force into the phase.

A conservative start is = Motor[].I2TSet / 2.

3. Issue a #nOut0 (where n is the motor number). The motor should lock into a position and exhibit some

stiffness when trying to move it by hand.

Increase Motor[].IbBias as necessary until the motor is locked tightly. Exceeding the value of

Motor[].I2TSet indicates that there is a problem with the amplifier output or that the motor or drive is

not sized properly for the load.

Wait for the motor to settle. In some instances, it may oscillate for an extended amount of time. Some

motors may be small enough to safely stabilize by hand.

4. Record the entire position from Serial Data registers. See examples below for PhaseForceTest equations

with masking and shifting.

5. Kill the motor; #nK.

6. Reset Motor[].IbBias = 0

Example 1: A binary serial encoder with 17 bits of single-turn (or an equivalent 1 μm linear scale) position

data starting at bit #0 of the 24 bit SerialEncDataA.

ACC84B[].Chan[].SerialEncDataA

01234567891011121314151617181920212223

0 0 0 0 1 1 0 8Motor[].AbsPhasePosFormat = $

Serial data A start at bit 8Serial data B: none

17 bits00: unsigned binary

Motor[].pAbsPhasePos = ACC84B[].Chan[].SerialEncDataA.a

Motor[].AbsPhasePosFormat = $00001108

Rotary: Motor[].AbsPhasePosSf = 2048 * NoOfPolePairs / 217

Linear: Motor[].AbsPhasePosSf = 2048 * RESmm / ECLmm

Motor[].AbsPhasePosOffset = –PhaseForceTest * Motor[].AbsPhasePosSf

The PhaseForceTest value can be found by performing a Stepper Phasing Force Test. The following command

can be used to find the value at the correct step. The returned value should be used in the project.

L0 = ACC84B[].Chan[].SerialEncDataA & $0001FFFF L0

Note

Internally data starts 8 bits to the left of what is shown in the watch

window or terminal.

Power Brick AC ARM User Manual

Manual Motor Configuration – Step 6: Motor Setup 212

Example 2: A binary serial encoder with 16 bits of single-turn (or an equivalent 50 nm linear scale) position data

starting at bit #4 of the 24 bit SerialEncDataA. The low 4 bits may contain other information, irrelevant to

position data.

ACC84B[].Chan[].SerialEncDataA

01234567891011121314151617181920212223

0 0 0 0 1 0 0 CMotor[].AbsPhasePosFormat = $

Serial data A start at bit 12Serial data B: none

16 bits00: unsigned binary

Motor[].pAbsPhasePos = ACC84B[].Chan[].SerialEncDataA.a

Motor[].AbsPhasePosFormat = $0000100C

Rotary: Motor[].AbsPhasePosSf = 2048 * NoOfPolePairs / 216

Linear: Motor[].AbsPhasePosSf = 2048 * RESmm / ECLmm

Motor[].AbsPhasePosOffset = –PhaseForceTest * Motor[].AbsPhasePosSf

The PhaseForceTest value can be found by performing a Stepper Phasing Force Test. The following command

can be used to find the value at the correct step. The returned value should be used in the project.

L0 = (ACC84B[].Chan[].SerialEncDataA & $000FFFF0) >> 4 L0

Note

Internally data starts 8 bits to the left of what is shown in the watch

window or terminal.

Power Brick AC ARM User Manual

Manual Motor Configuration – Step 6: Motor Setup 213

Example 3: A binary serial encoder with 36 bits of single-turn (or an equivalent 1 nm linear scale) position data

starting at bit #0 of the 24 bit SerialEncDataA and extending to bit #11 of SerialEncDataB. We will use the

upper 32 bits; that is the maximum allowed number of bits for the power-on absolute commutation.

ACC84B[].Chan[].SerialEncDataA

01234567891011121314151617181920212223

ACC84B[].Chan[].SerialEncDataB

01234567891011121314151617181920212223

0 0 0 8 2 0 0 CMotor[].AbsPhasePosFormat = $

Serial data A start at bit 12Serial data B start at bit 8

32 bits00: unsigned binary

Motor[].pAbsPhasePos = ACC84B[].Chan[].SerialEncDataA.a

Motor[].AbsPhasePosFormat = $0008200C

Rotary: Motor[].AbsPhasePosSf = 2048 * NoOfPolePairs / 232

Linear: Motor[].AbsPhasePosSf = 2048 * (RESmm * 2(36 - 32)) / ECLmm

Motor[].AbsPhasePosOffset = –PhaseForceTest * Motor[].AbsPhasePosSf

The PhaseForceTest value can be found by performing a Stepper Phasing Force Test. The following command

can be used to find the value at the correct step. The returned value should be used in the project.

L0 = (ACC84B[].Chan[].SerialEncDataB & $00000FFF) << 20 +

 (ACC84B[].Chan[].SerialEncDataA & $00FFFFF0) >> 4 L0

Note

Because this encoder is more than 32 bits, only the highest 32 bits are

used. This requires alternate equations for AbsPhasePosSf.

Note

Internally data starts 8 bits to the left of what is shown in the watch

window or terminal.

Power Brick AC ARM User Manual

Manual Motor Configuration – Step 6: Motor Setup 214

Example 4: A 21-bit binary serial encoder with 17 bits of single-turn and 4 bits of multi-turn position data starting

at bit #0 of the 24 bit SerialEncDataA.

ACC84B[].Chan[].SerialEncDataA

15

Single-Turn Position Data

012345678910111213141617181920212223

Multi-Turn Data

0 0 0 0 1 1 0 8Motor[].AbsPhasePosFormat = $

Serial data A start at bit 8Serial data B: none

17 bits00: unsigned binary

Motor[].pAbsPhasePos = ACC84B[].Chan[].SerialEncDataA.a

Motor[].AbsPhasePosFormat = $00001108

Motor[].AbsPhasePosSf = 2048 * NoOfPolePairs / 217

Motor[].AbsPhasePosOffset = –PhaseForceTest * Motor[].AbsPhasePosSf

The PhaseForceTest value can be found by performing a Stepper Phasing Force Test. The following command

can be used to find the value at the correct step. The returned value should be used in the project.

L0 = ACC84B[].Chan[].SerialEncDataA & $0000FFFF. L0

Note

Internally data starts 8 bits to the left of what is shown in the watch

window or terminal.

Power Brick AC ARM User Manual

Manual Motor Configuration – Step 6: Motor Setup 215

Example 5: A 32-bit binary serial encoder with 20 bits of single-turn and 12 bits of multi-turn position data

starting at bit #0 of the 24 bit SerialEncDataA and continuously extending to bit #7 of SerialEncDataB.

ACC84B[].Chan[].SerialEncDataA

Single-Turn Position Data

01234567891011121314151617181920212223

Multi-Turn Data

ACC84B[].Chan[].SerialEncDataB

01234567891011121314151617181920212223

Multi-Turn Data

0 0 0 0 1 4 0 8Motor[].AbsPhasePosFormat = $

Serial data A start at bit 8Serial data B: none

20 bits00: unsigned binary

Motor[].pAbsPhasePos = ACC84B[].Chan[].SerialEncDataA.a

Motor[].AbsPhasePosFormat = $00001408

Motor[].AbsPhasePosSf = 2048 * NoOfPolePairs / 220

Motor[].AbsPhasePosOffset = –PhaseForceTest * Motor[].AbsPhasePosSf

The PhaseForceTest value can be found by performing a Stepper Phasing Force Test. The following command

can be used to find the value at the correct step. The returned value should be used in the project.

L0 = ACC84B[].Chan[].SerialEncDataA & $000FFFFF L0

Note

Internally data starts 8 bits to the left of what is shown in the watch

window or terminal.

Power Brick AC ARM User Manual

Manual Motor Configuration – Step 6: Motor Setup 216

 ABSOLUTE RESOLVER PHASING

With resolvers, the four key elements for setting up absolute phasing are:

 Motor[].pAbsPhasePos = PowerBrick[].Chan[].AtanSumOfSqr.a

 Motor[].AbsPhasePosFormat = $00001010

 Motor[].AbsPhasePosSf

Rotary Motor: = 2048 * NoOfPolesPairs / (ResPolePairs * 65536)

Where:

 NoOfPolePairs is the number of pole pairs of a rotary motor

 ResPolePairs is the resolver number of pole pairs.

 Motor[].AbsPhasePosOffset = –PhaseForceTest * Motor[].AbsPhasePosSf

Where: PhaseforceTest is the value recorded from the stepper phasing force test, by reading the upper

16 bits of PowerBrick[].Chan[].AtanSumOfSqr.

The PhaseForceTest value can be found by performing a manual force phasing (locking the motor onto phase

B) and recording the value of the upper 16 bits of AtanSumOfSrq (e.g. PhaseForceTest =

PowerBrick[].Chan[].AtanSumOfSqr >> 16).

Power Brick AC ARM User Manual

Special Functions & Troubleshooting – D1: Error Codes 217

SPECIAL FUNCTIONS & TROUBLESHOOTING

D1: Error Codes

The Power Brick AC utilizes a scrolling single-digit 7-segment display to exhibit amplifier

faults. In normal operation mode (logic and DC bus power applied), the Power Brick AC will

display a solid dot indicating that the software and hardware are running normally.

Axis #1

Axis #5

Shunt Over Voltage

Axis #2

Axis #6

Bus Under Voltage

Axis #3

Axis #7

Bus Over Voltage

Axis #4

Axis #8

Phase Missing

Soft Start Fault

Dynamic Brake

Thermal Dynamic Fault

2nd Soft Start Fault

IGBT Over

Temperature

PWM Out Of Range

Shunt Resistor Fault

IGBT Over-Current

(Short Circuit)

Power Fault

Emergency Brake

I2T Fault

Power Brick AC OK

Note

Clearing amplifier faults (and fault display) is done by enabling the

power-on reset PLC or issuing a BrickAC.Reset = 1 (requires waiting for

pass/fail of operation).

Power Brick AC ARM User Manual

Special Functions & Troubleshooting – Step and Direction, PFM Output 218

Step and Direction, PFM Output

The Power Brick AC has the capability of generating step and direction output

signals - aka PFM (Pulse Frequency Modulation) – for general purpose usage or

control of external devices such as stepper amplifiers. The maximum pulse

frequency and minimum pulse width are typically provided by the third party

device manufacturer.

The step and direction outputs are RS422 compatible, +5 VDC level, and could

be connected in either differential or single-ended configuration.

These PFM signals are generated out of the X1 – X8 encoder connectors, not to

confuse them with the motor output connectors Amp1 – Amp8.

Pins #5, 6, 13, and 14 of the encoder feedback connectors (X1 – X8) share three different functions: only one of

these functions (per channel) can be used – configured in software – at one time:

 Pulse and direction PFM output signals.

 TUVW hall flag inputs.

 Serial Encoder input.

Note

Each channel is independent of the other channels and can have its own

use for these pins.

Most common usage of the PFM output signals:

 Manual modulation (from HMI or PLC, e.g. Laser modulation).

 Controlling an external stepper amplifier/motor.

 COMMON CHANNEL SETTINGS FOR PFM OUTPUT (EXAMPLE CHANNEL 1):

PowerBrick[0].Chan[0].PackOutData = 0

PowerBrick[0].Chan[0].OutputMode = PowerBrick[0].Chan[0].OutputMode | $8

PowerBrick[0].Chan[0].PfmFormat = 0

PowerBrick[0].Chan[0].PfmDirPol = 0

PowerBrick[0].Chan[0].OutFlagD = 1

// Unpack Output Data

// Force D PFM

// =0 PFM, =1 Quadrature

// Non-Inverted

// =0 for halls, =1 for PFM

2
3

4
5

6
7

8

9
10

11
12

13
14

15

1

DIR+

DIR-

PULSE+

PULSE-Ex
te

rn
al

 S
te

p
p

er
A

m
p

lif
ie

r DIR+

DIR-

PUL+

PUL-

GND
DIGITAL GND

Power Brick AC ARM User Manual

Special Functions & Troubleshooting – Step and Direction, PFM Output 219

 PFM OUTPUT SIGNAL SETTINGS

Next, we need to specify the frequency and pulse width. These parameters are defined by the two elements:

 PowerBrick[].PfmClockDiv

 PowerBrick[].Chan[].PfmWidth

The following PLC sample computes these elements automatically (e.g. first Gate, first channel) based on the

user input of maximum PFM frequency [1.5 – 10000] KHz, and pulse width or duty cycle.

Note

The pulse width is specified in duty cycle if PfmDutyCycle [%] is non-

zero, otherwise, it is computed in width [µsec] as entered in PulseWidth.

GLOBAL Fmax = 20 // USER INPUT [1.5 - 10000] KHz

GLOBAL PfmDutyCycle = 0 // USER INPUT [%]

GLOBAL PulseWidth = 25.6 // USER INPUT [µsec]

GLOBAL Fperiod

GLOBAL Fclk

GLOBAL MinPulseWidth

GLOBAL MaxPulseWidth

GLOBAL MinDutyCycle

GLOBAL MaxDutyCycle

GLOBAL CmdPulseWidth

OPEN PLC PfmCalcPLC

// Fmax CONSTRAINT [1.5 - 10000] KHz

IF(Fmax < 1.5){Fmax = 1.5}

IF(Fmax > 10000){Fmax = 10000}

// COMPUTE CURRENT

Fclk = 100000 / EXP2(Gate3[0].PfmClockDiv)

PowerBrick[0].PfmClockDiv = LOG2(100000 / Fclk)

Motor[1].MaxDac = 65536 * Fmax / Fclk

WHILE(Motor[1].MaxDac < 512)

{

 Fclk /= 2

 PowerBrick[0].PfmClockDiv = LOG2(100000 / Fclk)

 Motor[1].MaxDac = 65536 * Fmax / Fclk

}

WHILE(Motor[1].MaxDac > 32768)

{

 Fclk *= 2

 PowerBrick[0].PfmClockDiv = LOG2(100000 / Fclk)

 Motor[1].MaxDac = 65536 * Fmax / Fclk

}

// INCREASE ENCODER SAMPLING CLOCK?

IF(PowerBrick[0].PfmClockDiv < PowerBrick[0].EncClockDiv)

{

 PowerBrick[0].EncClockDiv = PowerBrick[0].PfmClockDiv

}

Power Brick AC ARM User Manual

Special Functions & Troubleshooting – Step and Direction, PFM Output 220

// COMPUTE MIN AND MAX

Fperiod = 1000 / Fmax

MinPulseWidth = 1000 / Fclk

MaxPulseWidth = INT((Fperiod - MinPulseWidth) / MinPulseWidth) * MinPulseWidth

MinDutyCycle = MinPulseWidth * 100 / Fperiod

MaxDutyCycle = MaxPulseWidth * 100 / Fperiod

// COMMANDING USING DUTY CYCLE %?

IF(PfmDutyCycle > 0)

{

 // DUTY CYCLE CONSTRAINT

 IF(PfmDutyCycle > MaxDutyCycle)

 {

 PfmDutyCycle = MaxDutyCycle

 }

 IF(PfmDutyCycle < MinDutyCycle)

 {

 PfmDutyCycle = MinDutyCycle

 }

 PulseWidth = PfmDutyCycle * 1000 / (100 * Fmax)

}

// PULSE WIDTH CONSTRAINT

IF(PulseWidth > MaxPulseWidth)

{

 PulseWidth = MaxPulseWidth

}

IF(PulseWidth < MinPulseWidth)

{

 PulseWidth = MinPulseWidth

}

// COMPUTE PfmWidth SETTING

PowerBrick[0].Chan[0].PfmWidth = RINT(PulseWidth * Fclk / 1000)

CmdPulseWidth = PowerBrick[0].Chan[0].PfmWidth * MinPulseWidth

IF(CmdPulseWidth < PulseWidth)

{

 PowerBrick[0].Chan[0].PfmWidth += 1

 CmdPulseWidth = PowerBrick[0].Chan[0].PfmWidth * MinPulseWidth

}

DISABLE PLC PfmCalcPLC

CLOSE

Once executed, with the desired user input, this PLC produces

 PowerBrick[].PfmClockDiv (to be saved in the IDE project)

 PowerBrick[].Chan[].PfmWidth (to be saved in the IDE project)

 Motor[].MaxDac (to be used if setting up a motor)

 CmdPulseWidth (to be used in the PID gains if setting up a motor)

Power Brick AC ARM User Manual

Special Functions & Troubleshooting – Step and Direction, PFM Output 221

 MANUAL MODULATION

The PFM output can now be modulated manually by writing to the structure element PowerBrick[].Chan[].Pfm,

as scaled below. For a 5 kHz output frequency:

PowerBrick[0].Chan[0].Pfm = 5 * 4294483.648 / Fmax

Note, that the associated motor # to this channel must be de-activated (Motor[].ServoCtrl = 0) in this mode.

 CONTROLLING AN EXTERNAL STEPPER AMPLIFIER / MOTOR

Closing the loop or jogging a motor driven by an external amplifier requires the following settings.

 EXAMPLE

PowerBrick[0].Chan[0].EncCtrl = 8

PowerBrick[0].Chan[0].TimerMode = 3

Motor[1].ServoCtrl = 1

Motor[1].pLimits = 0

Motor[1].pAmpFault = 0

Motor[1].pDac = PowerBrick[0].Chan[0].Pfm.a

Motor[1].MaxDac = 65536 * Fmax / Fclk

Motor[1].Servo.Kp = 2 * CmdPulseWidth * Fmax / 1000

Motor[1].Servo.Kvfb = 0

Motor[1].Servo.Kvifb = 0

Motor[1].Servo.Kvff = Motor[1].Servo.Kp * 5

Motor[1].Servo.Kviff = 0

Motor[1].Servo.Ki = Motor[1].Servo.Kp / 100

Motor[1].Servo.Kaff = 0

Motor[1].Servo.Kfff = 0

Motor[1].Servo.BreakPosErr = 1

Motor[1].Servo.Kbreak = 0

Motor[1].FatalFeLimit = 0

Motor[1].WarnFeLimit = 0

// Internal Pulse And Direction

// Read as PFM when looped back in with EncCtrl = 8

// Activate channel

// Disable overtravel limits?

// Disable amplifier fault?

// Command output, point to PFM

// Deadband size [motor units]

// Deadband gain

// Fatal following limit

// Fatal following warning

Motor[].MaxDac is the maximum command output which produces the maximum PFM speed (frequency) with

a 100% open loop output. Do not issue this command with the signals connected to an amplifier/motor/device.

The servo PID gains can be tuned experimentally. And since this is a synthetic loop, the goal is to have sufficient

gains to allow the maximum desired speed, and no pulsing at stand still. Adding a small Deadband can be helpful

alleviating small pulses at zero velocity (due to quantization) when higher PFM frequencies are used.

Note

The maximum value(s) which Motor[].JogSpeed or Motor[].MaxSpeed

can/should be set to is the previously computed Fmax.

Note

It is impossible to generate a PFM frequency higher than the encoder

sampling rate in this mode. The encoder clock frequency

PowerBrick[].EncClockDiv may need to be increased from the default

of 3.125 MHz if higher frequencies are required.

Power Brick AC ARM User Manual

Special Functions & Troubleshooting – Sinusoidal Encoder Bias Corrections 222

Sinusoidal Encoder Bias Corrections

Before computing the sub-count interpolated position with the arctangent calculation, the PMAC3-style ASIC

can add in offset terms to the measured values in the ADC registers to compensate for voltage biases in the

encoder and/or receiving circuitry.

Excessive biases due to scale/read head misalignment, noise, or mechanical assembly may result in rough motion,

visible velocity harmonics, and or encoder count loss. This is best seen with an open loop test:

Uncorrected Corrected

Note

Corrections with the ACI (Auto Correcting Interpolator) are done

automatically for both offsets and phase. This procedure is only suitable

when interpolating with the DSPGate3 (x16384) – without the ACI

option.

Power Brick AC ARM User Manual

Special Functions & Troubleshooting – Sinusoidal Encoder Bias Corrections 223

The Sine and Cosine offset structure elements are PowerBrick[].Chan[].AdcOffset[0] and

PowerBrick[].Chan[].AdcOffset[1], respectively.

Compensating for these offsets is done by reading the Sine – PowerBrick[].Chan[].AdcEnc[0] – and Cosine –

PowerBrick[].Chan[].AdcEnc[1] – signals while moving the motor (preferably slowly) in open loop – by

hand – or closed loop along the full travel, and computing their min and max values. The offset for each signal

is then computed by averaging the min and the max values. The opposite value of this average is written into

the corresponding offset register.

The following PLC program can assist in finding these bias offsets.

PTR Enc1Sine->PowerBrick[0].Chan[0].AdcEnc[0]

PTR Enc1Cosine->PowerBrick[0].Chan[0].AdcEnc[1]

GLOBAL Enc1SineOffset = 0, Enc1CosineOffset = 0

PTR Enc2Sine->PowerBrick[0].Chan[1].AdcEnc[0]

PTR Enc2Cosine->PowerBrick[0].Chan[1].AdcEnc[1]

GLOBAL Enc2SineOffset = 0, Enc2CosineOffset = 0

PTR Enc3Sine->PowerBrick[0].Chan[2].AdcEnc[0]

PTR Enc3Cosine->PowerBrick[0].Chan[2].AdcEnc[1]

GLOBAL Enc3SineOffset = 0, Enc3CosineOffset = 0

PTR Enc4Sine->PowerBrick[0].Chan[3].AdcEnc[0]

PTR Enc4Cosine->PowerBrick[0].Chan[3].AdcEnc[1]

GLOBAL Enc4SineOffset = 0, Enc4CosineOffset = 0

PTR Enc5Sine->PowerBrick[1].Chan[0].AdcEnc[0]

PTR Enc5Cosine->PowerBrick[1].Chan[0].AdcEnc[1]

GLOBAL Enc5SineOffset = 0, Enc5CosineOffset = 0

PTR Enc6Sine->PowerBrick[1].Chan[1].AdcEnc[0]

PTR Enc6Cosine->PowerBrick[1].Chan[1].AdcEnc[1]

GLOBAL Enc6SineOffset = 0, Enc6CosineOffset = 0

PTR Enc7Sine->PowerBrick[1].Chan[2].AdcEnc[0]

PTR Enc7Cosine->PowerBrick[1].Chan[2].AdcEnc[1]

GLOBAL Enc7SineOffset = 0, Enc7CosineOffset = 0

PTR Enc8Sine->PowerBrick[1].Chan[3].AdcEnc[0]

PTR Enc8Cosine->PowerBrick[1].Chan[3].AdcEnc[1]

GLOBAL Enc8SineOffset = 0, Enc8CosineOffset = 0

OPEN PLC SineCalPLC

LOCAL SineCycles = 0

LOCAL MaxEnc1Sine, MaxEnc1Cosine, MinEnc1Sine, MinEnc1Cosine

LOCAL MaxEnc2Sine, MaxEnc2Cosine, MinEnc2Sine, MinEnc2Cosine

LOCAL MaxEnc3Sine, MaxEnc3Cosine, MinEnc3Sine, MinEnc3Cosine

LOCAL MaxEnc4Sine, MaxEnc4Cosine, MinEnc4Sine, MinEnc4Cosine

LOCAL MaxEnc5Sine, MaxEnc5Cosine, MinEnc5Sine, MinEnc5Cosine

LOCAL MaxEnc6Sine, MaxEnc6Cosine, MinEnc6Sine, MinEnc6Cosine

LOCAL MaxEnc7Sine, MaxEnc7Cosine, MinEnc7Sine, MinEnc7Cosine

LOCAL MaxEnc8Sine, MaxEnc8Cosine, MinEnc8Sine, MinEnc8Cosine

Power Brick AC ARM User Manual

Special Functions & Troubleshooting – Sinusoidal Encoder Bias Corrections 224

WHILE(1)

{

 // ================== ENCODER 1 BIAS CORRECTIONS =================== //

 IF (SineCycles == 0)

 {

 MaxEnc1Sine = Enc1Sine

 MinEnc1Sine = Enc1Sine

 MaxEnc1Cosine = Enc1Cosine

 MinEnc1Cosine = Enc1Cosine

 }

 IF (Enc1Sine > MaxEnc1Sine){MaxEnc1Sine = Enc1Sine}

 IF (Enc1Sine < MinEnc1Sine){MinEnc1Sine = Enc1Sine}

 IF (Enc1Cosine > MaxEnc1Cosine){MaxEnc1Cosine = Enc1Cosine}

 IF (Enc1Cosine < MinEnc1Cosine){MinEnc1Cosine = Enc1Cosine}

 Enc1SineOffset = - (MaxEnc1Sine + MinEnc1Sine) / (2 * 65536)

 Enc1CosineOffset = - (MaxEnc1Cosine + MinEnc1Cosine) / (2 * 65536)

 // === //

 // ================== ENCODER 2 BIAS CORRECTIONS =================== //

 IF (SineCycles == 0)

 {

 MaxEnc2Sine = Enc2Sine

 MinEnc2Sine = Enc2Sine

 MaxEnc2Cosine = Enc2Cosine

 MinEnc2Cosine = Enc2Cosine

 }

 IF (Enc2Sine > MaxEnc2Sine){MaxEnc2Sine = Enc2Sine}

 IF (Enc2Sine < MinEnc2Sine){MinEnc2Sine = Enc2Sine}

 IF (Enc2Cosine > MaxEnc2Cosine){MaxEnc2Cosine = Enc2Cosine}

 IF (Enc2Cosine < MinEnc2Cosine){MinEnc2Cosine = Enc2Cosine}

 Enc2SineOffset = - (MaxEnc2Sine + MinEnc2Sine) / (2 * 65536)

 Enc2CosineOffset = - (MaxEnc2Cosine + MinEnc2Cosine) / (2 * 65536)

 // === //

 // ================== ENCODER 3 BIAS CORRECTIONS =================== //

 IF (SineCycles == 0)

 {

 MaxEnc3Sine = Enc3Sine

 MinEnc3Sine = Enc3Sine

 MaxEnc3Cosine = Enc3Cosine

 MinEnc3Cosine = Enc3Cosine

 }

 IF (Enc3Sine > MaxEnc3Sine){MaxEnc3Sine = Enc3Sine}

 IF (Enc3Sine < MinEnc3Sine){MinEnc3Sine = Enc3Sine}

 IF (Enc3Cosine > MaxEnc3Cosine){MaxEnc3Cosine = Enc3Cosine}

 IF (Enc3Cosine < MinEnc3Cosine){MinEnc3Cosine = Enc3Cosine}

 Enc3SineOffset = - (MaxEnc3Sine + MinEnc3Sine) / (2 * 65536)

 Enc3CosineOffset = - (MaxEnc3Cosine + MinEnc3Cosine) / (2 * 65536)

 // === //

Power Brick AC ARM User Manual

Special Functions & Troubleshooting – Sinusoidal Encoder Bias Corrections 225

 // ================== ENCODER 4 BIAS CORRECTIONS =================== //

 IF (SineCycles == 0)

 {

 MaxEnc4Sine = Enc4Sine

 MinEnc4Sine = Enc4Sine

 MaxEnc4Cosine = Enc4Cosine

 MinEnc4Cosine = Enc4Cosine

 }

 IF (Enc4Sine > MaxEnc4Sine){MaxEnc4Sine = Enc4Sine}

 IF (Enc4Sine < MinEnc4Sine){MinEnc4Sine = Enc4Sine}

 IF (Enc4Cosine > MaxEnc4Cosine){MaxEnc4Cosine = Enc4Cosine}

 IF (Enc4Cosine < MinEnc4Cosine){MinEnc4Cosine = Enc4Cosine}

 Enc4SineOffset = - (MaxEnc4Sine + MinEnc4Sine) / (2 * 65536)

 Enc4CosineOffset = - (MaxEnc4Cosine + MinEnc4Cosine) / (2 * 65536)

 // === //

 // ================== ENCODER 5 BIAS CORRECTIONS =================== //

 IF (SineCycles == 0)

 {

 MaxEnc5Sine = Enc5Sine

 MinEnc5Sine = Enc5Sine

 MaxEnc5Cosine = Enc5Cosine

 MinEnc5Cosine = Enc5Cosine

 }

 IF (Enc5Sine > MaxEnc5Sine){MaxEnc5Sine = Enc5Sine}

 IF (Enc5Sine < MinEnc5Sine){MinEnc5Sine = Enc5Sine}

 IF (Enc5Cosine > MaxEnc5Cosine){MaxEnc5Cosine = Enc5Cosine}

 IF (Enc5Cosine < MinEnc5Cosine){MinEnc5Cosine = Enc5Cosine}

 Enc5SineOffset = - (MaxEnc5Sine + MinEnc5Sine) / (2 * 65536)

 Enc5CosineOffset = - (MaxEnc5Cosine + MinEnc5Cosine) / (2 * 65536)

 // === //

 // ================== ENCODER 6 BIAS CORRECTIONS =================== //

 IF (SineCycles == 0)

 {

 MaxEnc6Sine = Enc6Sine

 MinEnc6Sine = Enc6Sine

 MaxEnc6Cosine = Enc6Cosine

 MinEnc6Cosine = Enc6Cosine

 }

 IF (Enc6Sine > MaxEnc6Sine){MaxEnc6Sine = Enc6Sine}

 IF (Enc6Sine < MinEnc6Sine){MinEnc6Sine = Enc6Sine}

 IF (Enc6Cosine > MaxEnc6Cosine){MaxEnc6Cosine = Enc6Cosine}

 IF (Enc6Cosine < MinEnc6Cosine){MinEnc6Cosine = Enc6Cosine}

 Enc6SineOffset = - (MaxEnc6Sine + MinEnc6Sine) / (2 * 65536)

 Enc6CosineOffset = - (MaxEnc6Cosine + MinEnc6Cosine) / (2 * 65536)

 // === //

Power Brick AC ARM User Manual

Special Functions & Troubleshooting – Sinusoidal Encoder Bias Corrections 226

 // ================== ENCODER 7 BIAS CORRECTIONS =================== //

 IF (SineCycles == 0)

 {

 MaxEnc7Sine = Enc7Sine

 MinEnc7Sine = Enc7Sine

 MaxEnc7Cosine = Enc7Cosine

 MinEnc7Cosine = Enc7Cosine

 }

 IF (Enc7Sine > MaxEnc7Sine){MaxEnc7Sine = Enc7Sine}

 IF (Enc7Sine < MinEnc7Sine){MinEnc7Sine = Enc7Sine}

 IF (Enc7Cosine > MaxEnc7Cosine){MaxEnc7Cosine = Enc7Cosine}

 IF (Enc7Cosine < MinEnc7Cosine){MinEnc7Cosine = Enc7Cosine}

 Enc7SineOffset = - (MaxEnc7Sine + MinEnc7Sine) / (2 * 65536)

 Enc7CosineOffset = - (MaxEnc7Cosine + MinEnc7Cosine) / (2 * 65536)

 // === //

 // ================== ENCODER 8 BIAS CORRECTIONS =================== //

 IF (SineCycles == 0)

 {

 MaxEnc8Sine = Enc8Sine

 MinEnc8Sine = Enc8Sine

 MaxEnc8Cosine = Enc8Cosine

 MinEnc8Cosine = Enc8Cosine

 }

 IF (Enc8Sine > MaxEnc8Sine){MaxEnc8Sine = Enc8Sine}

 IF (Enc8Sine < MinEnc8Sine){MinEnc8Sine = Enc8Sine}

 IF (Enc8Cosine > MaxEnc8Cosine){MaxEnc8Cosine = Enc8Cosine}

 IF (Enc8Cosine < MinEnc8Cosine){MinEnc8Cosine = Enc8Cosine}

 Enc8SineOffset = - (MaxEnc8Sine + MinEnc8Sine) / (2 * 65536)

 Enc8CosineOffset = - (MaxEnc8Cosine + MinEnc8Cosine) / (2 * 65536)

 // === //

 SineCycles++

}

CLOSE

Using this PLC, and implementing the Sine and Cosine offsets:

 Delete bias corrections for channels which are not of interest.

 Enable the PLC (ENABLE PLC SineCalPLC).

 This PLC does not actively write to any structure element(s) or move any motor(s).

 Insert EncXSineOffset and EncXCosineOffset (for a given channel X) in the watch window.

 Move the motor (preferably slowly) along the full travel, back and forth, jogging or by hand.

 The EncXSineOffset and EncXCosineOffset will stop changing when the maximum and minimum

values are reached indicating that the offsets have been computed.

 Disable the PLC (DISABLE PLC SineCalPLC).

 Write the computed offsets into the corresponding channel’s elements (upper 16 bits)

Power Brick AC ARM User Manual

Special Functions & Troubleshooting – Sinusoidal Encoder Bias Corrections 227

PowerBrick[0].Chan[0].AdcOffset[0] = Enc1SineOffset * 65536

PowerBrick[0].Chan[0].AdcOffset[1] = Enc1CosineOffset * 65536

PowerBrick[0].Chan[1].AdcOffset[0] = Enc2SineOffset * 65536

PowerBrick[0].Chan[1].AdcOffset[1] = Enc2CosineOffset * 65536

PowerBrick[0].Chan[2].AdcOffset[0] = Enc3SineOffset * 65536

PowerBrick[0].Chan[2].AdcOffset[1] = Enc3CosineOffset * 65536

PowerBrick[0].Chan[3].AdcOffset[0] = Enc4SineOffset * 65536

PowerBrick[0].Chan[3].AdcOffset[1] = Enc4CosineOffset * 65536

PowerBrick[1].Chan[0].AdcOffset[0] = Enc5SineOffset * 65536

PowerBrick[1].Chan[0].AdcOffset[1] = Enc5CosineOffset * 65536

PowerBrick[1].Chan[1].AdcOffset[0] = Enc6SineOffset * 65536

PowerBrick[1].Chan[1].AdcOffset[1] = Enc6CosineOffset * 65536

PowerBrick[1].Chan[2].AdcOffset[0] = Enc7SineOffset * 65536

PowerBrick[1].Chan[2].AdcOffset[1] = Enc7CosineOffset * 65536

PowerBrick[1].Chan[3].AdcOffset[0] = Enc8SineOffset * 65536

PowerBrick[1].Chan[3].AdcOffset[1] = Enc8CosineOffset * 65536

// Channel 1 Sine Offset

// Channel 1 Cosine Offset

// Channel 2 Sine Offset

// Channel 2 Cosine Offset

// Channel 3 Sine Offset

// Channel 3 Cosine Offset

// Channel 4 Sine Offset

// Channel 4 Cosine Offset

// Channel 5 Sine Offset

// Channel 5 Cosine Offset

// Channel 6 Sine Offset

// Channel 6 Cosine Offset

// Channel 7 Sine Offset

// Channel 7 Cosine Offset

// Channel 8 Sine Offset

// Channel 8 Cosine Offset

Note

This procedure is done once per installation. These offsets must be saved

in the project file(s) / configuration for the life of the motor / encoder.

Note

The PLC should be discarded once the procedure is finished. It does not

need to be saved in the application project. Variable names such as

Enc1SineOffset can be replaced by numeric values.

Power Brick AC ARM User Manual

Special Functions & Troubleshooting – Reversing Motor Jogging Direction 228

Reversing Motor Jogging Direction

Choosing the direction sense may be difficult during the initial setup of a motor. It is usually much easier and

less confusing to set the motor up in the wrong direction before correcting the direction sense.

Following, are the necessary steps with respect to each type of motor/encoder. All other settings can remain the

same.

Care should be taken when changing values as some settings are often set in terms of others and it would be easy

to accidentally add a double negative.

Caution

These settings should not be applied while the motor is energized. The

motor must be killed before applying these changes.

Stepper without Encoder (Direct Microstepping)

 Motor[].PhaseOffset = – present value

 Motor[].PwmSf = – present value

Quadrature / Sinusoidal / Resolver

 Motor[].PhaseOffset = – present value

 Motor[].PwmSf = – present value

 PowerBrick[].Chan[].EncCtrl = the opposite decode of the present value (e.g. 7 or 3)

If using resolver or halls absolute power-on phasing:

 Motor[].AbsPhasePosSf = – present value

 Motor[].AbsPhasePosOffset = 2048 – present value

If using resolver absolute power-on position:

 Motor[].AbsPosSf = – present value

Incremental Serial Encoders

 Motor[].PhaseOffset = – present value

 Motor[].PwmSf = – present value

 Motor[].PhasePosSf = – present value

 EncTable[].ScaleFactor = – present value

Power Brick AC ARM User Manual

Special Functions & Troubleshooting – Reversing Motor Jogging Direction 229

Absolute Serial Encoders

 Motor[].PhaseOffset = – present value

 Motor[].PwmSf = – present value

 Motor[].PhasePosSf = – present value

 EncTable[].ScaleFactor = – present value

 Motor[].AbsPosSf = – present value

 Motor[].AbsPhasePosSf = – present value

 Motor[].AbsPhasePosOffset = 2048 – present value

Note

PMAC-commutated (e.g. Brushless) motors need to be phased again after

applying these settings. All other settings (e.g. current & position loop

tuning) should remain the same.

Power Brick AC ARM User Manual

Special Functions & Troubleshooting – DelayTimer PLC 230

DelayTimer PLC

The following subprogram is a generic routine which is commonly called from PLC programs to insert a time

delay in the logic process.

OPEN SUBPROG DelayTimer

SUB: sec (DelayTimeSec)

LOCAL EndTimeSec

EndTimeSec = Sys.Time + DelayTimeSec

WHILE (EndTimeSec > Sys.Time) {}

RETURN

SUB: msec (DelayTimeMsec)

LOCAL EndTimeMsec

EndTimeMsec = Sys.Time + DelayTimeMsec * 0.001

WHILE (EndTimeMsec > Sys.Time) {}

RETURN

CLOSE

This subprogram is automatically added to new projects in the “Libraries” folder of the Solution Explorer:

Calling DelayTimer.sec with a time argument specified in seconds or DelayTimer.msec with a time argument

in milliseconds causes the desired delay in a script PLC, example:

GLOBAL MyToggle1 = 0

GLOBAL MyToggle2 = 0

OPEN PLC ExamplePLC

CALL DelayTimer.sec(1) // 1 second time delay

MyToggle1 = MyToggle1 ^ 1 // Toggle variable1

CALL DelayTimer.msec(500) // 500 millisecond time delay

MyToggle2 = MyToggle2 ^ 1 // Toggle variable2

CLOSE

Note

The Timer subprogram can be called from motion programs or other

subprograms as well. However, for those types of programs the better

suited and dedicated DWELL / DELAY commands are advised.

Power Brick AC ARM User Manual

Special Functions & Troubleshooting – Encoder Count Error 231

Encoder Count Error

The Power Brick AC is fitted with an encoder count error detection circuitry which supports Quadrature,

Sinusoidal, Resolver, and HiperFace encoders.

The encoder count circuitry reports bad transitions of the quadrature signals. If both the A and B channels of the

quadrature data change state at the decode circuitry (post-filter) in the same hardware sampling clock cycle, an

unrecoverable error to the counter value will result (lost counts). PowerBrick[].Chan[].CountError is then set

and latched to 1 (until reset or cleared). 0 indicates that there is no encoder count error.

PTR Enc1CountError->PowerBrick[0].Chan[0].CountError

PTR Enc2CountError->PowerBrick[0].Chan[1].CountError

PTR Enc3CountError->PowerBrick[0].Chan[2].CountError

PTR Enc4CountError->PowerBrick[0].Chan[3].CountError

PTR Enc5CountError->PowerBrick[1].Chan[0].CountError

PTR Enc6CountError->PowerBrick[1].Chan[1].CountError

PTR Enc7CountError->PowerBrick[1].Chan[2].CountError

PTR Enc8CountError->PowerBrick[1].Chan[3].CountError

Note

No automatic action is taken by the Power Brick AC if the encoder count

error bit is set, it is the user’s responsibility to trap it and create safety

logic to stop the machine and / or alert the operator.

The encoder count error may not have immediate consequences on the motion, but it indicates ultimately that the

motor is losing counts which could result in a fatal following error, erroneous commutation, or position drift over

time.

Common root causes of the encoder count error:

 Encoder problem

 Trying to move the encoder (motor) faster than it’s specification

 Using a higher resolution/speed encoder. This may require increasing the sampling clock.

The default sampling clock of ~3.125 MHz is acceptable for

the majority of applications.

Increasing the encoder sampling clock is done using the

structure element PowerBrick[].EncClockDiv(default = 5).

Setting Frequency Setting Frequency

0 100 MHz 8 390.6 kHz

1 50 MHz 9 195.3 kHz

2 25 MHz 10 97.65 kHz

3 12.5 MHz 11 48.82 kHz

4 6.25 MHz 12 24.41 kHz

5 3.125 MHz 13 12.21 kHz

6 1.562 MHz 14 3.104 kHz

7 781.2 kHz 15 3.052 kHz

Power Brick AC ARM User Manual

Special Functions & Troubleshooting – Encoder Loss Detection 232

Encoder Loss Detection

Warning

Loss of the feedback sensor signal is potentially a very dangerous

condition in closed-loop control, because the servo loop no longer has any

idea what the true physical position of the motor is – usually it thinks it is

“stuck” – and it can react wildly, often causing a runaway condition.

The Power Brick AC has circuitry dedicated to monitoring the presence of a proper feedback signal. In addition,

it can automatically check these circuits for loss of sensor signal and take appropriate shutdown action. This

feature supports the following types of encoders:

 Digital quadrature (differential)

 Sinusoidal

 Resolver

 HiperFace

 Serial Encoders

Power Brick AC ARM User Manual

Special Functions & Troubleshooting – Encoder Loss Detection 233

Digital Quadrature

With digital quadrature encoders (must be differential) the encoder loss circuitry monitors each quadrature input

pair with an exclusive-or XOR gate:

In normal operation mode, the two quadrature inputs should be in opposite logical states – that is one high and

one low – yielding a true output from the XOR gate.

When there is no longer a proper signal driving the inputs on the interface, both lines are pulled to a high logical

level internally, so the XOR gate outputs a low level indicating encoder loss.

The flag reflecting the encoder loss status is found in the Power Brick bit element

PowerBrick[].Chan[].LossStatus:

 = 0 in normal mode.

 = 1 (and latched) upon detecting an encoder loss

PTR Enc1LossBit->PowerBrick[0].Chan[0].LossStatus

PTR Enc2LossBit->PowerBrick[0].Chan[1].LossStatus

PTR Enc3LossBit->PowerBrick[0].Chan[2].LossStatus

PTR Enc4LossBit->PowerBrick[0].Chan[3].LossStatus

PTR Enc5LossBit->PowerBrick[1].Chan[0].LossStatus

PTR Enc6LossBit->PowerBrick[1].Chan[1].LossStatus

PTR Enc7LossBit->PowerBrick[1].Chan[2].LossStatus

PTR Enc8LossBit->PowerBrick[1].Chan[3].LossStatus

Automatic Kill Action for Quadrature Encoders

Arming the automatic kill action with quadrature encoders:

Motor[1].pEncLoss = PowerBrick[0].Chan[0].Status.a

Motor[1].EncLossBit = 28

Motor[1].EncLossLevel = 1 // High true fault

Motor[1].EncLossLimit = 0

In this mode, the status of the encoder loss can be monitored in the motor status window in the IDE software or

using the motor element bit Motor[].EncLoss.

Note

Setting Motor[].pEncLoss = 0 disables the automatic kill action.

Power Brick AC ARM User Manual

Special Functions & Troubleshooting – Encoder Loss Detection 234

Sinusoidal | Resolver | HiperFace Encoders

Analog sinusoidal encoders and resolvers provide simultaneous sine and cosine signals into the analog-to-

digital converters of the Power Brick AC interface circuitry.

In proper operation, the sum of the squares of the converted values for these two signals should be roughly

constant, and significantly different from zero.

The Power Brick AC ASIC computes this sum-of-squares value every sample cycle. The latest value is always

available in the 16-bit element PowerBrick[].Chan[].SumOfSquares.

In addition, if all of the highest 4 bits of this element are zero, so the value is less than 1/16 of full range, the

status bit PowerBrick[].Chan[].SosError is automatically set to 1.

PTR Enc1LossBit->PowerBrick[0].Chan[0].SosError

PTR Enc2LossBit->PowerBrick[0].Chan[1].SosError

PTR Enc3LossBit->PowerBrick[0].Chan[2].SosError

PTR Enc4LossBit->PowerBrick[0].Chan[3].SosError

PTR Enc5LossBit->PowerBrick[1].Chan[0].SosError

PTR Enc6LossBit->PowerBrick[1].Chan[1].SosError

PTR Enc7LossBit->PowerBrick[1].Chan[2].SosError

PTR Enc8LossBit->PowerBrick[1].Chan[3].SosError

Automatic Kill Action for Sinusoidal | Resolver | HiperFace Encoders

Arming the automatic kill action with Sinusoidal, Resolver, or HiperFace encoders:

Motor[1].pEncLoss = PowerBrick[0].Chan[0].SosError.a

Motor[1].EncLossBit = 31

Motor[1].EncLossLevel = 1 // High true fault

Motor[1].EncLossLimit = 5 // 5 scans

In this mode, the status of the encoder loss can be monitored in the motor status window in the IDE software or

using the motor element bit Motor[].EncLoss.

Note

Setting Motor[].pEncLoss = 0 disables the automatic kill action.

Power Brick AC ARM User Manual

Special Functions & Troubleshooting – Encoder Loss Detection 235

Serial Encoders

The Power Brick AC provides interfaces for many of the most popular serial encoder protocols. For most of

these interfaces, the receiving logic can detect that no data has been received in response to the cycle’s

“position request” output, and set a “timeout error” flag that can be read by the processor. This flag bit can be

used to detect encoder loss.

This “timeout error” flag is bit 31 of the element PowerBrick[].Chan[].SerialEncDataB.

It is also possible to utilize an error-checking mechanism in the data such as parity or cyclic redundancy check

(CRC) bits. The Power Brick AC can evaluate these mechanisms and determine whether the data set was valid

or not. This is particularly recommended for the SSI protocol, where the data patterns cannot be used to detect a

timeout error. For the SSI protocol, the parity error flag is bit 31 of PowerBrick[].Chan[].SerialEncDataB.

Automatic Kill Action for Gate3 Serial Encoders

Arming the automatic kill action for Gate3 serial encoder protocols with a "timeout error" flag (EnDat, HiperFace,

Sigma I, Sigma II/III/V, Tamagawa, Panasonic, Mitutoyo, and Kawasaki):

Motor[1].pEncLoss = PowerBrick[0].Chan[0].SerialEncDataB.a

Motor[1].EncLossBit = 31 // Time out error bit number

Motor[1].EncLossLevel = 1 // High true fault

Motor[1].EncLossLimit = 0

Note

The same settings are valid for an SSI encoder with parity checking to use

the parity-error bit.

Note

Setting Motor[].pEncLoss = 0 disables the automatic kill action.

Power Brick AC ARM User Manual

Special Functions & Troubleshooting – Encoder Loss Detection 236

Automatic Kill Action for Gate3 Serial Encoders

Arming the automatic kill action for ACC84B serial encoder protocols with a "timeout error" flag on

SerialEncDataB (EnDat, Sigma II/III/V, BiSS, and Kawasaki):

Motor[1].pEncLoss = ACC84B[0].Chan[0].SerialEncDataB.a

Motor[1].EncLossBit = 31 // Time out error bit number

Motor[1].EncLossLevel = 1 // High true fault

Motor[1].EncLossLimit = 0

Note

The same settings are valid for an SSI encoder with parity checking to use

the parity-error bit.

Arming the automatic kill action for ACC84B serial encoder protocols with a "timeout error" flag on

SerialEncDataC (Tamagawa, Panasonic, Mitutoyo, and Mitsubishi):

Motor[1].pEncLoss = ACC84B[0].Chan[0].SerialEncDataC.a

Motor[1].EncLossBit = 31 // Time out error bit number

Motor[1].EncLossLevel = 1 // High true fault

Motor[1].EncLossLimit = 0

In this mode, the status of the encoder loss can be monitored in the motor status window in the IDE software or

using the motor element bit Motor[].EncLoss.

Note

Setting Motor[].pEncLoss = 0 disables the automatic kill action.

Power Brick AC ARM User Manual

Special Functions & Troubleshooting – Digital Tracking Filter 237

Digital Tracking Filter

The encoder conversion table’s (ECT) software tracking filter is a digital low-pass filter with an integrator which

is useful for reducing measurement noise (floor level and occasionally electrical) without introducing steady-

state error at constant velocity or position. It is particularly useful for applications involving:

 Analog Input Signals.

 Sinusoidal Encoder Signals (with the x16384 interpolator).

 Resolver Signals.

Note

Executed in the ECT, the performance of this filter is directly proportional

to the servo frequency. The higher the frequency, the faster is the sampling

and better noise rejection.

Note

This filter should never be used with the Sinusoidal ACI interpolation

option of the Power Brick. The ACI automatically compensates for

disturbances at a much higher rate.

The following PLC depicts the digital tracking filter equations, and produces the three indexes necessary to apply

the filter in the corresponding Encoder Conversion Table:

GLOBAL TrackFltrCutOff = 1000 // [Hz]

GLOBAL TrackFltrDamping = 1

GLOBAL TrackFltrIndex1, TrackFltrIndex2, TrackFltrIndex4

GLOBAL VerifyWn, VerifyTau

OPEN PLC TrackFltrPLC

LOCAL TrackFltrTime = Sys.Servoperiod / 1000

TrackFltrIndex1 = 65

TrackFltrIndex2 = INT(256 - 512 * TrackFltrCutOff * TrackFltrDamping * TrackFltrTime)

TrackFltrIndex4 = 1

VerifyWn = (1 / TrackFltrTime) * SQRT(TrackFltrIndex1 / (256 * EXP2(TrackFltrIndex4)))

VerifyTau = (256 - TrackFltrIndex2) / (2 * SQRT(256 * TrackFltrIndex1 / EXP2(TrackFltrIndex4)))

WHILE (VerifyWn > TrackFltrCutOff)

{

 TrackFltrIndex4 += 1

 VerifyWn = (1 / TrackFltrTime) * SQRT(TrackFltrIndex1 / (256 * EXP2(TrackFltrIndex4)))

}

WHILE (VerifyWn < TrackFltrCutOff)

{

 TrackFltrIndex1 += 1

 VerifyWn = (1 / TrackFltrTime) * SQRT(TrackFltrIndex1 / (256 * EXP2(TrackFltrIndex4)))

}

VerifyWn = (1 / TrackFltrTime) * SQRT(TrackFltrIndex1 / (256 * EXP2(TrackFltrIndex4)))

VerifyTau = (256 - TrackFltrIndex2) / (2 * SQRT(256 * TrackFltrIndex1 / EXP2(TrackFltrIndex4)))

DISABLE PLC TrackFltrPLC

CLOSE

Power Brick AC ARM User Manual

Special Functions & Troubleshooting – Digital Tracking Filter 238

This PLC example is very simple to use:

 Specify the desired cutoff frequency (~30 – 2000 Hz)

 Specify the desired damping ratio (typically 1.0)

For example, for a 1,000 Hz cutoff frequency, and 1 damping ratio will produce:

These index values copied into EncTable[].index1, EncTable[].index2, and EncTable[].index4 respectively

will apply the desired filtering.

Note

If these indexes are non-zero in the ECT entry of interest, another entry

needs to be created, with its source pointing to the original entry’s result

EncTable[].PrevEnc.a.

The following plots show an example of a filtered "noisy" signal at steady state and in dynamic motion:

Power Brick AC ARM User Manual

Special Functions & Troubleshooting – PTC Motor Thermal Input 239

PTC Motor Thermal Input

The PTC motor thermal Input (pin #8 of X1 – X8 connectors) is typically used to bring in motor over-temperature

thermistor signal(s) into the Power Brick AC. Proper action can then be taken to safely stop operation if the motor

is overheated.

Caution

No automatic action is taken by the Power Brick AC when the PTC input

is triggered, it is the user’s responsibility to trap it (i.e. in a background

PLC) and insert safety logic to stop the motor and / or alert the operator.

The PTC input (pin #8) is typically wired to ground (pin #12) in series with

the motor PTC thermistor:

 In normal mode operation, the circuit is open and PTC (pin #8) is

pulled up to +5 VDC internally, this corresponds to a setting of 1 in

software.

 If the motor is overheated, the circuit is closed and PTC (pin #8) is

pulled down to ground (pin #12), this corresponds to a setting of 0

in software.

PTR Ch1PTC->PowerBrick[0].GpioData[0].24.1

PTR Ch2PTC->PowerBrick[0].GpioData[0].25.1

PTR Ch3PTC->PowerBrick[0].GpioData[0].26.1

PTR Ch4PTC->PowerBrick[0].GpioData[0].27.1

PTR Ch5PTC->PowerBrick[1].GpioData[0].24.1

PTR Ch6PTC->PowerBrick[1].GpioData[0].25.1

PTR Ch7PTC->PowerBrick[1].GpioData[0].26.1

PTR Ch8PTC->PowerBrick[1].GpioData[0].27.1

// Channel 1 PTC Input, X1

// Channel 2 PTC Input, X2

// Channel 3 PTC Input, X3

// Channel 4 PTC Input, X4

// Channel 5 PTC Input, X5

// Channel 6 PTC Input, X6

// Channel 7 PTC Input, X7

// Channel 8 PTC Input, X8

Note

If the PTC function is not used, this input can be used as general purpose

relay input.

2
3

4
5

6
7

8

9
10

11
12

13
14

15

1

Motor
PTC thermistor

Power Brick AC ARM User Manual

Special Functions & Troubleshooting – LED Status 240

LED Status

Symbol Description Status Indication

ABORT INPUT STATUS Abort Status
Green

Enabled and 24V wired in

Red

Disabled / Enabled and 24V not wired in

MACRO LINK MACRO
Green

MACRO connected / Operational

Red

MACRO not connected / Ring broken

DIAG. USB Mode
Green

USB Mass Storage

Amber

Serial Communications

RDY Ready Green

PMAC ready, boot complete

PWR/WD Power/Watchdog
Green

Logic Power Connected

Red

Fault – Watchdog

Power Brick AC ARM User Manual

Special Functions & Troubleshooting – Reloading Power PMAC Firmware 241

Reloading Power PMAC Firmware

You should always use the newest released version of the Power PMAC firmware if your application permits.

Power PMAC Firmware can be reloaded by means of the IDE or a USB flash drive/SD card.

Reloading Firmware Method 1: IDE

To install the latest firmware through the IDE, click on Delta TauConfigureDownload Firmware:

Under the “PowerPMAC Firmware” tab, click the “Download Firmware” button. On clicking the button, the IDE

will ask whether it is acceptable to issue $$$*** (Global Reset) before updating the firmware. If you click “Yes,”

then the Power PMAC will be reset to factory default. It will then prompt you to browse for the firmware file

you want to download. It is recommended to issue $$$*** and make sure that the Power PMAC is at factory

default stage before downloading firmware, because the firmware download process does not kill the C

background programs that are already executing. In this case, the firmware update process may not update all the

files.

Power Brick AC ARM User Manual

Special Functions & Troubleshooting – Reloading Power PMAC Firmware 242

Wait for the IDE to finish downloading the firmware file and then for Power PMAC to reboot. If it does not

reconnect successfully after rebooting, click “Communication Setup” (see the red box in the image below):

Then, click “Apply” (see the red box in the image below):

If you still cannot communicate, cycle power on the UMAC rack and use the “Communication Setup” button in

the IDE again until you can connect.

Power Brick AC ARM User Manual

Special Functions & Troubleshooting – Reloading Power PMAC Firmware 243

Reloading Firmware Method 2: USB Drive/SD Card

 Connect a USB memory stick/SD Card to a PC using any OS which can work with FAT32 partition.

 Create a folder named PowerPmacFirmwareInstall on the USB memory stick/SD Card root folder.

Place the installation package "powerpmac.deb" into this folder.

 Safely remove the USB memory stick/SD Card from the PC.

 Plug the USB memory stick/SD Card into Power PMAC's USB port.

 If Power Brick is off, then power up the device. If Power Brick is on, cycle power.

 After the unit boots, the new firmware should be installed.

Power Brick AC ARM User Manual

Special Functions & Troubleshooting – Changing Network (IP Address) Settings 244

Changing Network (IP Address) Settings

Through the Power PMAC IDE

If you want to change Power PMAC’s IP Address from within the IDE, click ToolsOptions…

Near the bottom of the screen in the left pane, click PowerPMACNetwork Settings and then the following

window should appear:

On this window, enter the NewIPAddress desired. You can enter this IP Address into the DefGateway field also.

Leave the SubnetMask as 255.255.255.0. Then, click Test and Apply Changes.

This area reports messages

and changes from the Options

window

Power Brick AC ARM User Manual

Special Functions & Troubleshooting – Changing Network (IP Address) Settings 245

Through USB

Below is the procedure for using a USB flash drive to detect/change the Power PMAC IP address:

1. Connect the USB memory stick/SD Card to your PC using any OS which can work with FAT32 partition.

2. Create a folder named PowerPmacIP on the USB memory stick/SD Card root folder.

3. Safely remove the USB memory stick/SD Card from the PC.

4. Plug the USB memory stick/SD Card into Power PMAC's USB port.

5. If Power Brick is off, then power up the device. If Power Brick is on, cycle power.

6. After the boot sequence is completed, the following files will be generated under your PowerPmacIP

folder:

 boot.log

 interfaces

The interfaces file includes all the network settings for the Power Brick, including the IP address.

If you want to change the Power PMAC network settings, follow these steps:

Modify the interfaces file created by Power PMAC under PowerPmacIP folder by connecting the USB

memory stick/SD Card on PC, opening the file using any text editor which supports simple ASCII text, and

modifying the settings you want to modify. Below is an example of the interfaces file:

This file describes the network interfaces available on your system

and how to activate them. For more information, see interfaces(5).

The loopback network interface

auto lo

iface lo inet loopback

iface eth0 inet static

address 10.34.9.232

netmask 255.255.255.0

gateway 10.34.9.254

iface eth1 inet static

address 192.168.0.232

netmask 255.255.255.0

gateway 192.168.0.232

auto eth0

auto eth1

1. Save the file and safely remove the USB memory stick/SD Card from the PC.

2. Plug the USB memory stick/SD Card into Power Brick’s USB port.

3. If Power Brick is off, then power it up. If Power Brick is on, cycle power.

4. After the boot sequence is completed, Power Brick will have been updated with the new network settings.

Power Brick AC ARM User Manual

Special Functions & Troubleshooting – Restoring Factory Default Configuration 246

Restoring Factory Default Configuration

Restoring Power Brick’s settings to factory default can be done in two ways.

Method 1 (to be used when communicating):

Enter $$$*** into the IDE Terminal Window. Issue a SAVE, followed by a $$$ to maintain the factory default

settings.

Method 2 (to be used when not communicating):

 Connect a USB memory stick or SD Card to a PC using any OS which can work with FAT32 partition.

 Create a folder named PowerPmacFactoryReset on the USB memory stick/SD Card root folder.

 Safely remove the USB memory stick/SD Card from the PC.

 Plug the USB memory stick/SD Card into Power PMAC's USB port.

 If Power Brick is off, then power up the device. If Power Brick is on, cycle power.

 After the boot sequence is completed, the Power Brick will be restored to factory default settings.

Power Brick AC ARM User Manual

Special Functions & Troubleshooting – Watchdog Faults 247

Watchdog Faults

Two types of Watchdog Faults can occur. The first is a “Soft Watchdog” which occurs when the CPU is starved

of processing time and cannot reset the background (when Sys.WDTFault = 2) or the foreground (when

Sys.WDTFault = 1) Watchdog timer. During normal operation, Sys.WDTFault = 0.

1. Avoid infinite loops in C programs because they can dominate the CPU and prevent background from

resetting the Watchdog counter.

2. Check the CPU loading through the IDE by going to ToolsTask Manager, and then clicking the Tasks

tab (see image below):

If the foreground (“Real-Time (FG)”) loading is very high (e.g. 80%), you may encounter Watchdog faults at

peak calculation times. You may need to reduce the Real-Time Interrupt time (i.e. set Sys.RtIntPeriod higher),

reduce the servo/phase clock rates, or optimize your programming. If the Watchdog problem is intermittent,

you may have a loading spike due to programming and you should revise your code. If the problem is not from

code, it may be a hardware problem and the product will need to be sent in for repairs.

A “Hard Watchdog” occurs when the processor’s Watchdog timer has been tripped, or when the processor does

not receive proper logic power. All communication is lost in this case, the processor is shut down, all outputs are

disabled, and the red “WD” LED on the front of the Power Brick activates. The only way to recover from this

fault is to cycle power. If you receive this fault, check that +24 VDC is properly being applied to the logic power

and has not sagged below +12 VDC. Since a “Hard Watchdog” can be caused by a CPU processing overload as

well, the above troubleshooting steps also apply here.

Power Brick AC ARM User Manual

BrickAC Structure Elements – Global Saved Setup Elements 248

BRICKAC STRUCTURE ELEMENTS

The BrickAC data structure elements consist of two main categories; global elements (BrickAC.) which affect

all the channels and channel specific elements (BrickAC.Chan[].) which only affect the indexed channel. Each

category (global or channel) consists of:

 Saved Setup Elements

 Non-saved Setup Elements (automatically reset)

 Status (read only)

The BrickAC data structure elements referred to in this section are "software" elements built into the Power

PMAC firmware. They must not be confused with the ASIC (Gate 3) hardware elements PowerBrick[] and

PowerBrick[].Chan[].

Global Saved Setup Elements

BrickAC.MonitorPeriod

Description: Time interval for updating status registers

Range: 0 .. 4,294,967,295 (232-1)

Units: Milliseconds

Default: 0 (50 msec)

Legacy I-variable alias: none

BrickAC.MonitorPeriod tells Power PMAC software how much time there is between consecutive requests for

the value of all Brick AC status registers. It is expressed in milliseconds as an integer value.

If BrickAC.MonitorPeriod is set to the default value of 0 or any value up to 50, all Brick AC status elements

are updated every 50 milliseconds. Setting the value higher will reduce the update frequency and reduces the

background time which monitor process takes from the Power PMAC CPU.

Note

The value of BrickAC.MonitorPeriod does not affect how often the

amplifier stage checks the status conditions internally. It only controls

how frequently the Power PMAC CPU requests this information.

While the value of BrickAC.MonitorPeriod is saved, the element that starts the monitoring process itself,

BrickAC.Monitor, is not a saved setup element. It must explicitly be set to 1 by the user application in order to

start the monitoring process. Also, when either the configuration process or the fault-clearing reset process is

started with BrickAC.Config or BrickAC.Reset, respectively, the monitoring process is stopped, and it is not

automatically restarted. The user application must explicitly restart the monitoring process.

Note

The monitored data in the Power Brick AC is provided to the controller

on the lower 10 bits of the PowerBrick[].Chan[]AdcAmp[k] registers

and it is essential that PowerBrick[].Chan[]PackInData and

PowerBrick[].Chan[]PackOutData are set to 0, disabling “packed”

register access and allowing all ADC register bits to be read by the CPU.

Power Brick AC ARM User Manual

BrickAC Structure Elements – Global Saved Setup Elements 249

BrickAC.SinglePhaseIn

Description: Expected line input type

Range: 0 .. 1

Units: none

Default: 0 (three-phase)

Legacy I-variable alias: none

BrickAC.SinglePhaseIn tells the amplifier whether to expect a single-phase line input or a 3-phase line input.

If set to the default value of 0, the Power Brick AC expects a 3-phase AC line input and the

BrickAC.PhaseInMissing monitor is active, so the amplifier will issue a warning on the loss of any of the three

phases, setting status bit BrickAC.PhaseInMissing to 1.

If BrickAC.SinglePhaseIn is set to 1, the 3-phase line input monitor process is disabled and the Power Brick

AC runs in single-phase input mode with no phase-loss detection. In this case, a single-phase AC line input, or a

DC line input can be connected across any two of the three line inputs on the amplifier. (Loss of this input would

result in a power fault condition.)

The BrickAC.SinglePhaseIn value is sent to the active amplifier-control circuit upon setting one of the non-

saved setup elements BrickAC.Reset or BrickAC.Config equal to 1 in a Script command. It does not take effect

until then.

BrickAC.UnderVoltageDisplay

Description: Undervoltage condition display control

Range: 0 .. 1

Units: Boolean

Default: 0

Legacy I-variable alias: none

BrickAC.UnderVoltageDisplay tells Power Brick AC whether to display the undervoltage status on its 7-

segment display or not. If it is set to 0, no undervoltage condition status is displayed. If it is set to 1, an error code

“U” is displayed in the event of a bus undervoltage condition.

This setting is purely for display-control purposes and does not affect what action the Power Brick AC takes

when an undervoltage condition is detected. The separate BrickAC.UnderVoltageWarnOnly element controls

whether an undervoltage condition should be treated as a warning or as a fault. An undervoltage condition occurs

when the internal DC bus voltage drops below 100 VDC, which corresponds to about 70 VAC(rms).

The BrickAC.UnderVoltageDisplay value is sent to the active amplifier-control circuit upon setting one of the

non-saved setup elements BrickAC.Reset or BrickAC.Config equal to 1 in a Script command. It does not take

effect until then.

Power Brick AC ARM User Manual

BrickAC Structure Elements – Global Saved Setup Elements 250

BrickAC.UnderVoltageWarnOnly

Description: Undervoltage condition warning/fault control

Range: 0 .. 1

Units: Boolean

Default: 0

Legacy I-variable alias: none

BrickAC.UnderVoltageWarnOnly controls whether an undervoltage condition should be treated as a warning

or as an error. If it is set to the default value of 0, then Power Brick AC will treat it as a fault and stop all outputs

with a fault on all channels if an undervoltage condition is detected. The amplifier stage must be reset by setting

BrickAC.Reset to 1 in order to clear the fault and permit continued operation.

If BrickAC.UnderVoltageWarnOnly is set to 1, an undervoltage condition is treated only as a warning, with

no automatic action taken. In either case, the BrickAC.BusUnderVoltage status bit reflects the current state of

the undervoltage condition.

An undervoltage condition occurs when the internal DC bus voltage drops below 100 VDC, which corresponds

to about 70 VAC (rms). The undervoltage status bit BrickAC.BusUnderVoltage is automatically cleared once

the bus voltage is restored. However, any motor software fault conditions it creates are latched, and the motors

must explicitly be re-enabled by command.

The BrickAC.UnderVoltageWarnOnly value is sent to the active amplifier-control circuit upon setting one of

the non-saved setup elements BrickAC.Reset or BrickAC.Config equal to 1 in a Script command. It does not

take effect until then.

Power Brick AC ARM User Manual

BrickAC Structure Elements – Global Non-Saved Setup Elements 251

Global Non-Saved Setup Elements

BrickAC.Config

Description: Amplifier configuration/initialization control

Range: -7 .. 1

Units: none

Power-on default: 0

BrickAC.Config acts as a flag for the Power PMAC firmware which controls the initialization of Power Brick

AC amplifier based upon the BrickAC. saved setup elements. The amplifier stage is not automatically

configured at power-up, so the configuration process must be commanded explicitly by the user application

before the amplifier stage can be used.

Setting BrickAC.Config to 1 in a Script command starts the initialization process as a background task on

Power PMAC CPU. The element stays at the set value until either the initialization process is successfully

completed, in which case the value of BrickAC.Config is set to 0, or until a configuration error is detected, in

which case the BrickAC.Config value is set to a negative value indicating the error in the process. The

following list shows the error codes which can be encountered:

Error Code Description

-1
The assigned value is not accepted. Only a value of 1 or 0 can be assigned by user to this

data structure.

-2
The BrickAC.Monitor was called while either the BrickAC.Reset or BrickAC.Config

process was active.

-3
The configuration process was attempted on incompatible hardware. No amplifier hardware

with the matching Power Brick part number was detected.

-4
No Power Brick hardware was detected. This error is generated if incompatible output stage

is detected.

-7
The configuration process attempted used on incompatible hardware. No DPSGATE3

interface ASIC was detected.

If BrickAC.Config is set to 1 in an on-line command, there will be a text response indicating whether the

configuration completed correctly or not, and if not, what the error was.

It is strongly recommended for users to confirm the pass/fail status of the initialization process whenever

BrickAC.Config is set to a value of 1.

Power Brick AC ARM User Manual

BrickAC Structure Elements – Global Non-Saved Setup Elements 252

Note

While setting BrickAC.Config to 1 as part of the standard system

initialization process after power-up will load the configuration

parameters into the amplifier control circuitry, it is recommended instead

to set BrickAC.Reset to 1, which will not only load the configuration

parameters, but clear any faults that may have occurred due to power-on

transient conditions.

Note

Setting BrickAC.Config to 1 to start the amplifier configuration process

automatically stops the amplifier monitoring process, and the monitoring

process does not automatically resume when the configuration is

completed. BrickAC.Monitor must be set to 1 again in the user Script

application to resume the monitoring process.

OPEN PLC ExamplePLC

Sys.WDTReset = 5000 / (Sys.ServoPeriod * 2.258) // Increase Foreground WD Timer Threshold

CALL DelayTimer.msec(250) // 250 msec delay

BrickAC.Config = 1

WHILE (BrickAC.Config > 0) {}

IF (BrickAC.Config != 0)

{

 // Take necessary action in case of a fault

 Sys.WDTReset = 0 // Restore Foreground WD timer Threshold

}

// Continue with script process

DISABLE PLC ExamplePLC

CLOSE

The process of waiting for the BrickAC.Config to execute in a PLC consumes a significant amount of

background cycles and risks triggering a foreground soft watchdog fault (Sys.WDTFault = 1), especially with

higher clock frequencies. Setting Sys.WDTReset temporarily to a larger value (increasing the foreground

watchdog timer threshold) alleviates this issue.

Note

The Sys.WDTReset expression stated in the PLC example should ensure

the proper setting regardless of the user specified clock frequencies.

Power Brick AC ARM User Manual

BrickAC Structure Elements – Global Non-Saved Setup Elements 253

BrickAC.Monitor

Description: Amplifier status monitoring update control

Range: -7 .. 1

Units: none

Power-on default: 0

BrickAC.Monitor acts as a flag for the Power PMAC firmware which controls the execution of Power Brick

AC amplifier status monitoring background task. This task updates the BrickAC. Status elements at constant

period set by saved setup element BrickAC.MonitorPeriod.

If BrickAC.Monitor is set to its power-on default value of 0, there is no updating of the BrickAC. Status

elements. In this mode none of these element values are updated and they maintain their last updated value until

next reset or power cycle.

Setting BrickAC.Monitor equal to 1 in a Script command starts the background BrickAC. Status update task

at a period set by BrickAC.MonitorPeriod. The element stays at the set value until either the user application

sets the value to 0, which stops the update process, or the user application commands an initialization or reset

process by setting BrickAC.Config or BrickAC.Reset to a value of 1.

If an error occurs during the monitor process, the BrickAC.Monitor value is set to a negative value indicating

an error in the process. The following table shows the errors that can be reported. It is strongly recommended

for users to confirm the pass/fail status of the monitoring initialization process whenever BrickAC.Monitor is

set to a value of 1

Error Code Description

-1
The assigned value is not accepted. Only a value of 1 or 0 can be assigned by user to this

data structure.

-2
The BrickAC.Monitor was called while either the BrickAC.Reset or BrickAC.Config

process was active.

-3
The configuration process was attempted on incompatible hardware. No amplifier hardware

with the matching Power Brick part number was detected.

-4
No Power Brick hardware was detected. This error is generated if incompatible output

stage is detected.

-7
The configuration process attempted used on incompatible hardware. No DPSGATE3

interface ASIC was detected.

Power Brick AC ARM User Manual

BrickAC Structure Elements – Global Non-Saved Setup Elements 254

Note

The monitored data in the Power Brick AC amplifier is provided to the

controller in the low bits of the PowerBrick[].Chan[]AdcAmp[k]

registers, below the current feedback values. This data cannot be read if

two phases are “packed” into one register, so it is essential that

PowerBrick[].Chan[]PackInData and

PowerBrick[].Chan[]PackOutData are set to 0, disabling packed data

and allowing the full registers to be read by the CPU.

Note

The monitoring process is automatically halted when either

BrickAC.Config or BrickAC.Reset is set to 1 to update the amplifier

configuration or reset the amplifier state, respectively, with

BrickAC.Monitor set to 0. The monitoring process is not automatically

resumed when the configuration or reset process is finished, so it must be

explicitly restarted when one of these other processes is finished.

OPEN PLC ExamplePLC

Sys.WDTReset = 5000 / (Sys.ServoPeriod * 2.258) // Increase Foreground WD Timer Threshold

CALL DelayTimer.msec(250) // 250 msec delay

BrickAC.Config = 1

WHILE (BrickAC.Config > 0) {}

IF (BrickAC.Config != 0)

{

 // Take necessary action in case of a fault

 Sys.WDTReset = 0 // Restore Foreground WD timer Threshold

}

// Continue with script process

DISABLE PLC ExamplePLC

CLOSE

The process of waiting for the BrickAC.Monitor to execute in a PLC consumes a significant amount of

background cycles and risks triggering a foreground soft watchdog fault (Sys.WDTFault = 1), especially with

higher clock frequencies. Setting Sys.WDTReset temporarily to a larger value (increasing the foreground

watchdog timer threshold) alleviates this issue.

Note

The Sys.WDTReset expression stated in the PLC example should ensure

the proper setting regardless of the user specified clock frequencies.

Power Brick AC ARM User Manual

BrickAC Structure Elements – Global Non-Saved Setup Elements 255

BrickAC.Reset

Description: Amplifier reset/fault-clear control

Range: -7 .. 1

Units: none

Power-on default: 0

BrickAC.Reset acts as a flag for the Power PMAC firmware which controls the reset process of Power Brick

AC amplifier. This reset process clears any latched faults, and loads the configuration into the active amplifier-

control circuits based upon the BrickAC saved setup elements.

Setting BrickAC.Reset equal to 1 in a Script command starts the reset process as a background task on Power

PMAC CPU. The value stays at this set value until either the reset process is completed, in which case the

value of BrickAC.Reset is set to 0, or an error occurs in which case the BrickAC.Reset value is set to a

negative value indicating an error in the process. Please refer to BrickAC.Config for detailed information on

the error code list.

It is strongly recommended for users to confirm the pass/fail status of the reset process whenever

BrickAC.Reset is set to a value of 1.

Note

Setting BrickAC.Reset to 1 to start the amplifier configuration process

automatically stops the amplifier monitoring process, and the monitoring

process does not automatically resume when the configuration is

completed. BrickAC.Monitor must be set to 1 again in the user Script

application to resume the monitoring process.

OPEN PLC ExamplePLC

Sys.WDTReset = 5000 / (Sys.ServoPeriod * 2.258) // Increase Foreground WD Timer Threshold

CALL DelayTimer.msec(250) // 250 msec delay

BrickAC.Config = 1

WHILE (BrickAC.Config > 0) {}

IF (BrickAC.Config != 0)

{

 // Take necessary action in case of a fault

 Sys.WDTReset = 0 // Restore Foreground WD timer Threshold

}

// Continue with script process

DISABLE PLC ExamplePLC

CLOSE

The process of waiting for the BrickAC.Reset to execute in a PLC consumes a significant amount of background

cycles and risks triggering a foreground soft watchdog fault (Sys.WDTFault = 1), especially with higher clock

frequencies. Setting Sys.WDTReset temporarily to a larger value (increasing the foreground watchdog timer

threshold) alleviates this issue.

Note

The Sys.WDTReset expression stated in the PLC example should ensure

the proper setting regardless of the user specified clock frequencies.

Power Brick AC ARM User Manual

BrickAC Structure Elements – Global Status Elements 256

Global Status Elements

BrickAC.BusOverVoltage

Description: DC bus overvoltage flag

Range: 0 .. 1

Units: Boolean

The BrickAC.BusOverVoltage status bit indicates whether the amplifier has detected an overvoltage condition

on the DC bus or not. It is set to 0 when the measured DC bus voltage is 435 VDC or less. It is set to 1 when the

bus voltage has exceeded 435 VDC. This is a latching fault in the amplifier power stage and it can only be reset

if the bus power is cycled to the amplifier. Please refer to the hardware reference manual for proper power cycling

procedure.

This status bit is only updated if BrickAC.Monitor is set to 1.

If this fault is detected, the amplifier-fault lines for all channels are set to the “true” state, causing a software fault

condition on all Power PMAC motors commanding these channels. After the fault is cleared, the motors will

require a command to be re-enabled.

Note

The amplifier will shut down with a fault on all channels when it detects

an overvoltage condition regardless of whether software status bits are

updated for the processor (BrickAC.Monitor = 1) or not.

Power Brick AC ARM User Manual

BrickAC Structure Elements – Global Status Elements 257

BrickAC.BusUnderVoltage

Description: DC bus undervoltage flag

Range: 0 .. 1

Units: Boolean

The BrickAC.BusUnderVoltage status bit indicates whether the bus voltage is above a minimum threshold or

not. It is set to 1 when the amplifier detects an undervoltage condition on the DC bus, which occurs when the bus

voltage goes below 100 VDC, corresponding to a supply voltage of about 70 VAC(rms). This status bit is only

updated if BrickAC.Monitor is set to 1.

If BrickAC.UnderVoltageWarnOnly is set to its default value of 0, this is a fault condition, and the amplifier-

fault lines for all channels are set to the “true” state, causing a software fault condition on all Power PMAC

motors commanding these channels.

If BrickAC.UnderVoltageWarnOnly is set to 1, this is only a warning status bit

BrickAC.BusUnderVoltage is a transparent status bit and it will be cleared to 0 as soon as the measured voltage

exceeds 110 VDC again. However, any motor software fault conditions it creates are latched, and the motors

must explicitly be re-enabled by command.

Note

The amplifier will shut down with a fault on all channels when it detects

an undervoltage condition if BrickAC.UnderVoltageWarnOnly is set to

0 regardless of whether software status bits are updated for the processor

(BrickAC.Monitor = 1) or not.

BrickAC.BusVoltage

Description: DC bus voltage value

Range: 0 .. 1023

Units: Volts DC

The BrickAC.BusVoltage status element contains the DC Bus voltage value. The value is only updated if

BrickAC.Monitor is set to 1.

BrickAC.LineOk

Description: Power line input presence (for internal use)

Range: 0 .. 1

Units: Boolean

The BrickAC.LineOk status bit indicates the state of bus-power line inputs. It is set to 1 when line input power

is detected. It is set to 0 within two AC line cycles after detection of complete loss of input phase power. This

status bit is only updated if BrickAC.Monitor is set to a value greater than 0.

BrickAC.LineOk is primarily for internal use. If it is set to 0, the status bit BrickAC.PowerFault will be set to

1, creating a global fault condition in the amplifier.

Power Brick AC ARM User Manual

BrickAC Structure Elements – Global Status Elements 258

BrickAC.PhaseInMissing

Description: Missing line input phase(s) when in 3-phase input mode

Range: 0 .. 1

Units: Boolean

The BrickAC.PhaseInMissing status bit indicates whether all three phases of the power line input are present

or not, if the amplifier is set up to expect a 3-phase input. It is set to 1 if one or more of the three line input phases

is missing when the BrickAC.SinglePhaseIn parameter is set to 0. It is set to 0 if all three phases are present or

if BrickAC.SinglePhaseIn is set to 1. This status bit is only updated if BrickAC.Monitor is set to a value greater

than 0.

BrickAC.PowerBoardId

Description: Power board ID code (for internal use)

Range: 0 .. 15

Units: none

The BrickAC.PowerBoardId status element contains the power board ID code, which indicates the power

ratings for each channel. This parameter is for Delta Tau internal use. The value is only updated if

BrickAC.Monitor is set to a value greater than 0.

BrickAC.PowerFault

Description: Bus power supply fault status bit

Range: 0 .. 1

Units: none

The BrickAC.PowerFault status element indicates whether the power supplied to the DC bus has a problem or

not. All of the following criteria should be met before this flag is set to 0.

1. Input power verified (BrickAC.LineOK = 1).

2. Soft-start process is completed.

3. No soft-start IGBT fault has occurred.

If any of these conditions is not met, BrickAC.PowerFault is set to 1 and the amplifier becomes non-operational,

setting the amplifier-fault signals on all channels to the “true” state. This fault flag is non-latched and it will

automatically clear to 0 once all the above conditions are met. However, any motor software fault conditions it

creates are latched, and the motors must explicitly be re-enabled by command.

Note

In standard operation, BrickAC.PowerFault will be set to 1 from the time

the amplifier logic initializes after the 24VDC power is applied until

several seconds after the bus power is applied and the soft-start process

has completed. If the Power PMAC attempts to enable any motors that

use the amplifier stage during this period, the enabling will fail due to this

fault state.

Power Brick AC ARM User Manual

BrickAC Structure Elements – Global Status Elements 259

Note

The amplifier will shut down with a fault on all channels when it detects

a power fault regardless of whether software status bits are updated for

the processor (BrickAC.Monitor = 1) or not.

BrickAC.RegenFault

Description: Regeneration shunt circuitry fault status bit (internal use only)

Range: 0 .. 1

Units: Boolean

The BrickAC.RegenFault status bit whether the regeneration shunt circuitry is in a fault condition or not. It is

set to 1 if either of the following fault conditions is found:

1. The regen-shunt IGBT is experiencing an under-voltage condition (voltage is less than 12VDC)

2. Regen-shunt desaturation fault is detected. This fault is generated when the shunt resistor is pulling too

much current or is shorted.

When no fault is detected, BrickAC.RegenFault is set to 0. This status bit is only updated if BrickAC.Monitor

is set to 1.

The regen fault is a latching fault. Once it is detected, the fault status is latched. This fault can be cleared by

setting BrickAC.Reset to 1.

Note

The amplifier will shut down with a fault on all channels when it detects

a regeneration fault regardless of whether software status bits are updated

for the processor (BrickAC.Monitor = 1) or not.

BrickAC.RegenOverLoad

Description: Regeneration shunt circuitry overload status bit

Range: 0 .. 1

Units: Boolean

TheBrickAC.RegenOverLoad status bit indicates whether the shunt resistor has recently been on continually

for more than 2 seconds. It is set to 1 when the resistor has been on for the past two seconds. In this eventuality,

it is cleared to 0 automatically after a “cool-down” period. It is set to 0 if it has not recently been on continually

for 2 seconds.

This is a warning flag; no fault is generated when it is set to 1. This status bit is only updated if BrickAC.Monitor

is set to 1.

Power Brick AC ARM User Manual

BrickAC Structure Elements – Global Status Elements 260

BrickAC.SoftStartFault

Description: Soft-start circuitry fault status bit (for internal use)

Range: 0 .. 1

Units: Boolean

The BrickAC.SoftStartFault status bit indicates whether a fault has been detected in the soft-start circuitry or

not. It is set to 1 if either of the following conditions is detected:

1. The soft-start IGBT is experiencing an under-voltage condition (voltage is less than 12VDC)

2. Soft-start desaturation fault is detected. This fault is generated when the Bus capacitors are pulling too

much current.

When no fault is detected, BrickAC.SoftStartFault is set to 0. This status bit is only updated if

BrickAC.Monitor is set to 1.

BrickAC.SoftStartFault is primarily for internal use. If it is set to 1, the status bit BrickAC.PowerFault will

be set to 1, creating a global fault condition in the amplifier. This fault flag is non-latched and it will automatically

clear to 0 once all the above conditions are no longer present. However, any motor software fault conditions it

creates are latched, and the motors must explicitly be re-enabled by command.

Note

The amplifier will shut down with a fault on all channels when it detects

a soft-start fault regardless of whether software status bits are updated for

the processor (BrickAC.Monitor = 1) or not.

BrickAC.STO0

Description: “Safe torque off” STO0 input state

Range: 0 .. 1

Units: Boolean

The BrickAC.STO0 status bit indicates the status of STO0 “safe torque off” input. It reports as 0 if a 24VDC

level is supplied to the STO0 input, or if the adjacent “Disable STO” pin is connected to the “Disable STO

Return” pin. It reports as 1 if there is no 24VDC level applied to this input and if “Disable STO” is not connected

to “Disable STO Return”.

If the 24VDC level is removed from the STO0 input, there is no power supplied to the gate driver circuits that

turn on the power transistors, so no electrical power can be supplied to the motors and no torque can be generated.

This is known as “safe torque off” mode. This status bit is only updated if BrickAC.Monitor is set to 1.

The safe-torque off condition is non-latched and it will automatically clear to 0 once a 24VDC input is supplied

to the STO0 input again. However, any motor software fault conditions it creates are latched, and the motors

must explicitly be re-enabled by command.

Power Brick AC ARM User Manual

BrickAC Structure Elements – Global Status Elements 261

Note

The amplifier will shut down with a fault on all channels when it detects

a safe-torque-off condition regardless of whether software status bits are

updated for the processor (BrickAC.Monitor = 1) or not.

BrickAC.STO1

Description: STO1 disable condition control input state

Range: 0 .. 1

Units: Boolean

The BrickAC.STO1 status bit indicates the state of the STO1 “disable condition control” input. It reports as 0 if

a 24VDC level is supplied to the STO1 input, or if the adjacent “Disable STO” pin is connected to the “Disable

STO Return” pin. It reports as 1 if there is no 24VDC level applied to this input and if “Disable STO” is not

connected to “Disable STO Return”. This status bit is neither a fault nor a warning bit, and it is only updated if

BrickAC.Monitor is set to 1.

If the STO inputs are configured so that BrickAC.STO1 would report a 1, when this channel of the amplifier is

disabled (except by the safe-torque-off input), the motor leads are unconnected to each other and floating. If the

STO inputs are configured so that BrickAC.STO1 would report a 1, when this channel of the amplifier is disabled

for whatever reason, the motor leads are shorted together through the low side of the DC bus, and dynamic

braking is possible.

Note

The functionality control of the STO1 input is observed regardless of

whether software status bits are updated for the processor

(BrickAC.Monitor = 1) or not.

Power Brick AC ARM User Manual

BrickAC Structure Elements – Global Status Elements 262

BrickAC.UnderVoltageMasked

Description: Bus undervoltage condition display disabled

Range: 0 .. 1

Units: Boolean

The BrickAC.UnderVoltageMasked status bit indicates whether the bus undervoltage fault/warning is masked

from display on the amplifier or not. It is set to 0 if the amplifier is configured to display an undervoltage

condition, and to 1 if it is configured not to display an undervoltage condition.

The selection as to whether this condition is displayed or not is controlled by the value of saved setup element

BrickAC.UnderVoltageWarnOnly, as loaded into the active amplifier control circuitry with BrickAC.Config

or BrickAC.Reset. This status bit is only updated if BrickAC.Monitor is set to 1.

Note

The choice as to whether the amplifier will shut down with a fault when

it detects an undervoltage condition is determined by the value of

BrickAC.UnderVoltageWarnOnly. It is independent of the choice as to

whether to display an undervoltage condition or not.

BrickACVers

Description: Amplifier firmware version

Range: 0.0 .. 15.15

Units: none

The BrickACVers status element contains the amplifier firmware version (which is distinct from the Power

PMAC CPU’s firmware version) with a format of [Version].[Release] number. This element is only updated if

BrickAC.Monitor is set to 1.

Power Brick AC ARM User Manual

BrickAC Structure Elements – Channel Saved Setup Elements 263

Channel Saved Setup Elements

BrickAC.Chan[j].I2tWarnOnly

Description: I2T protection-level control

Range: 0 .. 1

Units: Boolean

Default: 0

Legacy I-variable alias: none

BrickAC.Chan[j].I2tWarnOnly determines the course of action the amplifier hardware takes upon detection

of an excess integrated current (I2T) condition on the channel. If BrickAC.Chan[j].I2tWarnOnly is set to the

default value of 0, then upon detection of a I2T excess condition, an amplifier fault is generated, the motor is

killed, the corresponding status bit is set, and the corresponding error code is displayed on the amplifier (Error

Code n.L).

If BrickAC.Chan[j].I2tWarnOnly is set to a value of 1, the I2T excess condition will be reported as a warning

in the status register, but it will not generate a fault on amplifier.

The BrickAC.Chan[j].I2tWarnOnly value is sent to the active amplifier-control circuit upon setting one of

the non-saved setup elements BrickAC.Reset or BrickAC.Config equal to 1 in a Script command. It does not

take effect until then.

The channel index j (= 0 to 7) is one less than the corresponding hardware channel number (= 1 to 8).

Note

The integrated current (I2T) calculations accessed by this element are

performed in the amplifier stage of the Power Brick AC. These

calculations are separate from those done by the Power PMAC software.

Power Brick AC ARM User Manual

BrickAC Structure Elements – Channel Status Elements 264

Channel Status Elements

BrickAC.Chan[j].I2tExcess

Description: Channel I2T fault/warning flag

Range: 0 .. 1

Units: Boolean

The BrickAC.Chan[j].I2tExcess status bit indicates whether an excessive integrated current (I2T) condition is

present on the channel or not. It is set to 0 if the integrated current value is not excessive; it is set to 1 if it is

excessive. This status flag is only updated if BrickAC.Monitor is set to 1.

An excessive I2T condition is calculated to exist if a current loading on the channel over the continuous rating

would produce a greater dissipation than operating at the maximum intermittent rating for over two seconds does.

An excessive I2T condition will generate a fault if saved setup element BrickAC.Chan[j].I2tWarnOnly is set

to its default value of 0. It will not generate a fault if BrickAC.Chan[j].I2tWarnOnly is set to 1.

BrickAC.Chan[j].I2tExcess is a transparent status bit and it will be cleared to 0 as soon as the integrated current

value falls below the threshold again. However, any motor software fault conditions it creates are latched, and

the motors must explicitly be re-enabled by command.

The channel index j (= 0 to 7) is one less than the corresponding hardware channel number (= 1 to 8).

Note

The channel will shut down with a fault when it detects an I2T excess

condition if BrickAC.Chan[j].I2tWarnOnly is set to 0 regardless of

whether software status bits are updated for the processor

(BrickAC.Monitor = 1) or not.

Note

The integrated current (I2T) calculations accessed by this element are

performed in the amplifier stage of the Power Brick AC. These

calculations are separate from those done by the Power PMAC software.

Power Brick AC ARM User Manual

BrickAC Structure Elements – Channel Status Elements 265

BrickAC.Chan[j].IgbtOverTempFault

Description: Channel power device overtemperature fault flag

Range: 0 .. 1

Units: Boolean

The BrickAC.Chan[j].IgbtOverTempFault status bit indicates whether the calculated junction temperature of

the channel’s IGBT power device has exceeded its safe threshold or not. It is set to 0 if the calculated junction

temperature is 120 °C or less. It is set to 1 if this temperature is over 120 °C. This status bit is only updated if

BrickAC.Monitor is set to a value greater than 0.

BrickAC.Chan[j].IgbtOverTempFault is a transparent status bit and it will be cleared to 0 as soon as the

calculated junction temperature value falls below the threshold again. However, any motor software fault

conditions it creates are latched, and the motors must explicitly be re-enabled by command.

The calculated junction temperature is derived from the measured case temperature, the measured current levels,

and the PWM switching frequency for the channel.

The channel index j (= 0 to 7) is one less than the corresponding hardware channel number (= 1 to 8).

Note

The channel will shut down with a fault when it detects an IGBT over-

temperature condition regardless of whether software status bits are

updated for the processor (BrickAC.Monitor = 1) or not.

BrickAC.Chan[j].IgbtTemp

Description: Channel IGBT case temperature

Range: 0 .. 255

Units: Degrees Celsius

The BrickAC.Chan[j].IgbtTemp status element contains the measured temperature IGBT case temperature for

channel j of Power Brick AC. This value is only updated if BrickAC.Monitor is set to 1.

The channel index j (= 0 to 7) is one less than the corresponding hardware channel number (= 1 to 8).

Power Brick AC ARM User Manual

BrickAC Structure Elements – Channel Status Elements 266

BrickAC.Chan[j].InvalidPwmFreq

Description: Channel invalid PWM frequency flag

Range: 0 .. 1

Units: Boolean

The BrickAC.Chan[j].InvalidPwmFreq status bit indicates whether the PWM frequency supplied to this

channel is valid or not. It is 0 if the frequency is within the valid range for the channel power device (4 kHz to

20 kHz). It is 1 if it is outside the valid frequency range for the device. This status flag is only updated if

BrickAC.Monitor is set to a value greater than 0.

BrickAC.Chan[j].InvalidPwmFreq is a transparent status bit and it will be cleared to 0 as soon as the PWM

frequency comes within the valid range again. However, any motor software fault conditions it creates are

latched, and the motors must explicitly be re-enabled by command.

The present measured PWM frequency for the channel can be found in status element

BrickAC.Chan[j].PwmFreq.

The channel index j (= 0 to 7) is one less than the corresponding hardware channel number (= 1 to 8).

Note

The channel will shut down with a fault when it detects an invalid PWM

frequency regardless of whether software status bits are updated for the

processor (BrickAC.Monitor = 1) or not.

Power Brick AC ARM User Manual

BrickAC Structure Elements – Channel Status Elements 267

BrickAC.Chan[j].OverCurrent

Description: Channel overcurrent fault flag

Range: 0 .. 1

Units: Boolean

The BrickAC.Chan[j].OverCurrent status bit indicates whether the hardware over-current detector for the

channel has sensed an instantaneous overcurrent or short-circuit state for the channel or not. It is set to 0 if it has

not detected this state. It is set to 1 if it has detected this state. This status flag is only updated if BrickAC.Monitor

is set to a value greater than 0.

Over-current fault detection in Power Brick AC is performed in hardware. Once over-current fault is detected,

the fault status is latched. This fault can be cleared by setting BrickAC.Reset equal to 1. Any motor software

fault conditions it creates are also latched, and the motors must explicitly be re-enabled by command after this

fault is cleared.

The channel index j (= 0 to 7) is one less than the corresponding hardware channel number (= 1 to 8).

Note

The channel will shut down with a fault when it detects an over-current

condition regardless of whether software status bits are updated for the

processor (BrickAC.Monitor = 1) or not.

BrickAC.Chan[j].OverTemp

Description: Channel excessive measured IGBT case temperature warning flag

Range: 0 .. 1

Units: Boolean

The BrickAC.Chan[j].OverTemp status bit indicates whether an excessive temperature is measured on the

channel’s IGBT case or not. It is 0 if the measured temperature is 75°C or less. It is 1 if the measured temperature

is greater than 75°C. This status flag is only updated if BrickAC.Monitor is set to a value greater than 0.

The channel index j (= 0 to 7) is one less than the corresponding hardware channel number (= 1 to 8).

No fault is automatically generated if this status bit is set to 1; it should be considered a warning. Faults due to

excessive temperature are based on the calculated “junction” temperature of the channel’s power transistor block

itself. The status bit for that fault is BrickAC.Chan[j].IgbtOverTempFault.

The present measured temperature for the channel’s IGBT case can be found in status element

BrickAC.Chan[j].IgbtTemp.

Power Brick AC ARM User Manual

BrickAC Structure Elements – Channel Status Elements 268

BrickAC.Chan[j].PwmFreq

Description: Channel measured PWM frequency

Range: 0 .. 1.024.000

Units: Hertz

The BrickAC.Chan[j].PwmFreq status element contains the measured PWM frequency for channel j of Power

Brick AC. It should match the frequency commanded by the controller stage. This value has a granularity of 100

Hz and is only updated if BrickAC.Monitor is set to 1.

The channel index j (= 0 to 7) is one less than the corresponding hardware channel number (= 1 to 8).

Power Brick AC ARM User Manual

Appendices – Appendix A: Yaskawa ACC-84B Example 269

APPENDICES

Appendix A: Yaskawa ACC-84B Example

Serial Encoder Control Example– Yaskawa Sigma II/III/V

No trigger delay, rising edge of phase. For Yaskawa Sigma II/III/V protocols a serial frequency of 100 MHz is

always used.

M = 0
N = 0

Bit #:

Binary:

0

Protocol

0: Rising
1: Falling

0: Phase
1: Servo

Hex ($):

1234567891011

0110

12131415

0000

16171819

0000

20212223

000000000000

Trigger
DelayEd

ge

C
lo

ck

R
e

se
rv

e
d

N DivisorM Divisor

Protocol =
6 Yaskawa

600000

Always for Yaskawa
 = Delayµsec

x fSerialMHz

Serial Encoder Command Example – Yaskawa Sigma II/III/V

Any Yaskawa Sigma I/II/V encoder.

Bit #:

Binary:

0

Hex ($):

123

0000

4567

0000

891011

0010

12131415

1000

16171819

0000

20212223

0000

004100

Tr
ig

 E
n

a

M
o

d
e

0: Disable
1: Enable

0: Continuous
1: One Shot

En
c

En
a

0: Disable
1: Enable

Command Code

00: Position Read
04: Clear Fault

0: Normal
1: Reset

R
e

se
t

ACC84[0].SerialEncCtrl = $000006

ACC84[0].Chan[0].SerialEncCmd = $001400

Serial Data Registers – Sigma II/III/V

For the Yaskawa Sigma II/III/V protocol, the data format in this element depends on the particular type of

encoder.

Yaskawa Sigma II (absolute 17-bit)

Possible Single-Turn/Multi-turn Position

01234567891011121314151617181920212223

ACC84B[].Chan[].SerialEncDataA

Multi

Power Brick AC ARM User Manual

Appendices – Appendix A: Yaskawa ACC-84B Example 270

01234567891011121314151617181920212223

Ti
m

eo
u

t
Er

r.

ACC84B[].Chan[].SerialEncDataB

C
o

d
in

g
E

rr
.

C
R

C
 E

rr
.

Multi-Turn Position

Yaskawa Sigma II (incremental 17-bit)

Possible Single-Turn/Multi-turn Position

01234567891011121314151617181920212223

ACC84B[].Chan[].SerialEncDataA

H
al

l U

H
al

l V

H
al

l W

In
de

x
Z

01234567891011121314151617181920212223

Ti
m

eo
u

t
Er

r.

ACC84B[].Chan[].SerialEncDataB

C
o

d
in

g
E

rr
.

C
R

C
 E

rr
.

Compensation Position

Yaskawa Sigma III/V (absolute 20-bit)

Possible Single-Turn/Multi-turn Position

01234567891011121314151617181920212223

ACC84B[].Chan[].SerialEncDataA

01234567891011121314151617181920212223

Ti
m

eo
u

t
Er

r.

ACC84B[].Chan[].SerialEncDataB

C
o

d
in

g
E

rr
.

C
R

C
 E

rr
.

Multi-Turn Position

Additional Information

01234567891011121314151617181920212223

ACC84B[].Chan[].SerialEncDataC

Alarm Code Temperature

Power Brick AC ARM User Manual

Appendices – Appendix A: Yaskawa ACC-84B Example 271

Yaskawa Sigma II/II/V Encoders Alarm Code (Absolute Encoders)

Script Bit # C Bit # Alarm Code

8 16 Backup Battery Alarm

9 17 Power-on error self-detected

10 18 Battery Level Warning

11 19 Absolute Error

12 20 Over Speed

13 21 Overheat

14 22 Position reference (index) not found yet

15 23 –

Yaskawa Sigma II/II/V Encoders Alarm Code (Incremental Encoders)

Script Bit # C Bit # Alarm Code

8 16 –

9 17 Power-on error self-detected

10 18 –

11 19 Revolution count (index to index) incorrect

12 20 –

13 21 –

14 22 Position reference (index) not found yet

15 23 –

Power Brick AC ARM User Manual

Appendices – Appendix A: Yaskawa ACC-84B Example 272

Resetting Faults – Yaskawa Sigma II/III/V

The following steps show the procedure for clearing the latched alarms on absolute encoders which the user/plc

should perform in certain order:

1. Write the value $043501 to Acc84E[i].Chan[j].SerialEncCmd.

2. Wait 10 milliseconds.

3. Wait for the trigger-enable component (Script bit 12) of this element to clear.

4. Wait for the busy signal (Script bit 8) of Acc84E[i].Chan[j].SerialEncDataB to clear. If cleared go to step 7.

5. Clear the command code of this element to $00 by writing $003501 to the element.

6. Repeat steps 2 to 4.

7. Resume continuous position requests by writing $001400 to the element.

Bit #:

Binary:

0

Encoder Address

Hex ($):

123

1000

4567

0000

891011

1010

12131415

1100

16171819

0000

20212223

0000

105340

Tr
ig

 E
n

a

M
o

d
e

0: Disable
1: Enable

0: Continuous
1: One Shot

En
c

En
a

0: Disable
1: Enable

00: Position Read
04: Clear Fault

0: Normal
1: Reset

R
e

se
t

Command Code

Power Brick AC ARM User Manual

Appendices – Appendix B: Digital Inputs Schematic 273

Appendix B: Digital Inputs Schematic

Power Brick AC ARM User Manual

Appendices – Appendix C: Digital Outputs Schematic 274

Appendix C: Digital Outputs Schematic

Power Brick AC ARM User Manual

Appendices – Appendix D: Analog I/O Schematics 275

Appendix D: Analog I/O Schematics

Power Brick AC ARM User Manual

Appendices – Appendix D: Analog I/O Schematics 276

Power Brick AC ARM User Manual

Appendices – Appendix E: Limits & Flags Schematic 277

Appendix E: Limits & Flags Schematic

	Copyright Information
	Trademarks

	Operating Conditions
	Safety Instructions
	Introduction
	Related Manuals
	Downloadable Power PMAC Script
	Agency of Approval and Safety

	Receiving and Unpacking
	Use of Equipment

	Specifications
	Part Number Designation
	Power Brick AC Configuration
	Standard Configuration
	Options
	Configuration Notes

	Environmental Specifications
	Protection Specifications
	Electrical Specifications
	4-Axis Power Brick AC
	8-Axis Power Brick AC

	Mounting
	Connector Locations
	CAD Drawing
	4–axis Power Brick AC
	8–axis Power Brick AC

	Connections and Basic Settings
	Motor and Brake (A1 - A8)
	Configuring the Brake Output
	Motor Cable, Noise Elimination
	Motor Selection
	Motor Inductance
	Motor Resistance
	Motor Inertia
	Motor Speed
	Motor Torque
	Required Bus Voltage for Speed and Torque

	Logic Power Supply (A10)
	Safe Torque OFF and Dynamic Brake (A11)
	Disabling the STO
	Wiring and Using the STO
	Wiring and Using the Dynamic Braking
	STO Feedback
	Recovering from the STO or Dynamic Brake

	Brake Power Supply Axis 1-4 (A12)
	External Shunt Resistor (A14)
	Main Bus Power Supply (A15)
	Advised Power On/Off Sequence
	Recommended Main Bus Power Wiring / Protection
	Grounding, Bonding
	Transformers
	Fuses
	Magnetic Contactors
	Line Filters
	Voltage Suppressors
	Bus Power Cables

	Brake Power Supply Axis 5-8 (A16)
	Encoder Connection (X1-X8)
	Digital Quadrature
	Configuring Quadrature Encoders
	Quadrature Counts per Engineering Unit
	Quadrature Encoder Count Error
	Quadrature Encoder Loss Detection

	Analog Standard & ACI Sinusoidal
	Standard Sinusoidal Configuration
	Standard Sinusoidal Counts per Engineering Unit
	Standard Sinusoidal Bias Correction
	Standard Sinusoidal Encoder Count Error
	Standard Sinusoidal Encoder Loss Detection
	ACI Sinusoidal Configuration
	ACI Sinusoidal Counts per Engineering Unit

	Analog Resolver
	Setting up Resolvers
	Configuring Resolver ECT
	Resolver Counts per Engineering Unit
	Resolver Absolute Power-On Position
	Bias Correction
	Resolver Encoder Count Error
	Resolver Encoder Loss Detection

	Serial Encoders with Gate3
	Encoder Specific Connection Information with Gate3
	 Yaskawa Sigma II/III/V Encoders
	 Tamagawa Encoders

	Serial Encoder Control with Gate3
	Serial Encoder Command with Gate3
	SSI Configuration Example with Gate3
	 Serial Encoder Control – SSI
	 Serial Encoder Command – SSI
	 Serial Data Registers – SSI

	EnDat 2.1/2.2 Configuration Example with Gate3
	 Serial Encoder Control – EnDat 2.1/2.2
	 Serial Encoder Command – EnDat 2.1/2.2
	 Serial Data Registers – EnDat 2.1/2.2

	Hiperface Configuration Example with Gate3
	 Serial Encoder Control – Hiperface
	 Serial Encoder Command – Hiperface
	 Serial Data Registers – Hiperface

	Yaskawa Sigma I Configuration Example with Gate3
	 Serial Encoder Control – Sigma I
	 Serial Encoder Command – Sigma I
	 Serial Data Registers – Sigma I

	Yaskawa Sigma II/III/V Configuration Example with Gate3
	 Serial Encoder Control – Sigma II/III/V
	 Serial Encoder Command – Sigma II/III/V
	 Serial Data Registers – Sigma II/III/V

	Tamagawa FA-Coder Configuration Example with Gate3
	 Serial Encoder Control – Tamagawa FA-Coder
	 Serial Encoder Command – Tamagawa FA-Coder
	 Serial Data Registers – Tamagawa FA-Coder

	Panasonic Configuration Example with Gate3
	 Serial Encoder Control – Panasonic
	 Serial Encoder Command – Panasonic
	 Serial Data Registers – Panasonic

	Mitutoyo Configuration Example with Gate3
	 Serial Encoder Control – Mitutoyo
	 Serial Encoder Command – Mitutoyo
	 Serial Data Registers – Mitutoyo

	Kawasaki Configuration Example with Gate3
	 Serial Encoder Control – Kawasaki
	 Serial Encoder Command – Kawasaki
	 Serial Data Registers – Kawasaki

	Serial Encoder Ongoing Position Setup with Gate3
	Serial Encoder Power-on Absolute Position Setup with Gate3

	Serial Encoders with ACC-84B
	Encoder Specific Connection Information with ACC-84B
	 Yaskawa Sigma II/III/V Encoders
	 Tamagawa Encoders
	 Mitsubishi HG- Servo Motor Encoders

	Serial Encoder Control with ACC-84B
	Serial Encoder Command with ACC-84B
	SSI Configuration Example with ACC-84B
	 Serial Encoder Control – SSI
	 Serial Encoder Command – SSI
	 Serial Data Registers – SSI

	BISS B/C Configuration Example with ACC-84B
	 Serial Encoder Control Example – BISS B/C
	 Serial Encoder Command Example – BISS C
	 Serial Data Registers – BISS B/C

	1S Configuration Example with ACC-84B
	 Serial Encoder Control – 1S
	 Serial Encoder Command – 1S
	 Serial Data Registers – 1S

	1S Configuration Example with ACC-84B
	 Serial Encoder Control – 1S
	 Serial Encoder Command – 1S
	 Serial Data Registers – 1S

	Serial Encoder Ongoing Position Setup with ACC-84B
	Serial Encoder Power-on Absolute Position Setup with ACC-84B
	XY2-100 Galvanometer Interface
	Table Based Position Compare

	Analog I/O (X9-X12)
	Setting up the Analog (ADC) Inputs
	 Raw ADC Data (bits)
	 Scaling the analog input Data
	 Using the ADC for Servo Feedback
	 Example:

	Setting up the Analog (DAC) Outputs
	 Command Register Pointers
	 Scaled DAC Output (In Volts)

	Setting up the General Purpose Relay
	 Example

	Setting up the GP Input

	Limits, Flags, and EQU (X13-X14)
	Wiring the Limits and Flags
	Limits and Flags Suggested Pointers
	 Channels 1 – 4 Limits and Flags Suggested Pointers (X13)
	 Channels 5 – 8 Limits and Flags Suggested Pointers (X14)

	Digital I/O (X15-X16)
	About the Digital Inputs and Outputs
	Inputs
	Outputs

	Wiring the Digital Inputs and Outputs
	Digital I/O Pointers

	MACRO (X17)
	Abort and Watchdog (X18)
	Abort Input
	 Global Abort Key Settings

	Watchdog Relay

	External Encoder Power Supply (X19)
	Wiring the Encoder Supply
	Functionality and Safety Considerations

	RTETH and Fieldbus (X20-X23)
	ETH0 and ETH1/ECAT
	ETH0 Ethernet Port
	ETH1/ECAT Port

	USB and Diagnostic
	USB Host Port
	USB-Serial UART Diagnostic Port
	USB Accessory

	Manual Motor Configuration
	Step 1: Creating an IDE Project
	Reset
	New Project
	Disable Systemsetup Download
	Recommended Project Layout

	Step 2: Basic Optimization and System Gates Settings
	Write Protect Key, Sys.WpKey
	Abort All Input, Sys.pAbortAll
	Maximum Number of Motors, Sys.MaxMotors
	Maximum Number of Coordinate Systems, Sys.MaxCoords
	Dominant Clock Frequencies
	Minimum PWM Frequency
	Recommended Clock Frequencies

	Data Unpacking
	Setting up the BrickAC Structure Elements
	System Gates Sample File for PBA4
	System Gates Sample File for PBA8

	Step 3: Power-On Reset PLC
	Power-On Reset PLC Sample for PBA4
	Power-On Reset PLC Sample for PBA8

	Step 4: Applying Power-On Reset PLC and System Gates Settings
	Step 5: Scaling and Verifying Encoder Feedback
	Scaling to Engineering Units
	Direct drive rotary motor/encoder in degrees
	Geared rotary motor/encoder in inches
	Linear motor/encoder in millimeters

	Verifying Encoder Feedback
	Counting in both directions
	Reporting the Correct Distance

	Step 6: Motor Setup
	Common Structure Element Settings
	Brushless Motor
	Brushed Motor
	AC Induction Motor

	PWM Scale Factor
	On-going Phase Position
	Stepper Motor without Encoder – Direct Microstepping
	Brushed Motor
	Stepper Motor with Encoder
	Brushless Motor
	 Quadrature Encoder
	 Sinusoidal Encoder (With Standard Interpolator)
	 Sinusoidal Encoder (With ACI Interpolator)
	 Resolver Encoder
	 Serial Encoder with Gate3
	 Serial Encoder with ACC-84B

	I2T Protection and Direct Magnetization Current
	Brushless Motor
	Brushed Motor
	AC Induction Motor

	Slip Gain
	Brushless Motor
	Brushed Motor
	AC Induction Motor

	Current Loop Tuning
	Brushed Motor
	AC Induction Motor
	Brushless Motor

	Establishing Phase Reference
	Brushed Motor
	AC Induction Motor
	Brushless Motor
	 Automatic Stepper Phasing
	 Manual "Force" Phasing
	 Custom "PLC" Phasing

	Open Loop Test
	Brushed Motor
	AC Induction Motor
	Brushless Motor
	 Troubleshooting tips:

	Optimizing Magnetization Current
	Brushless Motor
	Brushed Motor
	AC Induction Motor

	Position Loop Tuning
	Brushed Motor
	AC Induction Motor
	Brushless Motor

	Absolute Power-on Phasing
	Brushed Motor
	AC Induction Motor
	Brushless Motor
	 Hall Effect Phasing
	 Generating Hall Effect Phasing Parameters Using a PLC
	 Hall Phasing Correction (Fine Phasing)
	 Absolute Serial Encoder Phasing with Gate3
	 Absolute Serial Encoder Phasing with ACC-84B
	 Absolute Resolver Phasing

	Special Functions & Troubleshooting
	D1: Error Codes
	Step and Direction, PFM Output
	 Common Channel Settings for PFM Output (Example Channel 1):
	 PFM Output Signal Settings
	 Manual Modulation
	 Controlling an External Stepper Amplifier / Motor
	 Example

	Sinusoidal Encoder Bias Corrections
	Reversing Motor Jogging Direction
	Stepper without Encoder (Direct Microstepping)
	Quadrature / Sinusoidal / Resolver
	Incremental Serial Encoders
	Absolute Serial Encoders

	DelayTimer PLC
	Encoder Count Error
	Encoder Loss Detection
	Digital Quadrature
	Automatic Kill Action for Quadrature Encoders

	Sinusoidal | Resolver | HiperFace Encoders
	Automatic Kill Action for Sinusoidal | Resolver | HiperFace Encoders

	Serial Encoders
	Automatic Kill Action for Gate3 Serial Encoders
	Automatic Kill Action for Gate3 Serial Encoders

	Digital Tracking Filter
	PTC Motor Thermal Input
	LED Status
	Reloading Power PMAC Firmware
	Reloading Firmware Method 1: IDE
	Reloading Firmware Method 2: USB Drive/SD Card

	Changing Network (IP Address) Settings
	Through the Power PMAC IDE
	Through USB

	Restoring Factory Default Configuration
	Method 1 (to be used when communicating):
	Method 2 (to be used when not communicating):

	Watchdog Faults

	BrickAC Structure Elements
	Global Saved Setup Elements
	BrickAC.MonitorPeriod
	BrickAC.SinglePhaseIn
	BrickAC.UnderVoltageDisplay
	BrickAC.UnderVoltageWarnOnly

	Global Non-Saved Setup Elements
	BrickAC.Config
	BrickAC.Monitor
	BrickAC.Reset

	Global Status Elements
	BrickAC.BusOverVoltage
	BrickAC.BusUnderVoltage
	BrickAC.BusVoltage
	BrickAC.LineOk
	BrickAC.PhaseInMissing
	BrickAC.PowerBoardId
	BrickAC.PowerFault
	BrickAC.RegenFault
	BrickAC.RegenOverLoad
	BrickAC.SoftStartFault
	BrickAC.STO0
	BrickAC.STO1
	BrickAC.UnderVoltageMasked
	BrickACVers

	Channel Saved Setup Elements
	BrickAC.Chan[j].I2tWarnOnly

	Channel Status Elements
	BrickAC.Chan[j].I2tExcess
	BrickAC.Chan[j].IgbtOverTempFault
	BrickAC.Chan[j].IgbtTemp
	BrickAC.Chan[j].InvalidPwmFreq
	BrickAC.Chan[j].OverCurrent
	BrickAC.Chan[j].OverTemp
	BrickAC.Chan[j].PwmFreq

	Appendices
	Appendix A: Yaskawa ACC-84B Example
	Serial Encoder Control Example– Yaskawa Sigma II/III/V
	Serial Encoder Command Example – Yaskawa Sigma II/III/V
	Serial Data Registers – Sigma II/III/V
	Yaskawa Sigma II (absolute 17-bit)
	Yaskawa Sigma II (incremental 17-bit)
	Yaskawa Sigma III/V (absolute 20-bit)
	Additional Information

	Yaskawa Sigma II/II/V Encoders Alarm Code (Absolute Encoders)
	Yaskawa Sigma II/II/V Encoders Alarm Code (Incremental Encoders)
	Resetting Faults – Yaskawa Sigma II/III/V

	Appendix B: Digital Inputs Schematic
	Appendix C: Digital Outputs Schematic
	Appendix D: Analog I/O Schematics
	Appendix E: Limits & Flags Schematic

