

^1 USER MANUAL

^2 Power PMAC IDE

^3 Power PMAC

^4 Integrated Development Environment

November 17, 2021

 Single Source Machine Control Power // Flexibility // Ease of Use
9200 Oakdale Ave. Suite 900 Chatsworth, CA 91311

https://automation.omron.com/en/us/

^4O016-E-11

https://automation.omron.com/en/us/

Copyright Information
© 2021 Delta Tau Data Systems, Inc. All rights reserved.

This document is furnished for the customers of Delta Tau Data Systems, Inc. Other uses are

unauthorized without written permission of Delta Tau Data Systems, Inc. Information contained in this

manual may be updated from time-to-time due to product improvements, etc., and may not conform in

every respect to former issues.

To report errors or inconsistencies, email:

Delta Tau Data Systems, Inc. Technical Support

Email : odt-support@omron.com

Web site : https://automation.omron.com/en/us/

Operating Conditions
All Delta Tau Data Systems, Inc. motion controller products, accessories, and amplifiers contain static

sensitive components that can be damaged by incorrect handling. When installing or handling Delta Tau

Data Systems, Inc. products, avoid contact with highly insulated materials. Only qualified personnel

should be allowed to handle this equipment.

In the case of industrial applications, we expect our products to be protected from hazardous or

conductive materials and/or environments that could cause harm to the controller by damaging

components or causing electrical shorts. When our products are used in an industrial environment, install

them into an industrial electrical cabinet or industrial PC to protect them from excessive or corrosive

moisture, abnormal ambient temperatures, and conductive materials. If Delta Tau Data Systems, Inc.

products are directly exposed to hazardous or conductive materials and/or environments, we cannot

guarantee their operation.

WARNING

A Warning identifies hazards that could result in personal injury

or death. It precedes the discussion of interest.

Caution

A Caution identifies hazards that could result in equipment damage. It

precedes the discussion of interest.

Note

A Note identifies information critical to the user’s understanding or

use of the equipment. It follows the discussion of interest.

mailto:odt-support@omron.com
https://automation.omron.com/en/us/

REVISION HISTORY

RE

V.
DESCRIPTION DATE CHG APPVD

0 MANUAL CREATION 3/20/18 AS/DG AG

1 FIRST ISSUE 4/4/18 TT AG

2 CHANGES for IDE v4.1 07/03/18 TT AG

3 UPDATED APPENDIX FOR UPGRADES 30/07/18 TT AG

4 CHANGES for IDE V4.2 11/19/18 TT AG

5 CHANGES for IDE V4.3 06/20/19 TT AG

6 CHANGES for IDE V4.3.2.x

7 CHANGES for IDE V4.4.0.x 04/02/2020 SB AG

8 CHANGES for IDE V4.4.1.x 09/01/2020 BJ AG

9 CHANGES for IDE V4.4.2.x 10/06/2020 DG AG

10 CHANGES for IDE V4.5.0.x 03/31/2021 DG AG

11 CHANGES for IDE V4.5.1.x 06/21/2021 DG AG

12 CHANGES for IDE V4.5.2.x 10/08/2021 DG AG

Downloading the

IDE 4

Table of Contents

INTRODUCTION... 11

SYSTEM REQUIREMENTS .. 12

DIFFERENCES BETWEEN V3.X AND V4.X .. 13

Overview: Changes from V3.x ... 13

Release notes V4.2 ... 15

Release notes V4.3 ... 15

Release Notes V4.3.2.x ... 16

Release Notes V4.4.0.x ... 16

Release Notes V4.4.1.x ... 16

Release Notes V4.4.2.x ... 17

Release Notes V4.5.0.x ... 17

Release Notes V4.5.1.x ... 17

Release Notes V4.5.2.x ... 17

Installation compatibility chart .. 19

IDE and Firmware Selection chart .. 19

KNOWN INSTALLATION ISSUES CAUSED BY ANTIVIRUS SOFTWARE 20

DISPLAY ADAPTER COMAPTIBILITY ISSUE .. 20

OBTAINING THE POWER PMAC MANUALS ... 21

COMMUNICATING WITH POWER PMAC .. 22

Establishing Communication .. 22

Changing Power PMAC’s Network Settings .. 25

Changing x86, Hypervisor’s (MotionCore’s) Network Settings .. 26

Re-establishing Communication ... 27

IDE PROJECT EXAMPLES... 29

IDE LAYOUT ... 30

Default Layout .. 30

Alarm Indicator ... 31

System Difference Indicator ... 33

Start Page .. 34

MENUS .. 35

File ... 35
File- New Project/Project wizard .. 36
File-Open .. 36
File-Open-From Power PMAC ... 36
Export .. 39
Import .. 40

Downloading the

IDE 5

Template Manager .. 40

Edit ... 41

View .. 42

Project .. 42

Build ... 44

Debug ... 44

Tools ... 44

Delta Tau ... 45

Terminal Window ... 46

Position Window .. 49

Watch Window ... 51

Move up/down: ... 54
Formatting Option: .. 54

Status .. 57

Error Display ... 59

Unsolicited Messages ... 61

Jog Ribbon ... 63

Encoder Conversion Table ... 64

Update Firmware ... 67

Install Package ... 69

Backup Restore... 71

Device Imaging (Backup & Restore) ... 76

Compare ... 76

Motors ... 77
Coordinate Systems .. 78
Gate structure element .. 80

Tools ... 82

Tune .. 82

Tuning Window Layout .. 83
Tuning Moves ... 90

Plot ... 97

Scope .. 113

Tune (Legacy)... 119
Kill Motors .. 160

CAM Sculptor ... 161

Task Manager .. 161

EtherCAT ... 174

Help .. 174

PROJECT SYSTEM .. 175

Project Organization ... 175

Layout ... 175

Opening a Project .. 176
File-New-Project ... 176
File-New-Project Wizard .. 177

Downloading the

IDE 6

File-Open-Project .. 178

Project – Context menu .. 180
Build .. 180
Rebuild .. 180
Clean ... 181
Building and Downloading the Project ... 181
Map Power PMAC Variables ... 182
Export Project with IP Protection ... 183
Export Project Template ... 186
Comparing a Project ... 189
Add EtherCAT .. 193
Add EtherNet/IP .. 193
Add Application .. 194
Properties .. 194

Project – Common operation ... 195

Adding and Removing Files ... 195
File Properties ... 195

System ... 195

Layout ... 196
Common for all the views from system folder items .. 196

CPU .. 196
Clock Settings ... 197
Commonly System Elements .. 198
Memory Buffers .. 199
Core Management ... 200
Example of using Core management .. 202
Advanced System Elements .. 204

Hardware ... 206
Axis Interface Cards ... 206
Digital I/O Cards ... 210
MD71xx .. 210
AD31xx ... 212
CK3WECSxxxx .. 213
CK3WGCxxxx .. 213

EtherCAT ... 215
Master0 ... 215
EtherCAT Master-Node Properties ... 217
EtherCAT Master-Node Context Menu .. 218
Show Master Status ... 218
Diagnosis Mode .. 219
Network Mismatch Analyzer .. 220
Line Crossed Analyzer .. 222
Scan EtherCAT Network / Append Slave ... 223
Import Slaves from ENI .. 224
Export ENI file .. 225
Load Mapping to Power PMAC ... 225
Load Mapping to Power PMAC from ENI ... 227
Export EtherCAT Configuration Template ... 227
Import EtherCAT Configuration Template ... 228

Downloading the

IDE 7

Watch EtherCAT mapped variable ... 229
Activate/Deactivate EtherCAT ... 230

EtherCAT - Slave-Node Context Menu .. 230
Disable Slave .. 230
EtherCAT – Import SYSMAC Studio safety mapping file .. 234
Example - Safety Controller integration with Power PMAC IDE .. 234

EtherNet/IP .. 243
Prerequisite for Power PMAC EtherNet/IP adapter .. 243
EtherNet/IP project node ... 244
EtherNet/IP context menu ... 244
Add EtherNet/IP Connection: ... 245
Watch EtherNet/IP Variables .. 248
Activate/Deactivate EtherNet/IP ... 249

EtherNet/IP Configuration Steps ... 250

Motors – Context Menu .. 252

Add Motor ... 252
Sync All Motor Settings (PMAC to Project) .. 260

Motor – Context menu .. 260
Compare .. 260
Copy .. 261
Paste .. 261
Troubleshooters ... 261
Sync Motor Settings (PMAC to Project)Upload ... 263
Export as Item Template ... 264

Topology Blocks ... 266
Amplifier block ... 267
Motor Block .. 271
Encoder Block ... 275
User Units Block ... 278
Hardware Interface Block ... 280
Interactive Feedback Block ... 281
Safety Review ... 283
Test and Set Block .. 284
Basic Tuning Block ... 291
Commissioning Block ... 293

Coordinate Systems-Context menu .. 295

CoordinateSystem-Context menu ... 297
Compare .. 298
Upload ... 299
Export as Item Template ... 300

Encoder .. 301

Application .. 302

Compensation Table .. 303

Gantry .. 308
1. Configuration .. 309
2. Test .. 309
Removing Gantry .. 311

Homing ... 311

Downloading the

IDE 8

1. Configuration .. 312
2. Starting Location ... 313
3. Home ... 314
4. Home Offset and Soft Limits .. 315
5. Motion Diagram .. 315
6. Test .. 317
Removing Homing .. 320

TCR .. 320
1. Configuration .. 321

C Language ... 324
Background Programs ... 324
CPLCs ... 325
Include... 325
Libraries .. 325
Realtime Routines ... 325

Configuration .. 326
eni.xml .. 326
pp_custom_save.cfg .. 326
pp_custom_save.tpl ... 326
pp_disable.txt .. 327
pp_inc_disable.txt ... 327
pp_startup.txt .. 327
pp_inc_startup.txt .. 327
systemsetup.cfg ... 327
Generating Configuration Files ... 328

Documentation .. 330

Log .. 330
pp_proj.log .. 330
pp_error.log ... 331
pp_error_hist.log ... 331

PMAC Script Language Folder ... 332
Global Includes ... 333
Kinematic Routines ... 333
Libraries .. 333
Motion Programs .. 333
PLC Programs ... 333

Debugger ... 334

C language debugger ... 334

Script PLC Debugger ... 335

PROJECT ENCRYPTION .. 336

MOTOR SETUP ... 338

Local Motor: (Single or Dual feedback) .. 338

Local Motor: No Feedback Motor (Step & Direction) .. 338

EtherCAT Network and Motor Setup ... 340
Step 1: Setup ECAT network configuration ... 340
Step 2: Load mappings to Power PMAC .. 354

Downloading the

IDE 9

Step 3: Add EtherCAT Motor (Method 1) .. 357
Step 3: Add EtherCAT Motor (Method 2-Drag and Drop) ... 365

Additional necessary settings for 1S and G5 drive to be used in CST and CSV mode 371

MISCELLANEOUS FEATURES OF THE IDE ... 373

ASSOCIATING MOTORS WITH USER-WRITTEN SERVO AND PHASE

ALGORITHMS... 378

MACRO PROJECT ... 379

PROJECT UPLOAD .. 380

DEBUGGER .. 383
Debugging a Script PLC ... 383
Debugging a Background C Application .. 386

MATLAB/SIMULINK TARGET FOR POWER PMAC ... 389

Installing the Power PMAC Target on MATLAB .. 389

How to use Simulink to Generate User-Servo C Code ... 391

Example: Modeling PID Control of a Brush Motor .. 391

Step 1: Design the Model .. 391
Step 2: Include Delta Tau Library Blocks in Simulink ... 393
Step 3: C Code Generation.. 396
Step 4: Deploy the Model in the Power PMAC IDE .. 398
Step 5: Verify the Result ... 400

Using Tunable Parameters in Models and Code ... 401
Example: Variable Kp, Kd, and Ki ... 401

How to Use Simulink to Create a Trajectory .. 404
Example Trajectory Generation Model ... 405

APPENDIX .. 408

Application Notes ... 408

1. How to use EtherCAT slave naming – OEI Application Team- Mike Esposito 408
Scope ... 408
Overview ... 408
A. IDE Setup ... 409
B. Example Usage ... 411

2. Commission Safety PLC (NX-SL3300 or NX-SL3500) Plus 1S servo drive with Power

PMAC – OEI Application Team- Atanas Karaatanasov.. 413

Scope ... 413
SOFTWARE / hardware ... 414
Software / hardware .. 414
Terms and Definitions ... 414
1. SYSMAC Configuration ... 415
2. Download SYSMAC project to ECC203 and sl3300 ... 422
3. Export sysmac pdo configuration ... 424
4. Power PMAC IDE configuration .. 425

Downloading the

IDE 10

Upgrading project from IDEV3.x to IDEV4.x ... 432

How to Tune 1S and G5 drive using Advance Tune tool ... 433

Motor-Encoder combination chart supported by System Setup ... 438

ACONTIS Error Codes ... 439

Downloading the

IDE 11

INTRODUCTION

The Power PMAC Integrated Development Environment (IDE) software is based on the Visual Studio

2015 programming environment. It is used to develop, debug, and test Power PMAC programs developed

in Delta Tau’s proprietary Power PMAC Script language or in the C programming language. The

programs are organized as a project that includes folders such as the Power PMAC Script Language, C

Language, etc. The programming environment supports program debugging capabilities and allows the

user to insert breakpoints and step through the program. It supports setup tools to detect, configure, and

diagnose Power PMAC hardware through its System Setup utility. The Power PMAC IDE also supports

setup of EtherCAT and MACRO devices.

This manual attempts’ to thoroughly explain how to use the IDE and how to set up the system using the

System Setup software. If, however any support is required please call Technical Support at 1(800) 556

6766 (Select 1 and then 6) or email: ODT-Support@Omron.com

mailto:ODT-Support@Omron.com

Downloading the

IDE 12

SYSTEM REQUIREMENTS

Operating system

The Power PMAC IDE is an application that runs on Microsoft Windows ™.

It will run on the following versions of Microsoft Windows.

 Windows 10

The Power PMAC IDE requires .NET Framework 4.6 and above. The installation will identify the

missing framework and installs it automatically.

Hardware

 1.6 GHz or faster processor

 4 GB of RAM (2 GB if running on a virtual machine)

 20 GB of available hard disk space

 5400 RPM hard disk drive or faster

 DirectX 9-capable video card (1024 x 768 or higher resolution)

Note

The performance is directly dependent on the processor speed and

RAM. Better the processor speed and bigger the RAM better

performance.

Downloading the

IDE 13

DIFFERENCES BETWEEN V3.X AND V4.X

Overview: Changes from V3.x

1. Intuitive Start Page saves User time and enhances configuration. Future extensible by connecting

to the Delta Tau website for live updates and news.

2. Open system configuration to project based configuration. In IDE 4.x all the Power PMAC

configuration is in one place, Project, unlike in IDE3.x system setup, where EtherCAT setup is a

separate application.

3. IDE 4.x automatically manages changes to Motor and Coordinate parameters through the user

interface (not Terminal window) and creates the systemsetup.cfg file during build and download.

In IDE3.x user has to maintain the configuration file manually.

4. Graphical/Intuitive motor Setup based on Topology (graphical view) and integrated with the

project system, whereas in IDE 3.x it’s a separate non-graphical application.

Downloading the

IDE 14

5. Coordinate system element setup integrated with Project system for usability.

6. Enhanced Basic Tuning: A major difference between V3.x and V4.x is the Servo loop tuning

previously accessed from Test and Set. We now have a Basic Tuning block. The concept of the

basic tuning is for new and basic Users. The tuning algorithm will achieve the performance, so

they do not need to use advanced tuning. Advanced tuning is still available for expert users who

possess some knowledge about control theory.

7. Intellectual property encryption support: IP (Intellectual property) protection allows OEM

builders, independent integrators and users to protect their intellectual property by encrypting

script programs. The encryption is password protected.

The current implementation of IP protection is three level.

a. Customer-A can encrypt the script programs and pass the project on to Customer-B. This

is level one.

b. Customer-B can take the project from Customer-A and add their own logic and protect it

by encrypting to give it to Customer-C. This is level two. Customer-B cannot list or view

Customer-A's code.

c. Customer-C can take the Project from Customer-B and add their logic and protect their

part by encrypting it to give to Customer-D. This is level three. Customer-C cannot list or

view Customer-A's or Customer-B code.

d. Customer-D cannot list or view Customer-A,B or C’s code.

8. Power PMAC messages window displays errors, warnings and messages. Parameter settings,

motor setup, coordinate setup and EtherCAT setup write to this window.

Error tab shows error.

Warning tabs shows warning.

Messages tab shows the messages.

Downloading the

IDE 15

Output tab shows all the settings that are written to Power PMAC.

9. Integrated EtherCAT setup into the project system for easy maintainance. EC-Engineer is

integrated to project system unlike in IDE3.x, where it was a seperate application and required

manual work to add EtherCAT configuration(ENI) to the project.

10. Bug fixes

Release notes V4.2
Reason: Bug fixes reported in Bugzilla, new feature addition and enhancement.

List of new feature and enhancement:

1. Support for exporting, Importing and deleting of custom project templates.

2. Support for Exporting, Importing and Deleting of Custom Item Templates. Example: Motor

settings, CS settings etc.

3. Following folder nodes in the solution explorer will not automatically sort the file that are added

or scan but will display as they are added or detected maintaining the sequence.

a. Hardware card under Hardware node

b. Motor under Motor node

c. Coordinate systems under coordinate system node

d. Script language files

e. ECAT devices under EtherCAT node

4. PLC and Motion programs files can be move up or down

5. Improve Motor setup topology navigation adding support for Next and Prev state.

6. Clearly visible Alarm Indicator. Alarm provides symptom and possible remedy information.

7. New wizard style Image backup and restore.

8. New single Position window displaying Position, Velocity and Following Error.

9. New designed watch window.

10. New standard Toolbar with commonly used command

11. Improved EtherCAT error reporting while scanning and activating network.

12. Common connection title bar clearly indicating Power PMAC connection status

13. Advance tuning settings are exported to motor in the project.

Release notes V4.3
Reason: Bug fixes reported in Bugzilla, new feature addition and enhancement.

List of new feature and enhancement:

1. Update Amplifier, Motor and Encoder view compare to V4.2

2. Support Part Manager as menu so user can enter custom Amplifier, Motor or Encoder without

using system setup.

3. Improve System –CPU block and categorizing it for usability

4. Update Global Clock page compare to V4.2.

5. Support Import and export of Encoder like Motor and Amplifier.

6. Topology view improvement to show clear flow.

7. Every Topology is appended with Jog Ribbon block for user to test the motor

8. Support New CK3M hardware: Digital IO (MDxx) and Analog IO (ADxx)

9. EtherCAT setup Enhancement

a. Improve EtherCAT Motor topology

b. Improve header file organization(.pmh and .h)

Downloading the

IDE 16

c. Support naming a slave from EtherCAT network setup

d. Improve error handling when scanning and enabling the EtherCAT network

e. Support Slave template configuration for easy setup

f. Support EtherCAT slave template import/export

g. Support Slave disable

h. EtherCAT variable viewer to support easy commissioning

i. Visual indicator showing EtherCAT active status

10. Project compare and diff the files from project menu.

11. Support font size to Position and watch window.

12. Visual indicator for Build and Download completion

13. Improve Motor compare view showing Power PMAC defaults column.

14. Support commonly used Power PMAC commands on the toolbar.

15. New Project template for EtherCAT projects.

Release Notes V4.3.2.x
Reason: Bug fixes reported in Bugzilla, new feature addition and feature enhancement.

List of new feature and enhancement:

1. Support Drag and Drop EtherCAT Slave (1S and G5 only) to motor and setup EtherCAT motor.

2. Support Hot connect group for EtherCAT slave.

3. Enhance Project Compare functionality

a. Expanding eni file to compare slaves.

4. Add support for Project Sync (copy from Power PMAC to PC)

5. Add Template Manager for Project and Item Templates

6. Enhance Motor/Co-ordinate System Compare view

7. Enhance the Topology view by adding a Safety Block

8. Add the ability to ‘refresh’ the Hardware Node

Release Notes V4.4.0.x
Reason: Bug fixes reported in Bugzilla, new feature addition and feature enhancement.

List of new features and enhancements:

1. Support for Ethernet IP (EIP) setup.(Available after July 2020)

2. QUAD core support

a. Compile

b. Compare System, Project settings for core task allocation and buffer settings.

c. Core management

d. Image restore

3. Simplified and unified communication setup dialog

4. Revamped Firmware update dialog and Package install dialog

5. Revamped Hardware interface and Interactive dialog from Motor topology view.

6. F1 help support extended to commissioning dialogs.

7. Revamped graph integrated to basic tuning and interactive feedback.

Release Notes V4.4.1.x
Reason: Bug fixes reported in Bugzilla, new feature addition and feature enhancement.

List of new features and enhancements:

1. Supporting Ethernet/IP (EIP) setup for CK3E and CK3M and UMAC CPU (Requires FW

V2.6.x.x)

2. Support core management configuration for CK3M

3. Fix: The Data size is 0 in ethernetip.xml if the connection setting is disabled from EIP setup

Downloading the

IDE 17

4. Fix: EIP Watch variable window cannot be opened if multiple connections are configured

5. Fix: Plot control crashes

6. Fix: EtherNet/IP connection variable are not unique when copy paste connection command is

used.

7. Fix: Power PMAC message window should not get focus while Build and Download is in

progress.

8. Fix: Sometime PLC or Motion program does not show Motor or Coord or EIP structure in the

project editor intellisense list

9. Fix: Delete EIP connection takes very long time.

10. Fix: PMAC IDE hangs when checking EtherNet/IP Watch window.(a large number of variables)

11. Fix: Remove the Dark theme option from Tool -Option-general

12. Fix: EIP Error message saying firmware 2.5.4 instead of 2.6

13. Fix: Block the build and download for EtherNet/IP project if the FW is V2.5.4.0

14. Fix: Task Manager Display goes wrong after automatically re-connection after disconnect.

Release Notes V4.4.2.x

1. QUAD core CPU support

2. EIP support for QUAD UMAC

Release Notes V4.5.0.x
Reason: New feature addition and feature enhancement.

 Bug fixes

List of new features and enhancements:

1. Ck3WGCxxxx hardware support and configuration page

2. CK3WGCxxxx TCR application configuration page

3. Motor topology supports adding Virtual and galvo motor configuration

4. Improved Tuning user interface integrating new chart

5. EtherCAT setup improvement

a. Easy OMRON Safety controller integration.

b. Drag and drop Multiple Omron Slave drive (1S and G5) to Motor Node and

automatically setup EtherCAT Motor

c. Disable slave

d. Support for (Hot Connect) Groups

6. Project wizard for generating project framework

7. Homing application configuration page

8. Gantry application configuration page

9. Compensation table integration in the project system

10. Compare Gate X saved structure element

Release Notes V4.5.1.x
Reason: Bug fixes

1. Alarm Pop-up continuously stealing the focus and making it unusable.

2. Alarm pop-up incorrectly showing the status. Alarms are for error only. For example
Plc[1].Ldata.Status = Stopped on Quit or CoordExecStatus[1] = Stopped on Quit, is not an Alarm but status.

Release Notes V4.5.2.x
Reason: New feature addition and feature enhancement.

 Bug fixes

List of new features and enhancements:

1. Update MATLAB connectivity support to MATLAB 2020b version

2. Support for setting 16 KHz servo frequency for EtherCAT drives that supports 16 KHz

Downloading the

IDE 18

3. EtherCAT Analyzer

a. Bus Mismatch

b. Line Cross

4. Support Power Brick-stepper motor w/and w/o encoder from Motor Topology.

5. Enhancing Complete project upload from Power PMAC

6. Supporting expression evaluator from Encoder topology block for entering user units.

7. Supports storing the Tuning filter values to Power PMAC IDE project.

Downloading the

IDE 19

Installation compatibility chart

Case1: User has PowerPMAC IDE V2.x on the machine.
Upgrade to Power PMACIDE V3.x: Requires complete uninstallation of Power PMAC IDE V2.x

Upgrade to Power PMACIDE V4.x: Requires complete uninstallation of Power PMAC IDE V2.x

Case2: User has PowerPMAC IDE V3.x on the machine

Upgrade to PowerPMAC IDE V4.x: Install the V4.x. There is NO NEED to uninstall the V3.x

PowerPMAC IDE. PowerPMAC IDE V3.x and PowerPMAC IDE V4.x can run side-by-side.

IDE and Firmware Selection chart

Note

Recommended: Use or upgrade IDE4.x with FW version 2.4.x or

above

Downloading the

IDE 20

KNOWN INSTALLATION ISSUES CAUSED BY ANTIVIRUS
SOFTWARE
Issue: Customers experienced the issue in installing the Power PMAC IDE V2.x, V3.x or V4.x.

Cause: There are two virus scan software packages that, as of today, are known to cause incorrect

installation of Power PMAC IDE. These are:

1. Avast Antivirus software

2. Sophos Antivirus software.

DISPLAY ADAPTER COMAPTIBILITY ISSUE
Issue: Customers experience build and download error because of incompatibility with display adapter

driver and Cygwin.

Typical error looks like this…

Observed error with Intel ® HD graphics 520.

Solution: Update the device driver. After updating the driver device manager looks like…

Obtaining the PowerPMAC

Manuals

21

OBTAINING THE POWER PMAC MANUALS

The Power PMAC User Manual and the Power PMAC Software Reference Manual on OMRON

automation website.

Industrial Automation | Omron

https://automation.omron.com/en/us/

https://automation.omron.com/en/us/

IDE Project

Examples

22

COMMUNICATING WITH POWER PMAC

Establishing Communication

Connect the power to the Power PMAC Rack if it is not yet connected. Then connect an Ethernet Cable to

the connector on the Power UMAC CPU labeled ETH 0, an Ethernet connector on the front of the Power

UMAC CPU card, as highlighted by a red circle in the image of an example Power PMAC rack below:

A PC can be connected to Power PMAC directly via a crossover cable, a straight cable or through a

network switch. If using a network card dedicated for Power PMAC communication, and thus are

connecting directly from a PC’s network card to the Power PMAC, then set up a static IP for that network

adapter on the same subnet as Power PMAC’s IP address. In Windows 7 this can be achieved by clicking

StartControl Panel and then clicking on Network and Sharing Center. Then click on “Change adapter

settings” which is usually in the leftmost pane of the window. Right-click the adapter that has been

connected to Power PMAC and then click “Properties.” Click Internet Protocol Version 4 (TCP/IPv4) and

then click Properties:

IDE Project

Examples

23

Click “Use the following IP address” and choose an IP address on the same subnet as the Power PMAC.

An example is shown in the following screenshot:

IDE Project

Examples

24

Start the IDE by double-clicking the desktop icon. On startup a valid IP address is required to

communicate. The factory default address for Power PMAC is always 192.168.0.200. Input the default

IP address and press Connect.

Upon connecting the IDE will try to communicate with Power PMAC. If this is the first time the PC is

communicating with Power PMAC, and if using a network switch or hub and the PC is not on the same

subnet as Power PMAC, then the routing question dialog box will appear asking for automatic

configuration of the PC network settings (see screenshot below). Press OK to continue.

Upon successfully connecting the IDE will open in a default layout displaying the IP address.

IDE Project

Examples

25

Changing Power PMAC’s Network Settings

To change Power PMAC’s IP Address from within the IDE, click ToolsOptions…

Near the bottom of the screen in the left pane, click Power PMACNetwork Settings and then the

following window should appear, whose functions are annotated below:

Note

For the CPU types PowerPC, 460EX, if the 2nd interface “eth1” has

been preconfigured the above screen can be used to change its

settings.

For the CPU type PowerPC, APM86xxx (Dual-Core Power PMAC),

the 2nd interface (if present) has been preconfigured as an EtherCAT

device and therefore is not available as a 2nd LAN device for

communication.

This box selects which

physical EtherNet port on the

front of the PowerPMAC to
use for communication

This box selects whether to
use a static IP address or a

DHCP address

CurIPAddress displays the current IP
address for the Interface port that is

selected under Interface above

In NewIPAddress, the user can type in the IP address to

which they want to set this device

Specify the subnet mask for this device under SubnetMask

Specify the default gateway for this device under DefGateway

Test network setting
compatibility and implement

changes with a single button

press

Check the “Log messages”

box for reported errors and
exceptions to the Delta Tau

Log main Output window

This area reports messages

and changes from the Options

window

IDE Project

Examples

26

Changing x86, Hypervisor’s (MotionCore’s) Network Settings

For CPU type “x86, Hypervisor” MotionCore the screen looks slightly different and the procedure is as

follows:

1. First, Network settings can only be changed locally on the host computer. Otherwise, the user will

get the following message:

2. On the host computer, the screen looks like the following:

3. In x86,Hypervisor, the additional parameter NFSRootIPAddress is the IPAddress of the virtual

network adapter. This address controls the availability of an IP Address subnet. The user cannot

change the IP Address to a different subnet than one given by the NFSRoot subnet. The rest of

the procedure is same as that of a regular Power PMAC.

4. Delta Tau is in the process of making an additional network interface available so that users will

be able to connect to the x86,Hypervisor “MotionCore” externally. We will notify users when

that interface is available and will promptly write the procedure as well.

Note

For CPU type “x86” Linux computers hosting the MotionCore the

above options are disabled. All Test and Apply buttons are disabled as

well. The following message will be displayed in this case: “Network

settings change options are not available for CPU type: “x86” at this

time.”

NFSRootIPAddress is the address of the virtual network

adapter

IDE Project

Examples

27

Under the Options window go to Power PMACCommunication Setup and select which IP address to

use for all of the windows presently communicating with Power PMAC:

Re-establishing Communication

To re-establish communication click on the Communication Setup button (surrounded by a red box in the

image below), which is shown on the Delta Tau Controls Toolbar:

If this button is not showing, right click on a blank, gray space in that toolbar area , go to Customize and

make sure “Delta Tau Controls” is checked, as shown below:

ApplyAllControls, when True, will
apply this IP address, Password, Port,

Protocol, and Username to every

window in the IDE

SelectDeviceAtStartup, when True, will

cause all of the windows in the IDE to
communicate with this device upon

startup

IDE Project

Examples

28

Re-establishing communication can also be achiveved through the Communication Setup area of the

Options window as described in the section of this manual immediately before this section.

IDE Project

Examples

29

IDE PROJECT EXAMPLES

Several example projects can be found in the Power PMAC IDE’s installation folder. By default, its

location is as follows:

C:\DeltaTau\PowerPMAC IDE\x\IDE\PowerPMACProjectExamples where x is the main version number

i.e. 3, 4 etc.

Currently there are six examples included:

Project Folder Name Description

DemoBox_4X Basic motor setup for four Brush DC motors in a

single coordinate system, a PLC, and some

subprograms.

IOAccessories Provides header templates for some I/O

Accessories and a sample PLC for MACRO.

Some are for local and remote (via MACRO 8x &

16x Stations) UMAC cards and some

are standalone MACRO Stations.

ModbusLibExample Sample for making a C library using Modbus as

an example.

PowerPmacMacroExample Example Script and C PLCs for MACRO

communication.

PowerPmacModbusExample PMAC Script and C application for

communicating as a Modbus Client to a Modbus

Server. Both the Modbus Client and Server are

being executed on the PowerPMAC.

Program Development This sample project and its documentation will

explain and give examples of what to put in each

folder of the Project Manager. Provides some

example programs of different types.

CfromScriptKinExample Shows how to implement Script Kinematic

equations C in usercode.c's CfromScript function.

CfromScriptPlcExample Shows how to use the CfromScript function in a

Real-Time CPLC and in a Background BGPLC.

This example also shows how to return data from

the CfromScript function.

EipArrayExample Example project on reading and writing EipArray

part of Background Programs. This is C program

example transferring Eip data block.

Note that within the Documentation folder in each of these example projects there is a text file explaining

the purpose of the project and how to run it.

Project

System

30

IDE LAYOUT

Default Layout

The default layout of the IDE screen is shown below:

The common connection bar will indicate the connection status of the IDE to the PMAC. Below are the

three states for this connection bar:

Connected status bar

Disconnected status bar

No Device status bar

The Power PMAC messages window displays errors, warnings, messages, parameter settings, motor

setup, coordinate setup and ECAT setup writes to this window.

The Error tab shows errors.

The Warning tabs shows warnings.

The Messages tab shows the messages.

The Output tab shows all the settings that are written to Power PMAC.

Project

System

31

The IDE title bar will display the following information:

 IDE version

 Currently open project

Windows can be moved around by clicking and dragging. Right-click the top of a window to choose to

float the window, dock it, tab it, hide it automatically or hide it as shown below:

This is common to all windows in the IDE. The Auto Hide function will only appear if this document is

tabbed.

Note

There is now a title bar indicator to display the device connection

status. All individual connection information from control is removed

Alarm Indicator
The Alarm indicator is always visible to clearly indicate to the user any Alarm as they are triggered. This

view monitors the global status elements (Sys.status). This can be also found in Status window – Global

Status Tab.

A lost Connection to Power PMAC is also treated as an Alarm and will be indicated, along with RED bar

on the top of the IDE, and displayed in the alarm area as shown below:

Project

System

32

If there is an error other than loss of connection it will be displayed in the alarm area and a message will

be displayed in the Power PMAC message area as shown below.

The User can acknowledge theses Alarms, but the Alarms are not removed from the view until they are

cleared. The Alarm view shows the symptom of the alarm and possible remedy as shown below:

Default Pop-up blocker is in unblock state so user will see alarms stack-up. To stop this select Pop-up

block by clicking EYE icon as shown below

Pop-up block/unblock is per IDE session. User will need to Block pop-up every time IDE is restarted.

Project

System

33

System Difference Indicator

This is new indicator, as shown below, was added in IDE V4.4. It indicates that there is a difference

between Power PMAC device settings and currently opened project. If the mouse is hovered over the

indicator, it will provide a tooltip. The indicator is automatic and compares the Power PMAC device

buffer settings and core assignment settings.

Power PMAC ARM CPU Compares buffers and core assignment

Other CPU Buffers only

IPC (Hypervisor) Not supported

Note

The system difference requires the FW version 2.6.x and above.

On clicking the System Difference it will show the difference window, as shown below…

Project

System

34

At this point the User has two choices:

1. To match what is on the Power PMAC by going to core management (System-CPU-System-

Core management) UI and select the core assignment, and then selecting Memory buffers to

match the Power PMAC device settings. (As shown below)

2. Build and download the project, save the project and reboot Power PMAC to apply current

project settings to Power PMAC device.

Start Page

The Start page is displayed by default when the IDE is first started after installation. The Power PMAC

configuration workflow guides new users on how to use the IDE for configuration and programming.

The page displays useful information about Delta Tau products, how to get technical support, etc.

Users can disable the start page from being shown when the IDE launches from Tools>

Options>Environment>Startup, or by unchecking the checkbox on the lower-left of the page.

Project

System

35

MENUS

The IDE has eleven dropdown menus at the top of its main screen as shown below:

File
This section describes dialog boxes in Visual Studio that pertain to the File menu. The options are

described below:

Project

System

36

File- New Project/Project wizard
This option allows user to create a new project from template or from project wizard. The option looks

like below. It is covered in detail under PROJECT SYSTEM heading.

File-Open
This option allows user to open existing project . The option looks like below. It is covered in detail under

PROJECT SYSTEM heading.

File-Open-From Power PMAC

This is Project upload/Synchronization option.

This option allows user to upload/synchronize the project from Power PMAC to PC. Following workflow

shows the upload process ….

As shown the option is available from File-Open-From Power PMAC. Click and it will open the Upload

project dialog.

Unlike the previous IDE version (<4.5.2.x) in the current release of the IDE it is not required to have

project open to upload the project.

Click OK to upload the project.

Open an existing PowerPMAC project

Open an existing PowerPMAC project file

Project

System

37

If there is no project on Power PMAC (Typically on $$$*** or brand new Power PMAC board) and user

tries to upload the project a clear pop-up message is displayed as shown below…

Project will upload complete project including EtherCAT network setup.

Following are the typcial use cases and how the Project upload handle these cases.

Use case 1: Uploading Power PMAC project with EtherCAT network setup..

Project

System

38

On upload if it is determine that requred esi files are not present on the PC a warning pop up message will

be displayed listing the missing esi files as shown below…

It’s users responsibility to provide the esi files from the EtherCAT device vendor. The esi files are needed

for altering the EtherrCAT setup. If it is not required to change the EtherCAT setup then user will be able

to download All programs after uploading a sproject from Power PMAC.

Use case 2: If the project is downloaded using the previous Power PMAC IDE (< V 4.5.2.x) then some

of the files (mainly EtherCAT and setup files) are not copied to the Power PMAC. This was by design for

the previous version of the IDE. In this case a Project Upload will copy all the available files from the

Power PMAC and will output the message in the Power PAMC messages window about the files that are

not available.

Also by default background c apps source is not part of project download. Thus uploading a project from

Power PMAC will not have C source code. Under this circumstances user can only download the project

and not build. Build will fail because C source is not available.

Possible choices …

1. Disable C app compilation by choosing None option from property as shown below …

Project

System

39

To disable the compilation right click on the file and choose the Properties and then select build

action to None. This is shown above workflow.

2. Add the c source file using Add existing file context option from capp1 folder.

Note

If the uploaded project does not contain the source code for C

Libraries, then the uploaded project will show the files in the project

tree, but they will not exist project. See the Project Encryption section

of this manual for more details.

Use case 3: If the project is encrypted, full encryption or partial encryption and user build and download

the encrypted project to Power PMAC then on Project upload is disable with clear indication. This is

shown below, OK button is grayed out and warning indicates the reason.

Export
This option is for Exporting Custom Motors, Amplifier or Encoder. User can export any custom data

currently present in the Power PMAC IDE system. The purpose of this option is easy share custom

Motor, Amplifier or Encoder data with anyone. Typical workflow is below…

On success the xml file will be saved under the selected folder location. The workflow is same for any

type of export, Motor, Amplifier or Encoder. This example is for Motor.

Project

System

40

Import
This is opposite process of export! This option will import Custom Motor, Amplifier or Encoder in the

current Power PMAC IDE system. The purpose is sharing and reusing of databases among or across

organization. Typical workflow is below…

On success the xml file will be imported. The workflow is same for any type of export, Motor, Amplifier

or Encoder. This example is for Motor.

User have a choice for which motor’s (Amplifier/Encoder) to be imported. Press OK to import.

User can verify import by opening Part manage as shown in the picture.

Template Manager
This new dialog is a combined project and item template manager, supporting multiple template types

across the IDE, and allowing for future additions and enhancements with all the capabilities of the

previous manager. It is available from File menu as shown below:

Project

System

41

The user can select the template that they need to export or import. The Filter drop-down allows the user

to select the template type.

Use Export and Import from the template manager as explained in the earlier section “Export/Import

Project and Item template”.

Edit
This section describes the functionality of the menu items in the Edit menu. These options are applicable

to the file opened in the Editor and the project system. The options are described below:

Project

System

42

Copy the selection in the Editor to the Clipboard

Paste the contents of the Clipboard to the Editor

Delete the present selection

Select all text in the Editor

Find and/or Replace text in the Editor

Go to a specific line number in the current file

Add a file’s contents to the location in the current editing file at the cursor’s location

Advanced Editor Bookmark options

Advanced IntelliSense options

Advanced editing options

Cut the selection in the Editor to the Clipboard

Redo the last Undo action in the Editor

Undo the last action that was performed in the Editor

View
This section describes the functionality of the menu items in the View menu.

Open the Solution Explorer

Open the Bookmark tab page in the Output Window (cf. Default Layout)

Open the Build Error tab page in the Output Window (cf. Default Layout)

Open the Output Window

Open the Task List tab page in the Output Window (cf. Default Layout)

Open the Find Result tab page in the Output Window

Display the current file from the Editor in Full Screen mode

Not implemented

Open the IDE Command Window (not Terminal Window)

Open the currently opened Editor file in a different editor program

Not implemented

Not implemented

Open the Properties Window for the file currently selected in the Solution Explorer

Project
This section describes the functionality of the menu items in the Project menu: This is a dynamic menu

and changes with respect to if project is loded or not. If the project is loded and editor area does not have

any file or editor area is empty then the Project menu will look like …

Each item is explained in detail under Project System- Project context menu to avoid duplication.

Project

System

43

If the project is open and there is any file open the editor area the menu will look line…

The Project Properties dialog is opened from the Project Properties menu item shown above.

Properties are categorised in two parts, General and Program variable setup as shown below.

The prperties are self-explanatory.

Project

System

44

Build
This section describes the functionality of the menu items in build menu:

Debug
This section describes the functionality of the menu items in the debug menu.

Tools
This section describes the functionality of the menu items in the Tools menu.

Project

System

45

Power PMAC IDE supports English, Japanese, Spanish, Korean and Simple Chinese. Language packages

are installed at the time of IDE installation. The Language of the IDE can be changed from Tools-

Options-International settings.

Delta Tau

All the monitoring and configuring windows pertaining to Power PMAC controller are under Delta Tau

menu.

- Add additional external controls

- Add or remove commands on any menu or toolbar

- Manage the environment

Project

System

46

Terminal Window
The Terminal Window is a text parser into which the user can enter commands to send to the Power

PMAC. The IP address of the device which this window is communicating with is displayed at the top of

the window (indicated by the red box in the image below):

Project

System

47

Type the command wanted to send into the command entry box (indicated by the blue box in the image

below) and press the Enter key on the keyboard to transmit the string to the Power PMAC.

If the command produces a response from the Power PMAC, the Terminal Window will show the

response.

Text can be copied from the window by highlighting it with the mouse and pressing CTRL+C on the

keyboard. To select all of the text in the window click on the window and press CTRL+A and then

CTRL+C to copy it.

Text can be pasted into the text parser by clicking in the command entry box and pressing CTRL+V on

the keyboard.

Commands can be dragged and dropped from the Editor Window or the Watch Window into the

command entry box of the Terminal Window.

If more detail is needed about a command type it into the command entry box and press the F1 key on the

keyboard.

Motors can be killed by clicking on the command entry box and pressing CTRL+ALT+K on the

keyboard.

To save the whole contents of the Terminal Window, right-click the window and then click

PropertiesControlSave Buffer to File. Contents can also be copied to the operating system’s

clipboard by clicking PropertiesControlCopy Buffer to Clipboard. To clear the contents of the

Terminal Window, click PropertiesControlClear Buffer.

There are more properties that can be modified by right-clicking the window and then clicking

PropertiesControlGeneral which will open this screen:

Project

System

48

In the “Communication” box, there are two fields:

 “EchoMode” indicates how and if information is echoed back to the Terminal Window after

issuing a command; see the command labeled echo{constant} in the Power PMAC Software

Reference Manual for more details.

 “ShowResponseTime” [True/False], when set to True, will show how long [msec] Power PMAC

took to reply after receiving a command from the host. It also lists how many characters will be

received. When this option is set to False the Terminal Window uses asynchronous

communications when talking to Power PMAC; that is the window sends commands to Power

PMAC via one thread and receives the responses from Power PMAC on another thread. When

ShowResponseTime is True the Terminal Window switches to synchronous communication

sending commands to Power PMAC on one thread and then waiting, in the same thread, until

Power PMAC finishes responding before the Terminal Window will show the response time.

In the “Control Properties” box there are three fields:

 The “Commands” field indicates the number of commands which were previously typed into the

Terminal Window. Commands can be scrolled through using the up and down arrow keys on the

keyboard.

 “LogAllMessages” [True/False], when set to True, will cause any error messages that the

Terminal Window generates to report to the Delta Tau Log window (see IDE Layout section for

the location of this window). These errors are from the IDE itself and not from Power PMAC.

 “TerminalBufferLines” specifies how many lines the Terminal Window will store before cycling

them out; that is, the oldest commands are cleared out and the new commands are added in as

they are entered.

To change the color scheme and fonts of the window right-click the window and then click on

PropertiesAmbient. This window will pop up:

Project

System

49

In this window the text’s font and the colors of various types of commands, and responses, can be

changed as desired.

One or more commands may also be input by selecting them in a text file, whether from the Editor

Window or an external program (e.g. Notepad or Microsoft WordTM), and drag-dropping them into the

command text box of the Terminal Window.

Position Window
The Position Window in IDE version 4.2 and above combines the position, velocity and following error

for the motors into a single view, as shown below:

Click setting icon to change the parameters. The following image shows the possible settings.

To change motor position unit, select the motor position cell and right click. See the image below.

Project

System

50

To change motor velocity unit, select the motor velocity cell and right click. See the image below.

To change motor following error unit, select the motor following error cell and right click. See the image

below.

Project

System

51

Note

If the User Unit block from Motor topology is used to set the units

then the user will not be able to change position, velocity or following

error units and scale factor for that motor and it will be grayed out.

Watch Window
Commands and variables can be added into the Watch Window in order to monitor their value at the

specified rate. By default the Watch Window consists of two columns as shown below:

Caution

If a valid command is input the IDE transmits the command typed into

the “Command” column repeatedly. Only safe commands should be

sent. To add commands to the “Unsafe Commands List” click and

select Edit Unsafe Commands. Some examples of typical unsafe

commands are kill, $$$, save, out, etc.

Click in the text entry box underneath “Command/Query” and type the command or variable name

required to monitor and press Enter. The response, if there is one, will be shown in box underneath

“Response.” If the response returns an error then the command will not be sent in the next update cycle.

The Default entry in the watch table is Query.

Commands can also be sent to the Power PMAC from the Watch Window.

To change a default Query into a Command, follow the sequence shown in workflow below.

Here p411 is a default Query. Using this workflow this will be converted to command of p411 = 5.

Project

System

52

To convert back from a Command to a Query follow the same workflow in reverse.

Now that the Command is a Query remove the ‘= 5’ from the entry.

Commands can be drag and dropped from the Editor Window, the Terminal Window, or a text file from

an external program (e.g. Notepad or Microsoft WordTM) into the command entry box of the Watch

Window.

Multiple commands may be drag and dropped into a Watch Window command row box in order to create

many new entries at once.

To change watch window settings click icon to open settings window.

The symbol displayed represent different settings that are possible, as shown below.

Project

System

53

 ResponseTime On/Off: When On, this will show how long [msec] the Power PMAC took to

reply after receiving a command from the host. It will also list how many characters will be

received.

 Comment Column On/Off: When On, this will show an additional column in the Watch Window

in which personal notes can be added to annotate that row as shown in the example screenshot

below:

 Format identifier On/Off : This indicates the type of formatting on the received response, as

shown below:

 Echo On/Off: This indicates how, and if, information is echoed back to the Terminal Window

after issuing a command; see echo{constant} in the Power PMAC Software Reference Manual

for more details.

 Import Watch Window entries: This enables the User to import the Watch table previously saved

and loads it into the Watch window.

 Export Watch Window entries: This enables the User to export the Watch table current entries

into a file.

Project

System

54

Right clicking on any row will display the context menu shown below.

Move up/down:
From this context menu the User can move the selected row up or down by clicking on the ‘Move Up’ or

‘Move Down’ entry in the context menu.

The User can also move a row up or down using the mouse. To do this the user needs to select the row by

clicking on it, move the row by holding down the left mouse button and dragging the row to the new

position. The User can also select multiple rows them in the same way.

When dragged, a Green line will show where the row/rows will be inserted. In the example below the row

with P41 is selected and will be moved in between p40 and p43, as show by the green line indicator.

When the User removes their finger from the mouse button P41 is placed in between p40 and p43.

Formatting Option:
There are Five formatting options available on the context menu.

Selecting the required formatting will dynamically change the necessary formatting parameters.

For any of the formatting options, select a row and then right click on the response section to open the

context menu.

Choose the required format option from the following list:

Integer: This format will force the number to be a whole number. Enter a scale factor for the data in the

“Scale” box if desired

Project

System

55

Binary: This format will show the number as a sequence of bits indicate by 0s and 1s. Enter a scale factor

in the “Scale Factor” box and, if required, a numerical mask in the “Mask” box:

The number entered in the “Mask” box needs to be in hexadecimal format preceded by the symbol “0x”

(without the quotation marks). The IDE will then bitwise “AND” this mask with the response before

displaying it in the Watch Window.

Float: This will force the Watch Window to display decimal information for this number. Enter a scale

factor in the “Scale” box and, if required, specify the number of decimal points in the “Decimal Places”

box:

Hex: This format will force the number into a hexadecimal format. Enter a scale factor into the “Scale”

box and, if required, also a mask in the “Mask” box:

Project

System

56

The number entered in the “Mask” box needs to be in hexadecimal format preceded by the symbol “0x”

(without the quotation marks). The IDE will then bitwise “AND” this mask with the response before

displaying it in the Watch Window.

Octal: This format will force the number into a base-8 numerical format. Enter a scale factor in the

“Scale” box and, if required, a numerical mask in the “Mask” box:

The number entered in the “Mask” box needs to be in hexadecimal format preceded by the symbol “0x”

(without the quotation marks). The IDE will then bitwise “AND” this mask with the response before

displaying it in the Watch Window.

Safety Notes

As previously stated, if a valid command is input the IDE transmits the command typed into the

“Command” column repeatedly. Only safe commands should be sent. To add commands to the “Unsafe

Commands List” click and select Edit Unsafe Commands. Some examples of typical unsafe

commands are kill, $$$, save, out, etc.

If an invalid command is transmitted, the Watch Window will only transmit the command once and then

the invalid response will be highlighted in red and will remain in the response area of the Watch Window.

This will not be transmitted again.

Note that there is a structure called Sys.NoShortCmds which will force the user to input the full name of

online commands.

If Sys.NoShortCmds=0 then commands such as #1k can be used to kill motor 1.

If Sys.NoShortCmds=1 the the full name of the command must be used like #1kill to kill motor 1.

This feature can be useful; for example, if an invalid variable name is typed containing a k (as in the kill

command) or r (as in the run command) or j (as in the jog command) or a (as in the abort command)

Project

System

57

then the Watch Window will transmit that invalid variable name and the Power PMAC will parse it and

try to execute whatever command it can recognize within the invalid variable name.

For example, if a invalid variable named “MyVar” is not declared in the entire project, or was formerly

declared but is now deleted, is added to the Watch Window or transmitted in a string from the HMI

program communicating with the Power PMAC, the Power PMAC will interpret this as first an abort

command because of the a in MyVar and then as run command because of the r in MyVar.

Status
The Status Window actually contains four tabs which each give the status of a different set of

information:

Motor Status

The first tab is the Motor Status tab which gives status information about motors. Each status field name

listed in the Description column comes from a motor status structure. The full name of the motor status

structure starts with “Motor[x].”, where x is the motor number, and ends in the name listed in the

Description column of the Motor Status Window. For example, in the Description column, the first entry

is TriggerMove, which corresponds to the Motor[x].TriggerMove structure. For example, for motor 1

this is Motor[1].TriggerMove.

The user can select which motor to monitor the status by typing the motor number into the box next to the

“Motor” label as shown below:

The dot to the right of this box shows whether the motor is activated: when green, the motor is activated;

when red, the motor is not activated.

Coordinate Status

The second tab is the Coordinate Status tab, which gives status information about Coordinate Systems.

Project

System

58

Each status field name listed in the Description column comes from a Coordinate System status structure.

The full name of the motor status structure starts with “Coord[x].”, where x is the Coordinate System

number, and ends in the name listed in the Description column of the Motor Status Window. For

example, in the Description column, the first entry is TriggerMove, which corresponds to the

Coord[x].TriggerMove structure. For example, for Coordinate System 1, this is Coord[1].TriggerMove.

The user can select which motor to monitor the status by typing the motor number into the box next to the

“Coordinate System” label as shown below:

Global Status

The third tab is the Global Status tab, which gives status information about configuration settings which

affect the Power PMAC globally:

Each status field name listed in the Description column comes from a System status structure. The full

name of the motor status structure starts with “Sys.” and ends with the name in the Description column.

Project

System

59

For example, the first entry in the Description column is “NoClocks,” which corresponds to the

Sys.NoClocks structure.

MACRO Status

The fourth tab is the MACRO Status tab, which gives information about MACRO communication if

MACRO is being used with this system.

Each status field name listed in the Description column comes from a MACRO status structure. All of the

entries in the Description columns except for PwrOnErrCntr and RingBrkStationNum come from the

Macro.Status[x] structure tree, where x is the ring number, which ranges from 0 to 3. For example, the

first entry is Active, which for ring 0 corresponds to the structure Macro.Status[0].Active.

PwrOnErrCntr and RingBrkStationNum correspond to Macro.RingTest[x].PwrOnErrCtr and

Macro.RingText[x].RingBrkStationNum, respectively, where x is the ring number, which ranges from

0 to 3.

The user can select the ring number by typing the number into the box labeled “Ring No” as shown

below:

The user can select the station number by typing the station number into the box labeled “Station No” as

shown above.

The “Type” label indicates the MACRO Station type of the device with which the Status Window is

currently communicating. Typically, this will be a Power PMAC Ring Controller, but it can also be a

Power PMAC Master and not necessarily a Ring Controller, depending on how the controller is

configured.

Error Display
The Error Display window displays all errors that Power PMAC reports and appears as follows:

Project

System

60

This window starts the background process “geterrors” in Power PMAC. This window reports not only

errors, but also certain status updates which Power PMAC reports.

Right-clicking the window and going to PropertiesControlClear Errors will permit the user to clear

all of the information presently shown in the Error Display window:

Going to “General” opens a screen containing several properties of the Error Display window:

The user can change the color scheme and fonts of the window by right-clicking it and then clicking on

PropertiesAmbient, which opens this screen:

UpdatePeriod is the refresh period of this window in milliseconds

LogErrors, when True, starts logging errors to a file whose path is set in Logfilepath below

Logfilepath indicates where to store the Error Display’s log file

CustomMotorMask indicates which motors whose errors to check. Click to configure.

CustomCSMask indicates which coordinate systems whose errors to check. Click to configure.

CustomGlobalMask indicates which global errors to check. Click to configure.

CustomMACROMask indicates which MACRO errors to check. Click to configure.

For the four masks, just click on the row containing the mask and the button will appear

Project

System

61

Unsolicited Messages
The Unsolicited Messages window displays messages sent to the host computer from Power PMAC over

the eight Unsolicited Response ports (Ports 0 – 7):

These messages can be sent from a C program using the Send() function or from a Script program using

the SEND command. The host PC can also send messages to Power PMAC through these ports. Upon

opening this window, the “sendgetsends” process starts on Power PMAC, which receives all of the

messages. In the IDE, Port 0 is enabled at startup; Ports 1 – 7 are disabled. After sending a command

from the host to Power PMAC, the status of the port must be checked. Possible status codes include the

following:

 0 means “Command sent OK”

 1 means “Illegal Command Format”

 2 means “Port Busy”

 3 means “Port Full”

The user can clear the messages by right-clicking in the window and selecting

PropertiesControlClear Messages:

Project

System

62

Selecting “General” opens a window containing several properties of the Unsolicited Messages window:

Each bit of the “mode word” Sys.SendFileMode can be set to 1 to enable or to 0 to disable sending and

receiving ASCII strings on each port. Each bit in this 8-bit word represents one port. For example, to

enable all ports set Sys.SendFileMode=$FF. To enable just Port 0 set Sys.SendFileMode=$1.

Selecting “Ambient” loads the following window where font and color can be chosen for each Port’s text:

Buffer0, when True, will cause the window to read messages on Port 0

Buffer1, when True, will cause the window to read messages on Port 1

Buffer2, when True, will cause the window to read messages on Port 2

Buffer3, when True, will cause the window to read messages on Port 3

Buffer4, when True, will cause the window to read messages on Port 4

UpdatePeriod indicates the refresh period of this window in milliseconds

ActivateSendPort, when True, permits the PC to send message to PowerPMAC via the ports

Logfilepath indicates where the log file is stored (see below)

LogUnsolicited, when true, will log this window’s contents in the file at Logfilepath
SendPortNumber indicates which port the PC should use for sending messages to

PowerPMAC

Buffer5, when True, will cause the window to read messages on Port 4

Buffer6, when True, will cause the window to read messages on Port 4

Buffer7, when True, will cause the window to read messages on Port 4

Project

System

63

Jog Ribbon

Note

Please make sure the selected Motor to Jog matches with Axis (If

defined).

Jog Plus or Jog Minus moves motors.

The jog ribbon permits the user to jog motors or axes individually. A jog move is simply a point-to-point,

constant velocity move. If the user wants to jog one motor in motor units, click on the “Jog Motor”

command.

Zeros the motor’s

position

Deactivate the

amplifier channel
corresponding to

this motor

Jog in the motor’s

negative direction

continuously while

held

Jog in the motor’s

positive direction

continuously while

held

Jog to a specified

absolute location

Select the motor to

jog

Closed-loop stop
jogging.

Equivalent to a J/

command.

Specify the location in

motor units to which to
jog when using the

“JogTo” button

Check to jog

incrementally, not

continuously

If “Jog
Incrementally” is

checked, input the

distance to jog here

Project

System

64

Encoder Conversion Table
The Encoder Conversion Table (ECT) window is for setup purposes and should only be used by advanced

users. Its purpose is to configure the fields within the EncTable[x] structure. The main tab of the ECT

window appears as follows:

The user can refresh the information on this window by right-clicking and selecting

PropertiesControlRefresh:

If the user selects “Clear Messages,” the information in the output area at the bottom of the window will

be cleared.

This box selects the type of ECT entry
This button causes this window to display the inputs and

outputs of this ECT entry under “ECT entry input” and

“ECT entry output” shown above, respectively

This box selects which entry number to use

This box selects whether to integrate the entry

This box selects the bias

term for the integrator;

only enabled when

“Integrate?” is Yes

Select whether to limit the

magnitude of certain quantities

Specify the maximum magnitude

of the quantity to limit

Specify the number of servo

cycles during which to monitor
the maximum change before

limiting the magnitude

This area shows the output from the ECT window,

which displays what has been changed by this window

Selects the source
address for this

entry’s input data

Selects the least
significant bit of

the input data

Selects the total #

of bits of input data

Displays the scale

factor by which the

input data gets
multiplied

This button downloads the selected ECT entry to the PowerPMAC

The fields below display which encoder conversion

table entries are in PowerPMAC presently

Project

System

65

Selecting “General” will open a dialog with properties for the ECT window:

To change the font colors and sizes Click “Ambient” as shown below:

Clicking the “Power PMAC Structure” tab shows the following:

UpdatePeriod is the refresh period of this window in milliseconds

LogAllMessages, when true, will cause debug messages, such as errors and exceptions)

from the ECT window to be printed in the main Output window of the IDE (the Delta Tau

Log window)

ShowEncoderZero, when true, will treat Motor 0’s encoder as a real encoder, permitting

the user to use ECT entry 0 as a standard entry. By default, Motor 0 is a “phantom motor,”

and as such its associated ECT entry is not treated like a standard entry by default.

Project

System

66

This tab displays all of the fields of the EncTable[x] structure which can be configured through this tab.

Type the value for the modified field set. For more detail on what each field does please refer to the

Power PMAC Software Reference Manual.

Clicking the “Encoder Plot” tab displays a scope of the presently selected Encoder Conversion Table

entry’s output (Not yet implemented):

The ECT scope can be started and stopped by clicking the Start and Stop buttons respectively. Right-

clicking on this tab will show a number of properties that can be adjusted:

Selecting Copy will copy the plot image to the Windows clipboard

Save Image As will open a dialog box to save the plot area as an image

Page Setup opens a dialog box to format the output size and orientation for printing

Print opens a dialog box to print the plot

Show Point Values displays the numerical value of points on the plot

This button zooms in and zooms out when clicked, depending on the previous zoom state

This button restores the zoom level to defaults

This button restores the axis scaling to default

Project

System

67

Update Firmware
Standard Firmware Download Procedure

Note

The latest released version of the Power PMAC firmware should

always be used, if the application permits

To install the latest firmware, click on Delta Tau Update Firmware:

On clicking, the Firmware dialog will be opened. This is the improved view in comparison with the

previous UI.

Device Information: Displays firmware information about the currently connected Power PMAC.

Progress: Displays the progress of the Inspect firmware or update firmware.

There are three buttons:

Select File: Allows the user to select the firmware file.

Project

System

68

Inspect: This button will inspect but not update the CPU compatibility and file compatibility. If the file is

not compatible it will be marked and display the appropriate error like this…

Update: On clicking the button, it will show the dialog, informing the user that it is recommended to

issue the $$$*** command to bring Power PMAC to a factory reset condition.

Project

System

69

Clicking Yes will continue updating the Firmware. No, will abort the FW update and now the user can

save the current Power PMAC state before updating the firmware. Please monitor the progress box for

update process progress. On success the Device Information dialog will refresh to display the new

firmware version and date.

Caution

Please do not Power Cycle, Reboot, change device or close the

Firmware Update dialog while the update in progress. Any attempt to

do so will result in the board malfunctioning.

Install Package

As the name suggests, this dialog allows the user to update the Linux packages in case of factory

recommendations.

This dialog is mostly useful if the FW requires small patch updates rather than full firmware upgrade.

Select the option from Delta Tau – Install Package, like…

On selecting, the menu Install package dialog opens as shown below…

Project

System

70

Select the packag file (.deb) and press Install to install the pckage. On success it will be marked and status

will display the successful update message.

Project

System

71

Backup Restore
The Backup Restore window has four pages: Backup, Restore, Verify, and Recovery Disk.

Backup page
The “Backup” screen looks like the following:

1. The first screen that appears when the Backup Restore is clicked shows possible option. This (i.e.

the “Typical” backup) makes a backup of all the Power PMAC-related settings and files.

2. In addition to the typical backup options, the screen below allows user to manage previously

created project restore points “usrflash.x” like shown below:

If the previous restore points are occupying large space in Power PMAC and the save process fails due to

lack of space on the Hard Disk, then the user has the option to delete previous restore points to free space

on the Hard Disk by clicking the Delete button next to the restore point. Note that Power PMAC

automatically creates a restore point every time the save command is issued.

Specify whether to save the active

settings or only saved settings

List of previously saved projects

on PowerPMAC

Project

System

72

Pressing delete displays the following dialog:

Note:

1. For the CPU type “x86, Hypervisor” there is no need for previous restore points and therefore are

not listed in the above screen.

2. The Disk Image option is not needed and therefore is hidden from the main screen when

communicating to a CPU type “x86, Hypervisor.”

Restore page
Clicking on the “Restore” button shows this screen:

The Restore screen has different choices for different CPU types. For CPU types “PowerPC,460EX” and

“PowerPC, XPM86xxx”, this screen offers 3 choices:

1. Firmware, project, setup parameters and kernel restore from a .tar file backup.

2. Regular restore, plus restores network settings. If selected this will replace the IP Address, Subnet

Mask and Default Gateway settings with those from the backup configuration in addition to firmware,

project, setup parameters and the kernel.

3. The third choice allows the restore of project only files from previously saved restore points. These

restore points are already stored on Power PMAC:

Project

System

73

Note: Similar to the Backup screen, for the CPU type “x86, Hypervisor”, there are no previously saved

restore points and therefore 2nd and 3rd options are disabled for this type of CPU.

If the selected drive is a shared folder on the host computer, then it requires login credentials for that drive

to mount that folder on Power PMAC before it can restore the image from the source disk.

Clicking “Proceed” will cause the program to prompt to browse for the backup file. It wants a “.tar”

backup file that was generated using the Backup Restore program previously.

Verify page
Clicking on the “Verify” button shows this screen:

This screen is used to compare either the Active or the Saved configuration in the Power PMAC against a

backup file that has been previously created. Clicking “Proceed” will show the differences between these

two configurations highlighted in blue as shown below:

This page now has a program implemented to generate the difference in the files.

Click here to choose the backup file

against which to compare

Project

System

74

Note: Verify only compares projects and related files.

Recovery Disk page
Clicking on the “Recovery Disk” button shows the screen below:

This is used to create a recovery disk that can be saved to a USB or SD drive for restoring various settings

on Power PMAC. The functionality of this tab depends on the recovery option selected under the

“Recovery Option” field.

Selecting “Power PMAC Firmware Install,” requires a USB or SD drive to be entered into the PC

operating the IDE and the selection of a firmware file (with .deb extension) on the PC to be installed into

the Power PMAC.

For all other options a connection must be made to a Power PMAC and the USB or SD drive should be

entered into the Power PMAC.

Select the recovery option required

Select the USB/SD drive to save the

recovery files, if one is plugged in to
the PC or PowerPMAC, depending on

the option selected

Project

System

75

The various recovery options available are listed below:

Recovery Option Description

Power PMAC OS This option creates a recovery disk for the

Operating System without restoring the Power

PMAC’s firmware.

Power PMAC Factory Defaults This option creates a recovery disk for Power

PMAC to start up in factory default mode

($$$***).

Power PMAC Configuration(s) This option makes a recovery disk for Power

PMAC based upon which checkbox is selected.

Any one, two or all three options can be selected

from firmware, the Power PMAC’s configuration

(Active or Saved) (stored on Power PMAC’s disk)

and Power PMAC’s network settings.

Project

System

76

Device Imaging (Backup & Restore)
The “Device Imaging” option is available from Delta Tau Menu.

The User can use this to backup or restore the Power PMAC image.

The User is given guided instructions on how to connect to and image Power PMAC devices using a USB

cable.

The User will be able to change the IP address at the time of restoring the image. This process will also

retain EtherCAT license information if the option is present.

When User selects “Device Imaging” a wizard style dialog will be launched and will walk the User

through the full process. This launch view is shown below:

Note

Imaging requires the Power PMAC power to be switched off. The

User needs to issue a Save command if needed.

Compare
Compare Motor or Coordinate System options are available from the Delta Tau Compare Menu.

On clicking the menu, the user will have the choice of comparing motor or coordinate systems as shown

below…

Project

System

77

Motors
Clicking this option will open the motor compare dialog as shown…

Only the saved motor structure elements are compared.

User can...

1. View saved structure elements.

2. View the current motor structure elements against the factory default ($$$***) motor structure

elements.

3. Set any motor as primary and the other motor structure elements are compared against the it.

4. Visually identify the differences in motor structure elements between primary and regular motors.

5. Edit the motor structure elements and updates the Power PMAC on entering the value.

6. Copy and paste single/multiple motor structure element cells from the primary motor or default.

7. Reset the motor structure element values to factory default with a Reset to Default command

available from the dialog.

8. Quickly search for an element by either typing the text in the filter or picking a category from the

drop-down list.

9. Supports special custom filter. This feature allows user to customize the elements most

commonly used. The custom filter selected as shown below…

Project

System

78

On clicking custom filter it will look for .flt file. This is simple ini file format. Typical file looks

like this…

User can add any motor saved structured element as shown above and save the file as .flt.

.Motor is the category and it is mandatory to add .Motor on top of the Motor element filter file.

The benefit of this feature is when you have multiple motors say 10, of same type and same

feedback then you can fully setup one motor and then copy all the setting across for selected

structure element using custom filter. Typical case will be EtherCAT motor.

The custom file will be displayed in the Filter view and will be part of the list too. This will retain

for the current IDE session. It will look like this..

10. Refresh the motor compare dialog if the values have been changed after downloading the project.

11. View the description of every motor structure element, such as description, range, unit and

default value.

Note

Motor compare shows only Power PMAC saved motor structure

elements.

Coordinate Systems
Clicking this option will open the Coordinate system compare dialog as shown…

Project

System

79

Only the saved coordinate system structure elements are compared.

User can…

1. View saved structure elements.

2. View current coordinate system structure elements against factory default values ($$$***).

3. Make any coordinate system the primary coordinate system and other coordinate system structure

elements are compared against the primary column.

4. Visually identify the different coordinate system structure elements between primary and regular

coordinate system.

5. Edit the coordinate system structure elements and updates the Power PMAC on entering the

value.

6. Copy and paste single/multiple coordinate system structure element cells from primary or default.

7. Reset the motor structure element values to factory default with a Reset to Default command

available from the dialog.

8. Quickly search for an element either typing the text in the filter or picking a category from the

drop-down list.

9. Supports special custom filter. This feature allows user to customize the elements most

commonly used. The custom filter selected as shown below…

On clicking custom filter it will look for .flt file. This is simple ini file format. Typical file looks

like this…

User can add any coordinate saved structured element as shown above and save the file as .flt.

Project

System

80

.Coord is the category and it is mandatory to add .Coord on top of the coordinate element filter

file. The custom file will be displayed in the Filter view and will be part of the list too. This will

retain for the current IDE session. The filter file name will displayed similar to picture from

Motor compare view.

Refresh the coordinate system compare dialog if the values have been changed after downloading

the project.

10. View the description about every coordinate system structure element, such as description, range,

units and default values.

Note

Coordinate system compare shows only Power PMAC saved

coordinate system structure elements.

Gate structure element
This supports Gate1 and Gate3 structures. Depending on the detected hardware the type of gate drop

down will automatically populated. User can select type of gate and enter the index. Gate index can be

found from Project Hardware mode. Hoovering the mouse on the text box will guide how to enter the

index number. If you multiple gates then this feature very useful in comparing gate saved structure

element. Choose the chan structure elements from drop down under command column.

Clicking this option will open the Coordinate system compare dialog as shown…

To view the Gate-channel user need to select Chan from the Select System or Chan drop down list.

Marked Red Square.

Project

System

81

User can…

1. View saved structure elements.

2. View current Gate structure, Gate-Chan elements against factory default values ($$$***).

3. Make any Gate system or Gate-Chan the primary column and other Gate system or Gate-Chan

structure elements are compared against the primary column.

4. Visually identify the different Gate system or Gate-Chan structure elements between primary and

regular Gate system or Gate-Chan elements.

5. Edit the Gate system or Gate-Chan structure elements and updates the Power PMAC on entering

the value.

6. Copy and paste single/multiple Gate system or Gate-Chan structure element cells from primary or

default.

7. Reset the Gate system or Gate-Chan structure element values to factory default with a Reset to

Default command available from the dialog.

8. Quickly search for an element either typing the text in the filter or picking a category from the

drop-down list.

9. Supports special custom filter. This feature allows user to customize the elements most

commonly used. The custom filter selected as shown below…

On clicking custom filter it will look for .flt file. This is simple ini file format. Typical file looks

like this…

User can add any coordinate saved structured element as shown above and save the file as .flt.

Project

System

82

.Gate1 is the category and it is mandatory to add .Gate1 or Gate3 on top of the Gate filter file.

The custom file will be displayed in the Filter view and will be part of the list too. This will retain

for the current IDE session. The filter file name will displayed similar to picture from Motor

compare view.

10. Refresh the Gate system or Gate-Chan compare dialog if the values have been changed after

downloading the project.

11. View the description about every Gate system or Gate-Chan structure element, such as

description, range, units and default values.

Tools

The Tools submenu from Delta Tau menu shows Cam Sculptor, Advanced Tunng, Plot, Scope and Task

Manager. This is shown below inside the red box:

Tune
The Tuning tool can be used to tune current loops and position (servo) loops the motors. “Tuning” refers

to the process of adjusting the gains in the control loop until the desired performance level is achieved.

This is a complete new tuning interface developed considering the usability and clean and clear selection

option.

New tuning interface is integrated with project. The tuning can be open from the project by double

clicking the Tune from Tools node from project as shown below. It is our recommendation to the user to

use the Tuning from Project. Benefit of using the tuning from project …

1. Fully integrated to the project

2. On accepting the gain settings from tuning are written to the motor setup file.

3. Tuning settings are stored in the project. For example the move size, dwell time, filter frequency

values etc. will be per project.

4. Power PMAC IDE will continue to enhancing integration of tuning in the project.

Project

System

83

For the user who does not want to open project can open the tuning from Delta Tau menu, though it is not

recommended.

Tuning interface can be access by clicking Delta TauToolsTune as shown below.

Note

We recommend to use Tuning from Project menu and not from Delta

Tau menu.

Tuning Window Layout
As shown below when Tuning is open from Project or from Delta Tau menu it will look like…

There are four section as marked by different color. In following section each colored box will be

explained. Resizing of Graph section is possible and can have bigger size.

Project

System

84

Common convention

 Info icon on hoovering the mouse will display additional help regarding the setup parameter.

Tuning mode, Motor section
The left panel marked by Green box allows user to select type of tuning and on which motor.

In the picture you can see the yellow warning icon next to the motor number drop down. This Yellow

warning sign, warns user that the motor that is used for tuning is not part of the Project. There are two

possibilities ….

1. Motor is not in the project as shown below.. there is no motor under Motor Node.

Message will be: Motor <number> is not in the project.

2. Motor is under Motor Node but not fully configured. As shown below …

In this case the warning sign will say

Message: Motor <number> has not been fully configured through System Setup.

If the user has added the motor but not completed going through Topology blocks.

Message: Motor <number> has not completed Basic Tuning in System Setup.

If the user has added the motor and partially completed Topology block but not completed Basic

tuning.

Following picture shows more details about left panel.

Project

System

85

Warning sign near the Motor drop down will give following warning on hoovering the mouse…

This motor was set up outside of the system setup environment. Tuning gains and Motor elements will

not be saved automatically. It is the user's responsibility to update/save those in their pmh files.

Note

We recommend user to use System Setup to setup Motor and initially

tune using Basic Tuning Topology Block. This Basic tuning identifies

system and comes up with gain settings. Using Advance tuning after

Basic tuning will reduce tuning time.

.

Tuning parameter and performing tuning moves section
The middle section Blue area is for setting tuning parameters and performing tuning move. As shown

below …

All the different Top level choices and sub level choices are self-explanatory.

Common control from this middle sections are explained below…

Project

System

86

Note

Since the servo loop gains change as they are altered in the Tuning

window only safe gains must be entered in order not to damage the

motor or cause it to go unstable, potentially damaging equipment or

people.

Tuning status section
The bottom Red square shows the Motor status of currently selected motor. The statuses are grouped in

logical way. Status is continuously updated. The status area looks like this..

Tuning Result section
After successful tuning move the result will be displayed as a graph in the tuning result section. It is

marked with Brown color. The bottom part of Graph shows result, analysis and Statistic in tabular form

for the move. Below image section shows information about this section….

Project

System

87

Graph settings are set of visual icons and on hoovering the mouse will display what are those settings. As

shown below….

To Zoom in or out use mouse wheel or you also use Zoom pane as shown below. This will allow user to

choose area to zoom.

The graph also supports measurement. Click the point on the graph to see measurement between two

points. The measurement is available all the time. Clicking the same point will remove the point.

This is shown below…

On successful tuning move the settings option dynamically changes and support user selecting Left and

Right axis

Project

System

88

FFT (Fast Fourier Transform) will perform (FFT) of the data. . Choose whether to filter the signals or not

or whether to plot the vertical axes in units of decibels (dB). Choosing to filter the data will result in the

Power PMAC IDE performing a Hanning window filter on the data

Smooth option will filter the signals chosen to plot with a moving average whose order can be set from 0

to 100:

The default filter order is 2. The filter sums groups of points (the number of points in the sum is equal to

the order of the filter) and then divides by the order of the filter. The equation of the filter is

𝑝𝑖 =
1

𝑁
∑ 𝑎𝑘

𝑁
𝑘=0 ,

where pi is a point on the plot, where i runs from 0 to the total number of points on the plot, N is the order

of the moving average filter, and ak is a point of data in the group of points of size (N + 1) presently being

processed by the filter.

On successful tuning move data will be displayed under the graph. It will look like …

Project

System

89

 Clicking this icon on the graph will allow user take a snapshot of the current tuning performance

and compare. The snapshot is static picture and the regular Tuning will continue. This is helpful if the

user likes some tuning performance then a snapshot can be taken and user can keep adjusting tuning

parameters to see if the performance improves or not.

Project

System

90

Tuning Moves

Note

Auto Tune Moves

Please make sure that it is safe to do Tuning moves. Tuning

moves, like Step moves can vibrate the machine.
It is recommended external Emergency Stop switch connected that

will kill the amplifier power in case of motor runaway or loss of

communication.

Position Loop Tune – Auto – Basic

Note

Interactive Tuning Moves

Please make sure that it is safe to do Tuning moves. Tuning moves

can vibrate the machine resulting in machine damage.
It is recommended external Emergency Stop switch connected that

will kill the amplifier power in case of motor runaway or loss of

communication.

Position Loop Tune – Interactive – Step

Project

System

91

Position Loop Tune – Interactive – Parabolic

Position Loop Tune – Interactive – Point-to-point

Above plot showing Position with Desired Velocity and InPos.

Note

To plot In Pos bit successfully user must set the In position band

Motor[n].InPosBand.

Point-to-point move requires updating tuning package using

Package installer.

Project

System

92

Above plot showing Velocity with Desired Velocity and InPos

Position Loop Tune – Interactive – Sine/SineSweep

Note

Open Loop Moves

Please make sure that it is safe to do Tuning moves. Open loop

Tuning moves, like Step or Sine/Sine Sweep moves can runaway in

case of loss of feedback cable or communication
It is recommended external Emergency Stop switch connected that

will kill the amplifier power in case of motor runaway or loss of

communication.

Project

System

93

Open Loop – Step

Open Loop – Sine/SineSweep

Current Loop Tune – Interactive

Project

System

94

Current Loop Tune – Auto
While in move progress bar is displayed.

Click on More details to see the messages coming out of the move. The messages are also logged in

Power PMAC Message window.

Project

System

95

FFT

Filter options
All the filter values are stored in the project, whenever project is loaded the previously set filter values are

restore. Filter values are stored on the Power PMAC when the project is build and download so if the user

upload the project from Power PMAC the filter values will be restored.

Two types of filter available with any type of interactive move, either single move or live tune.

Servo loop filter

Following are configuration screen for setting Servo Loop filter.

Project

System

96

Project

System

97

Trajectory Prefilter

The Trajectory Prefilter Setup is used to enable the Trajectory Prefilter feature of Power PMAC and

configure whether to use it as a Notch Filter, a Low Pass Filter or both as there are two filters available

which can be applied to the trajectories. The Trajectory Prefilter filters any trajectory that the Power

PMAC generates before commanding it to the motor in order to prevent low frequency oscillations from

occurring at the machine’s end effector.

Following are configuration screen for setting Trajectory prefilter.

Plot
The Plot window can be used for gathering data from within Power PMAC and plotting it. This tool

cannot be used for real-time plotting; for this case the Scope tool should be usedt. The Plot window can

be configured through four steps:

1. Possible Data Sources

2. Data to Sample

3. Data Processing

Project

System

98

4. Plotting

These steps are outlined at the top of each pane in the Plot window as shown below:

In the main plot window clicking on the Gather Options menu will list some options to change how a

gather is performed.

Legacy Mode

Legacy Mode causes the Plot to gather data in the same method used prior to IDE version 2.1. Data

begins to be stored in a buffer on Power PMAC when the Gather button is pressed until the Gather Max

Samples is reached. When the Upload button is pressed, the data is stored in a file on Power PMAC and

then transmitted to the user’s PC and formatted for plotting.

Legacy Mode will be automatically enabled when the Plot control is connected to a device with firmware

older than 2.0.2.64, or when the device is detected as being under heavy load. Devices detected as being

under heavy load may have Legacy Mode disabled, but they are at increased risk of the gather being

interrupted or data being lost. If either condition occurs the user will be notified. The screenshot below

demonstrates the indication that legacy mode is enabled:

Project

System

99

Auto Plot

Auto Plot saves the user from needing to press the Upload Data and Plot Data Buttons. When

Gather.Enable changes from a value of 3 or 2 to 1 or 0 a plot is generated using the current settings in

the Plot Control. Auto Plot may only be enabled while Legacy Mode is disabled.

Project

System

100

Step 1 – Possible Data Sources

There are three tabs in the Plot Window underneath the heading “Step 1 – Possible Data Sources”: Quick,

Detailed, and Manual.

Quick Plot
The Quick tab only displays motors that have been enabled (i.e. Motor[x].ServoCtrl > 0).

Selecting the enabled motor automatically puts commonly used motor structures into Step 2’s and Step

3’s panes.

Detailed Plot
The Detailed tab shows all of the available structure trees whose structures can be plot. Click the plus

button () next to each structure tree’s name in order to display all of the elements or substructures within

that tree:

Project

System

101

Click the check box to the left of the structure or element to be included in Step 2 as a data source to

sample.

Manual Plot
Clicking the Manual tab allows the structure name to be entered if the exact structure name is known:

 For example, Motor[1].ActPos could be entered to gather that structure directly.

Project

System

102

Step 2 – Data to Sample

Select the data source to be sampled by clicking the data source and then clicking the double right arrow

() button to add the data source to the Data Processing field for use in Step 3:

Clicking the double left arrow () button will remove an item from Step 3 and put it back into Step 2.

Step 3 – Data Processing

To choose how to offset and scale the data multiply the raw data by a constant and/or add a constant to it

before plotting the data.

All data is, by default, not scaled (i.e. it is multiplied by a scale factor of 1) and has an offset of 0. In order

to modify the scale factor or the offset first select the data source required and then click “Scale Factor”

or “Offset” as shown in the red box below:

Project

System

103

This opens the “Process Data” window as seen below:

The various elements of the Process Data screen are described below. Each description corresponds to the

superscripted red numbers superimposed in the screenshot above:

Scale Factor (1):

This number multiplies the data item as shown in the equation in Process (4).

Offset (2):

This number will be added to the product of the data item and the scale factor as shown in Process (4).

Function Name (3):

This is the name of the result of the data processing as listed in the box under “Step 3 – Data Processing”

on the main Plot screen.

Process (4):

Process is the result/output of the data processing. In other words “Process” is equal to the expression

shown to the right. By default the process is simply to multiply the data item selected by the Scale Factor

(1) and then add the Offset (2).

1

2

3

4

5

6

7 8 9

Project

System

104

Available Process (5):

This dropdown menu shows all of the processes which can be included in the Process (4) equation:

The functionality of each process in the list is described in the table below:

Process Symbol Functionality

Add(+) Adds a number1 specifed in the Process equation to the Data Item

Sub(-) Subtracts a number1 specifed in the Process equation from the Data Item

Mul(*) Multiplies a number1 specified in the Process equation by the Data Item

Div(/) Divides the Data Item by a number1 specified in the Process equation

1st_Derivative(d/dt) Performs the numerical 1st derivative of the Data Item

2nd_Derivative(d2/dt2) Performs the numerical 2nd derivative of the Data Item

And(&) Performs a bitwise AND with the data and a number1 specified in the Process

equation

Or(|) Performs a bitwise OR with the data and a number1 specified in the Process

equation
1This number can either be a hard-coded constant or another Data Item selected in Available Items (6).

After selecting the process to use click the button to the right of the dropdown menu to add that

process to the Process (4) equation.

Available Items (6):

Other Data Sources can be incorporated into the Process (4) equation. To do this click the “Available

Items” dropdown menu to select the Data Source required to be added to the Process equation and then

click the button:

Insert (7):

Click this button to insert the data processing entry into Step 3’s list of items back on the main Plot

screen.

Update (8):

Click this button to update this entry, if it already exists, with the settings selected.

Project

System

105

Cancel (9):

Click this button to cancel modifying this entry.

Step 4 – Plotting

In Step 4 the items to be plot can be confiured to specific Axis. The axes available are the Left Axis, the

Right Axis and the Horizontal Axis.

To add an item to an axis select the Data Source required to be added from Step 3’s list of items and then

click the double right arrow button () next to the list box:

 Click the arrow () indicated by the superscripted red “1” shown in the image below to add the

data source to the Left Axis.

 Click the arrow () indicated by the superscripted red “2” shown in the image below to add the

data source to the Right Axis.

 Click the arrow () indicated by the superscripted red “3” shown in the image below to add the

data source to the Horizontal Axis.

1

2

3

4

5

6

Project

System

106

Click the double left arrow button () next to each axis’s list box to remove that item from the axis:

 Click the arrow () indicated by the superscripted red “4” shown in the image above to remove

the data source from the Left Axis.

 Click the arrow () indicated by the superscripted red “5” shown in the image above to remove

the data source from the Right Axis.

 Click the arrow () indicated by the superscripted red “6” shown in the image above to remove

the data source from the Horizontal Axis.

Gathering and Plotting

The final step is to gather, upload and plot the data.

Sampling Settings
The sampling settings controls in Step 1 sets how many samples are gathered per data source and the

sampling period for gathering:

The “Sample Period” is in units of servo periods. For example, if the sample period is set to equal to 1

then this will sample every servo period.

“Max Gather Samples” specifies the maximum number of data points to sample per source.

Selecting the slider underneath “Sampling Settings” will show how many seconds of data will be gathered

based upon the “Max Gather Samples” and the “Sample Period” settings chosen.

The plot program supports gathering at the

Phase rate as well. The settings are similar to

Servo rate sampling settings.

The Gather Settings window in the lower left

corner of the Plot window (shown on the right)

shows settings describing the sources to gather,

whether to use servo period or phase period,

etc., that will be used for gathering.

Project

System

107

Gathering
To start gathering the data click the “Gather Data” button as shown in the red box below:

The progress meter, which is located beneath the “Upload Data” button (surrounded by a blue box in the

image above), will fill up with green as the data is being gathered. Once the meter is full with green click

“Upload Data”. The process can be stopped while gathering data by clicking the “Stop” button - this

replaces the “Gather Data” (surrounded by a red box in the image above) while data is being gathered.

After clicking “Upload Data” and the data has been uploaded click “Plot Data” (surrounded by a purple

box in the image above). This button will be grayed out until the data has been successfully uploaded.

Project

System

108

Plot Tools
Clicking the “Plot Data” button opens a plot for the selected data sources. In this example the actual

position of motor 1 is being plotted on the Left Axis as a function of time on the horizontal axis:

Tools for Saving and Exporting Plots and Raw Data
Clicking the File menu shows tools for loading and saving plots:

Open Plot

Opens a plot saved previously with the “Save Plot” command.

Save Plot

Saves the contents of the current plot and the plot formatting settings in the “*.ppp” file format.

Save Raw Data

Saves the raw data contents of the plot without the plot formatting settings. This file is in the “*.txt” file

format. This file consists of tab-delimited columns. The first row is the name of the data source.

Subsequent rows contain the data points in double precision. The leftmost column is the first data source

Project

System

109

for the Horizontal Axis selected. The next column is the next data source for the Horizontal Axis. After

that, subsequent columns consist of the Left Axis data sources in order and then the Right Axis data

sources.

For example, motor 1’s actual and commanded position are on the Left Axis, the actual and commanded

velocity on the Right Axis, and Time on the Horizontal Axis as shown below:

Then the exported data file will appear as such (only the first few rows are being shown):

Time(sec) Motor[1] Act Position Motor[1] Cmd Position Motor[1] Act Velocity Motor[1] Cmd Velocity

0.000000 73153818.000000 73153818.000000 5000.000000 5000.000000

0.002000 73153828.000000 73153828.000000 5000.000000 5000.000000

0.004000 73153838.000000 73153838.000000 5000.000000 5000.000000

0.006000 73153848.000000 73153848.000000 5000.000000 5000.000000

0.008000 73153858.000000 73153858.000000 5000.000000 5000.000000

0.010000 73153868.000000 73153868.000000 5000.000000 5000.000000

0.012000 73153878.000000 73153878.000000 5000.000000 5000.000000

0.014000 73153888.000000 73153888.000000 5000.000000 5000.000000

This can easily be imported into, for example, Microsoft ExcelTM for further processing if desired.

Project

System

110

Tools for Filtering Data and Creating Power Spectra
Clicking the View menu will show some tools for filtering the data and plotting power spectra:

These tools work as follows:

FFT

This tool will perform a Fast Fourier Transform (FFT) of the data. It is possible to choose whether to

filter the signals or not or whether to plot the vertical axes in units of decibels (dB). Choosing to filter the

data will perform a Hanning window filter on the data. If not, it will use a Uniform/Rectangular window.

The Horizontal Axis will not be logarithmic.

Smooth

This tool will filter the chosen plot signals with a moving average whose order can be set from 0 to 10:

The default filter order is 2. The filter sums groups of points (the number of points in the sum is equal to

the order of the filter) and then divides by the order of the filter. The equation of the filter is as follows:

𝑝𝑖 =
1

𝑁
∑ 𝑎𝑘

𝑁
𝑘=0 ,

where pi is a point on the plot, where i runs from 0 to the total number of points on the plot, N is the order

of the moving average filter, and ak is a point of data in the group of points of size (N + 1) presently being

processed by the filter.

Project

System

111

Saving and Loading Plot Configurations

In the main Plot window clicking on the File menu will list several tools:

These tools work as follows:

New Plot

This tool wipes this Plot window of all settings and shows a default, blank Plot window.

Note

The Plot Window will retain the plot settings chosen for this project

until a New Plot is clicked to wipe it clean.

Open Plot From File

This tool opens a plot previously saved by clicking FileSave Plot from within a plot of data as in the

screenshot below:

Project

System

112

Open Configuration File

Opens a configuration file containing the plot settings previously saved by clicking “Save Configuration

File” in this Plot Window.

Save Configuration File

Saves a configuration file containing the plot settings for this present instance of the Plot Window in the

“*.cfg” file format.

Open Configuration File with Data

Opens a configuration file containing the plot settings previously saved, along with the data previously

saved by clicking “Save Configuration File with Data.”

Save Configuration File with Data

Saves a configuration file containing the plot settings for this present instance of the Plot Window along

with any data presently uploaded to the PC from Power PMAC in the “*.prj” file format.

Export Gather Data

Exports any data presently uploaded to the PC from the Power PMAC in the “*.gat” file format.

Selected Presets

Selected Presets allow for rapidly switching the gathered and plotted items to previously saved selections.

Once the plot contains the setup to be saved, type a name for the setup in the “Selected Preset” field

(boxed in blue in the image) and press the “Save” button (boxed in red):

Project

System

113

To switch to a different preset, select the item in the “Selected Preset” field’s dropdown menu:

Alternatively pressing the Enter key, while the cursor is in the “Selected Preset” field and the field

contains the name of a previously saved preset, will load that preset. In order to delete a preset type its

name in the selected preset field or select it from the dropdown and press the delete button. To overwrite

an existing preset with different options select it from the dropdown menu or type its name in the Selected

Preset field, change the Sampling, Gather, Processing, and/or Plot options, and press the Save button.

Scope
The scope tool enable the plotting of data in near real-time. The interface looks like this:

Selecting the Data to Scope

Project

System

114

Under the “Detailed” tab on the left select the structure to scope. Click the plus button () to expand the

structure tree, right-click the structure and then click “Add Command to Channel” as shown below:

Alternatively click the “Manual” tab and type in the command to add to the channel:

The exact structure name must be entered. After typing the command click “Add” to add it to the channel.

Project

System

115

Changing Vertical Axis Settings
The offset, to add to the data, and thescale factor, by which to multiply the data, can be modified before

plotting by changing the Offset and the Scale fields, respectively, in the box underneath “Channels” as

shown below:

To delete the command from the channel click the Delete button (). To select this channel as the

primary vertical axis click the button. To change the properties of this channel click the Properties

button ().

Clicking the Properties button will show the Channel Details dialog box as shown below:

The minimum and maximum limits and the minor and major units for the vertical axis which this

command occupies can be set here. Note that these scales will only be used if “Manual Scale” is selected

under Graph Properties on the main Scope window.

To show or hide the minor and major gridlines select the Check boxes.

The symbol type to represent each data point can be selected. The symbol types that can be chosen are

shown below:

Project

System

116

Click the “Save” button to save the settings and leave the Channel Details window.

On the the main Scope window choose whether to have the IDE automatically scale the Scope window’s

limits based upon the size of the data by clicking on “Auto Scale” (surrounded by a red box in the image

below) under Graph Properties:

To choose Manual scaling instead select “Manual Scale” (surrounded by a purple box in the image above)

and set the limits in the Properties menu which is opened by clicking on the button for the channel

whose limits are to be modified. To change the color of the Scope’s background click on the Background

Color button (surrounded by a blue box in the image above).

Changing Horizontal Axis Settings
The horizontal axis Time is in units of milliseconds. The horizontal axis’s properties are listed in the

bottom right corner of the Scope window:

Project

System

117

The seconds per division can be changed by clicking on the SEC / DIV button. The select divisions

available are 2, 5, 10, 50, 100, 200, 500, or 1000 msec.

The plot period can be specified by typing a value, in units of servo cycles, to the right of “Gather Servo

Cycles”. The Scope window will calculate the number of msec which the number of servo cycles chosen

occupies. The speed at which gathered points are plotted is calculated automatically. It appears next to

“Plotting is behind by x” below the live scope as “Filter = x” which indicates that 1 of every x points is

plotted. All data up to the allowed buffer size is retained for “Graph all Data points” even if it is not

plotted live. Information on how far behind the plot is can be seen on the bottom of the plotting area as

shown by the red box in the image below:

Project

System

118

Scope Controls
A number of tools are available for manipulating the Scope plot area as highlighted in the red box in the

image below:

The table below describes the functionality of each of the buttons:

Scope Control Symbol Tooltip Description Functionality

Zoom In Makes the plot area occupy the entire Scope

window

Zoom Out Returns the plot area to the upper right corner of

the Scope window

Start Starts gathering and plotting data

Stop Stops gathering and plotting data

Clear Graph Clears the plot area of the Scope window

Open Plot from a File Opens a Power PMAC Realtime Plot (*.csv) file

(see next row down)

Save Plot to a File Saves the plot’s contents to a Power PMAC

Realtime Plot (*.csv) file

Plot All Gather Points Plots everything gathered so far (everything

presently in the gather buffer) in the plot area of

the Scope window.

Project

System

119

Tune (Legacy)
The Tuning tool can be used to tune current loops and position (servo) loops the motors. “Tuning” refers

to the process of adjusting the gains in the control loop until the desired performance level is achieved.

The Tune tool can be used to configure filters for the position and velocity loops and also trajectory

prefilters.

Access the Tuning by clicking Delta TauToolsTune:

Although the Basic Tuning software provides “automatic tuning” of the servo loop this automatic tuning

is only intended as a starting point. It might get the motor to jog but probably will not tune the motor to

the exact performance specifications desired. Thus, it is recommended to always use the Tuning software

to do any interactive tuning in order to obtain the performance goals desired.

Tuning Window Layout
Clicking the “Tune” button in the menu shown above opens up this screen which is the default layout for

the Tuning Window:

Select various tabs, different screens of the
Tuning Window, here

Project

System

120

The first tab that opens by default is the “Position Loop Interactive Tuning” tab. This enables the

commanding of various test trajectories to the motors, to observe the motor’s response and then adjust the

servo loop gains accordingly.

To refresh this window right-click and click Refresh or hit CTRL+R on the keyboard. To connect to

another device right click and click PropertiesConnect to Device:

Select the motor here

Close the loop with this button

Select the test

trajectories here

Execute the move
with this button

Choose various options for the move here

Open the
loop with this

button

Choose which items to
plot on the left and

right axes here

(horizontal axis is
always Time)

Info, Output, Debug, Error, and Warning tabs display various information

generated by Tuning Window

This box

indicates

whether the
motor is

commutated

Shows whether

the motor is
independent or

gantry-coupled

Some motor

status bits are
displayed here

Shows which

servo algorithm
the motor is

using

Indicates

whether a filter

is being used in
the position

loop for this

motor

Indicates

whether a

trajectory
prefilter is

active for this

motor

Click this to

phase the

motor with
the phasing

method with

which the
programmed

the motor

previously

Opens a dialog box
for configuring servo

loop filters

Shows the

PowerPMAC’s

servo algorithm’s

block diagram

Configure cross-

coupling gains here
if using gantry cross-

coupling

Project

System

121

To create a file containing values used to calculate servo loop filter or trajectory prefilter parameters that

have been configured in Power PMAC right-click on a blank gray space on the tuning screen and then

click “Upload Filter File” as shown in the red box below:

The file (filterinfo.flt) is added to the Configuration folder in the IDE project as shown in the red box

below:

This file contains values that the Tuning software uses to calculate filter gains. Understanding the file’s

contents is not important for the user. If this file is present in the Configuration folder, when the Tuning

software window is opened, the software will load these settings into the Tuning window in order to show

what filter settings are currently being used.

The Tuning software will also compare the values from this file against the filter parameters currently in

the Power PMAC and will give a warning if they differ. If the parameters differ, and the filter gains

specified in the file are to be retained rather than the filter gains currently in the Power PMAC, go to the

Tuning window corresponding to the filter, for example for Servo filters, go to Interactive TuningFilter

Calculators; or for Trajectory Prefilter, click on the Trajectory Prefilter tab, and then click

CalculateImplement. Note that this file does not contain the Power PMAC parameters but rather the

values used to calculate filter-related the Power PMAC parameters.

Project

System

122

Note

IDE V4.2 onwards additional button “Export current motor<n>

settings to current project where n is motor number currently selected

for tune. Click this button when satisfied with tune result to copy

settings to motor file in currently open project.

Button to click:

Output Tab
The Tabs at the bottom of the screen contain useful information. Each tab contains a different type of

information. There are five tabs as shown below:

Info

This tab displays any changes that the Tuning window made to Power PMAC parameters.

Output

This tab displays any I/O stream text that the window might print.

Debug

This tab announces what operations the window is trying to perform; for example, it will announce that it

is preparing a step move or that a trapezoidal move just finished successfully.

Error

The tab will show any errors that the window reports. For example, the Error window will print an error

message if the Tuning window tries to command the motor to move for its Automatic Tuning procedure

and the motor’s Minimum Move is not made.

Warning

This tab gives any programming warnings that the window reports.

Position Loop Interactive Tuning

In the screenshot of the Position Loop Interactive Tuning window, under the heading “Tuning Window

Layout”, the servo loop gains and other parameters related to servo control are shown within a green box.

These can be adjusted, and the program will change the associated parameter within the Power PMAC.

Caution

Since the servo loop gains change as they are altered in the Tuning

window only safe gains must be entered in order not to damage the

motor or cause it to go unstable, potentially damaging equipment or

people.

Project

System

123

To understand the exact structure with which the gain parameters listed are associated just hover the

mouse cursor over the parameter and a tooltip will appear with the structure name. In the example

screenshot below “Derivative Gain 1” shows, via the tooltip, that the associated structure is

Motor[x].Servo.Kvfb:

Test Trajectories
In the purple area in the screenshot of the Position Loop Interactive Tuning screenshot the various test

trajectories which the motor can be commanded to are shown. These test trajectories can be useful for

identifying characteristics of the motor and tuning it systematically. There are eight different test

trajectories available:

 Step,

 Ramp,

 Parabolic Velocity,

 Trapezoidal Velocity,

 S-Curve Velocity

 Sinusoidal, Sinesweep, and

 User Defined.

Most users only need to use Step and Parabolic Velocity as these can be used to tune Kp, Kd, Ki, Kvff,

Kaff, and Kfff. The other moves are available to simulate the kind of moves to which might subject the

machine to optimize the servo loop’s gains to get the performance required during these kinds of moves.

Features Common to All “Trajectories Plots”

Note that there are several properties of the plot window used to display the motor’s response and the test

trajectory. Below is an example of a Step move:

Project

System

124

Along the top of the window are three menus: File, View, and Tools.

File opens a plot that was previously saved, saves this plot, or saves the plot’s data in a raw data file:

View allows the selection to subject the plot to a Fast Fourier Transform (FFT) or to smooth the data out

with a filter:

FFT

This tool will perform a Fast Fourier Transform (FFT) of the data. Choose whether to filter the signals or

not or whether to plot the vertical axes in units of decibels (dB). Choosing to filter the data will result in

the IDE performing a Hanning window filter on the data. If not it will use a Uniform/Rectangular

window. The Horizontal Axis will not be logarithmic.

This is an example screenshot of the above Step move transformed with an FFT with filtering and with

logarithmic axes:

Project

System

125

Smooth

This tool will filter the signals chosen to plot with a moving average whose order can be set from 0 to 10:

The default filter order is 2. The filter sums groups of points (the number of points in the sum is equal to

the order of the filter) and then divides by the order of the filter. The equation of the filter is

𝑝𝑖 =
1

𝑁
∑ 𝑎𝑘

𝑁
𝑘=0 ,

where pi is a point on the plot, where i runs from 0 to the total number of points on the plot, N is the order

of the moving average filter, and ak is a point of data in the group of points of size (N + 1) presently being

processed by the filter.

Selecting ToolsModify Plot Items opens this screen:

Project

System

126

Move Options

There are a few options that apply to all moves directly beneath the test trajectories section of the

window. Note by that selecting “Repetitive Move” the move will execute repeatedly until “Stop

Repetitive Move” is clicked on the dialog box that pops.

The number of iterations are shown at the bottom of this dialog box.

Trajectories

The various trajectories available are described below:

Step

The Step move commands a discontinuous change in desired position to the motor, dwells, and then

returns to the starting position. The motor then tries to immediately react to move to the new position.

Choose which items to add

to the left axis here

Choose which items to add

to the right axis here

Check this box in order to

normalize the position
being plotted with respect

to the initial position or the

home position, as selected
by the radio buttons to the

right
Click here to accept

changes

Project

System

127

The only parameters needed to be set are the Step Size, in

motor units, which is the magnitude of the instantaneous

discontinuous change in position commanded to the motor

and the Step Time, in milliseconds, which is how long the

desired position dwells before returning to the starting

position. These parameters can be in the Tuning window as

shown to the left.

In order to keep the move within the linear region, wherein

the tuning software operates best, it is recommended to

command within ½ to ¼ of the motor’s revolution if a rotary

motor, or within ½ to ¼ of the motor’s electrical cycle if a

linear motor.

When ready click “Do a Step Move” to command the move. An example Step move appears below:

The commanded position is shown in red (Motor[x].DesPos), the actual position in green

(Motor[x].ActPos), and the servo command (Motor[x].ServoOut) in yellow.

Project

System

128

Note

This move is especially useful for determining the values of Kp, Kd,

and Ki. See the “Tuning Guidelines” below for more details.

Plotting the servo command on the right axis is always recommended for the Step move. This is because

it is possible to see when the servo command has saturated. The servo command has become saturated

when its value truncates and becomes completely flat indicating that the servo command has reached its

limit Motor[x].MaxDac. At this point increasing Kp will not help to improve the motor’s performance.

Project

System

129

Ramp

The Ramp trajectory commands a linear increase in motor position in the positive direction for a certain

distance and then reverses that command for the same distance, returning the motor to its starting

position. The selectable parameters for this move are as shown below:

Click “Do a Ramp Move” when ready.

A plot similar to the one below will be shown:

- “Move Distance” is the distance [motor units] in one

direction the motor will be commanded in a linear fashion.

- “Velocity” is the top speed [motor units per second] the

motor will be commanded to achieve.

- “Number of Repeats” describes how many times to

command the motor forward and back.

Project

System

130

Parabolic Velocity

The Parabolic Velocity move commands a parabolic velocity trajectory first in the positive direction and

then in the opposite direction to the motor. The parameters that can be specified for this motor are shown

below:

Click “Do a Parabolic Velocity Move” when ready.

A plot similar to the one below will be shown:

Note

This move is especially useful for determining the values of Kaff, Kvff,

and Kfff. See the “Tuning Guidelines” below for more details.

- “Move Size” is the distance [motor units] the motor will first travel in the

positive direction before reversing and traveling the same distance in the

opposite direction.

- “Move Time” is the time span [msec] within the motor will traverse the

distance specified in “Move Size” in the positive direction, and then that

same distance in the opposite direction within the “Move Time” time span

again

Project

System

131

Trapezoidal Velocity

This trajectory commands a trapezoid-shaped velocity profile to the motor first in the positive direction

and then in the negative direction. Below are the parameters that can be adjusted for this move:

Click “Do a Trapezoidal Velocity Move” when ready.

A plot similar to the one below will be shown:

- “Move Distance” is the total distance [motor units] the motor will move in the

positive direction before reversing and traveling that same distance in the

opposite direction.

- “Velocity” is the maximum speed [motor units per second] commanded to the

motor at the peak of the velocity profile.

- “Acceleration Time (TA)” is the time span [msec] over which the motor will

accelerate to the top speed specified in “Velocity” right above this field.

- “Number of Repeats” is how many times to execute the forward-and-back

motion path.

Project

System

132

S-Curve Velocity

The S-Curve Velocity trajectory commands a cubic B-Spline shape to the motor’s velocity first in the

positive direction and then in the negative direction. The parameters that can be specified are shown

below:

Click “Do a S-Curve Velocity Move” when ready.

A move similar to the one below will be shown:

- “Move Distance” is the total distance [motor units] the motor will move in

the positive direction before reversing and traversing the same distance in

the opposite direction.

- “Velocity” is the peak speed [motor units per second] commanded to the

motor in each direction.

- “Acceleration Time (TA)” is the time span over which the motor will

accelerate to the speed specified in the “Velocity” field immediately above

this field.

- “Number of Repeats” is the number of times the motor should perform the

forward-and-back motion path.

Project

System

133

Sinusoidal

This trajectory commands a sine wave position signal to the motor. The parameters that can be specified

are shown below:

Click “Do a Sinusoidal Move” when ready.

A move similar to the one below will be shown:

Note

This move is especially useful for system identification purposes. Try

exciting the system at different frequencies, letting the motor enter a

steady-state each time, and then exporting the data set. This can then

be imported into, for example, MATLABTM and batch-processed to

produce a Bode magnitude/phase plot for the purpose of identifying

DC gain, natural frequencies, and damping ratios.

- “Frequency” is the frequency of the sine wave [Hz].

- “Amplitude” is the amplitude of the sine wave [motor

units].

- “Number of Repeats” is the number of periods of the sine

wave to command the motor to traverse.

Project

System

134

Sinesweep

Sinesweep commands a sine wave position signal to the motor. This signal is different from the

Sinusoidal test trajectory in that while the Sinusoidal trajectory remained at a constant frequency the

Sinesweep trajectory’s frequency increases either linearly or logarithmically, at the user’s choice, over a

time span that the user specifies. The parameters available can vary as follows:

“Sweep Method” describes the manner in which to increase the frequency of the wave being commanded

to the motor. Selecting Linear will increase the frequency (f(t) below) linearly such that the frequency

change with time (t below) follows the following formula:

f(t)=((fend – fstart)/(Tsweep))t + fstart,

where fend is the “End Frequency” specified, fstart is the “Start Frequency” specified, and Tsweep is the

“Sweep Time” specified. Selecting Logarithmic will increase the frequency logarithmically according to

the following equation:

𝑓(𝑡) = 𝑓𝑠𝑡𝑎𝑟𝑡 ∙ (
𝑓𝑒𝑛𝑑

𝑓𝑠𝑡𝑎𝑟𝑡
)

𝑡
𝑇𝑠𝑤𝑒𝑒𝑝

- “Start Frequency” is the initial frequency [Hz] of the sine signal at the

start of the move.

- “End Frequency” is the final frequency [Hz] of the sine signal at the

end of the move. The signal should reach this frequency by the end of

the “Sweep Time” [sec] specified in the field immediately below this

one.

- “Sweep Time” is the time span [sec] over which the sine wave will be

commanded to the motor; this is the time span over which the sine

wave’s frequency will increase either linearly or logarithmically as

specified in the “Sweep Method” parameter two fields below this one.

- “Move Size” is the amplitude [motor units] of each period of the sine

wave.

Project

System

135

Click “Do a Sinesweep” when ready.

A plot similar to the one below will be shown:

User Defined

The final test trajectory available is user defined (i.e. the user designs it by writing a motion program).

This is equivalent to adding a motion program to the project and running it but doing this in the Tuning

software has a few advantages, namely that the motion program is only downloaded temporarily to be run

once each time and the Tuning software automatically gathers and plots the motor’s response. This makes

designing a move e.g. a move similar to that which the machine might actually experience once it is

commissioned, and testing it to see if the servo loop gains produce the performance that desired.

The interface for designing the trajectory is as follows:

Type the motion program in the area provided and click “Download and Run the Motion Program”. The

motion programs need to be written in order to achieve this. For more details on writing motion programs

refer to the Power PMAC User’s Manual and the section labeled “Writing and Executing Script Programs

in the Power PMAC”. The motor selected will be assigned to Coorrdinate System 0, Axis X and the

program will be run in Motion Program 999.

Project

System

136

This is an example of a simple motion program:

Filter Calculator

Clicking on the Filter Calculator on the Position Loop Interactive Tuning tab opens the following screen:

From this screen it is possible to design Single Notch, Single Notch/Low Pass, Double Notch, Double

Notch/Low Pass, Low Pass filters for the Position Loop and a Low Pass filter for the Velocity Loop.

The gains and
coefficients involved

in the filter are shown

here on the left. The
“Current” column

shows the present

values, and the

“Proposed” column

shows the values that

the Filter Calculator
suggests based on the

parameters for the

filter entered in the

right pane

Specify the frequencies wanted to filter

in this area. Specify also the

characteristics wanted for the filter.
These characteristics vary depending on

the type of filter selected

Press this button to make the Filter
Calculator calculate variables for the

filter and place them in the “Proposed”

column on the left

Press this button to implement the filter

coefficients, making the “Current”
values match the “Proposed” values

Press this button to remove the filter (the

Proposed coefficients remain intact,

however)
This indicates

whether a filter is

active on the

Position Loop

This indicates

whether a filter is
active on the

Velocity Loop

Press this button to

close the servo

loops on the motor

Press this button to

exit the servo

calculator

Project

System

137

Note

The Filter Calculator should be used by Advanced Users only, that is,

those who are familiar with filters and the parameters associated

therewith. These filters consist of bilinear transformations,

computations in the continuous time domain, and then a Tustin

discretization process.

Note

Some of the servo loop gains must be modified when a filter is

implemented when “Implement Filter” is clicked. If a retune is needed

with these gains later it is recommended to first remove the filter,

retune and then recalculate and reapply the filter.

Position Loop Filters

Single Notch
Under the single notch tab, the following parameters are available:

Single Notch/Low Pass

This filter type is the combination of a notch filter at a natural frequency that is specified and a low pass

filter to attenuate frequencies above that which has been specified.

This filter’s tab’s layout looks much like the Single Notch tab but has one more field for the user to

specify the low pass filter’s cutoff frequency:

Specify the natural frequency [Hz] whose effect the Notch filter

is to suppress

Check this box if values are not going to be entered manually for

the “Filter Frequency Specifications” below. These will then be

calculated automatically.

Specify the frequency [Hz] at which the lightly damped zero
occurs in the system

Specify the damping ratio [unitless] for the lightly damped zero

Specify the frequency [Hz] at which the heavily damped pole

occurs in the system

Specify the damping ratio [unitless] for the heavily damped pole

frequency

Specify the natural frequency [Hz] whose effect the Notch filter

is to suppress

Check this box if values are not going to be entered manually for

the “Filter Frequency Specifications” below. These will then be

calculated automatically.

Specify the frequency [Hz] at which the lightly damped zero

occurs in the system

Specify the damping ratio [unitless] for the lightly damped zero

Specify the frequency [Hz] at which the heavily damped pole

occurs in the system

Specify the damping ratio [unitless] for the heavily damped pole

frequency Specify the low pass filter’s cutoff frequency [Hz]

Project

System

138

Double Notch

This filter type consists of two notch filters each of whose resonant frequencies can be specified

separately. The configuration screen for this filter contains two sets of the same parameters listed under

the Single Notch screen; see Single Notch above for the description of the fields:

Double Notch/Low Pass

This filter type consists of two Notch Filters and one Low Pass filters. The parameters listed are the same

as those listed in the Double Notch and the Low Pass filter screens:

Low Pass

This filter attenuates frequencies above the cutoff frequency which can be specified:

Specify the order of the Low Pass filter,

ranging from 1st to 5th order Butterworth filters

Specify the filter’s cutoff frequency [Hz]

Project

System

139

Velocity Loop Filters

The Velocity Loop filter page is used to configure 1st or 2nd order Butterworth Low Pass filters for the

motor’s feedback and feedforward velocity loops separately:

Set Gantry Cross-Coupling Gains
This feature is only available if the motor is using the Gantry Cross-Coupled servo algorithm i.e. when

Motor[x].Ctrl=Sys.GantryXCtrl. This screen shows PID gains for each motor:

Specify the feedback filter’s cutoff frequency

Specify the order of the feedback filter

Specify the feedforward filter’s cutoff frequency

Specify the order of the feedforward filter

The filter coefficients and

affected servo loop gains
presently in the

PowerPMAC are listed in

the leftmost column

labeled “Current”

This indicates
whether a filter is

active on the

Position Loop

This indicates

whether a filter is
active on the

Velocity Loop

Press this button to

close the servo

loops on the motor

The filter coefficients and

new servo loop gains that

the Calculator calculates
are listed in the right

column labeled

“Proposed”

Press this button to
exit the filter

calculator

Project

System

140

“Current” shows which gains are presently in the the Power PMAC. “Proposed” are the gains the window

suggests for this pair of motors. “Implement” implements the proposed gains causing “Current” and

“Proposed” to become the same. “Restore” will revert the effects that “Implement” caused.

Show Servo Block Diagram

Clicking the Show Servo Block Diagram button in the Position Loop Interactive Tuning tab will show the

following screen:

This screen shows the block diagram for the Standard servo algorithm in Power PMAC.

This particular screenshot above is from the Standard servo algorithm. This diagram is disabled if a

custom servo algorithm is chosen.

Note

The Servo Block Diagram shows only the Standard servo algorithm. If

any other servo algorithm is chosen this diagram will not apply to this

motor.

Interactive Tuning Guidelines

PMAC’s Servo Algorithm must be configured to properly control any given system with motors and

amplifiers. Configuration is done by adjusting setup structures pertaining to the PID gains. Friction

Feedforward is also needed. The most basic servo loop gains correspond to structures as follows:

 Motor[x].Servo.Kp Proportional Gain (Kp)

 Motor[x].Servo.Kvfb Derivative Gain (Kd)

 Motor[x].Servo.Kvff Velocity Feedforward (Kvff)

 Motor[x[.Servo.Ki Integral Gain (Ki)

 Motor[x].Servo.SwZvInt Integration Mode

 Motor[x].Kaff Acceleration Feedforward (Kaff)

 Motor[x].Kfff Friction Feedforward (Kfff)

Project

System

141

Note

The load should be connected to the motor before tuning the servo

loop.

The process of determining proper values of PID gains is called “Tuning”. The procedure for tuning is as

follows:

1. Set Motor[x].Servo.SwZvInt (Motor xx PID Integration Mode). This can be changed as needed

 =1, position error integration is performed only when Motor xx is not commanding a move

 =0, position error integration is performed always

2. Using the Step Response tune the following parameters in this order:

 Proportional Gain, Kp (Motor[x].Servo.Kp)

 Derivative Gain, Kd (Motor[x].Servo.Kvfb)

 Integral Gain, Ki (Motor[x[.Servo.Ki)

3. Using the Parabolic Move tune the following parameters in this order:

 Velocity Feedforward, Kvff (Motor[x].Servo.Kvff)

 Acceleration Feedforward, Kaff (Motor[x].Kaff)

 Friction Feedforward, Kfff (Motor[x].Kfff)

Note

 When tuning the feedforward gains set

Motor[x].Servo.SwZvInt =1 so that the dynamic behavior of

the system may be observed without integrator action. After

tuning these set Motor[x].Servo.SwZvInt back to the desired

setting.

 Setting Kvff = Kd (Motor[x].Servo.Kvff =

Motor[x].Servo.Kvfb) is a good place to start when tuning

Kvff.

Project

System

142

Steps 2 and 3 should be performed in the Interactive Tuning window in Tuning:

Step 2 (tuning Kp, Kd, and Ki)

Select “Position Step” under “Trajectory Selection”. Choose a “Step Size” that is within ½ to ¼ of a

revolution of the motor, if it is a rotary motor, or within ½ to ¼ of one electrical cycle, if it is a linear

motor. The step move’s commanded position profile should look something like this:

Compare the motor’s actual position to the commanded position profile. Depending how the actual

position looks adjust the servo loop gains until the desired response is achieved.

Time

[msec]

Commanded

Position [cts]

Select the Motor

Number

Input the move size

Project

System

143

Observing the table below, match the actual position response to one of the response shapes below and

then adjust the appropriate gain as listed next to each plot. In each of the figures below the vertical axis

corresponds to Commanded Position [cts] and the horizontal axis to Time [msec]:

Overshoot and

Oscillation

Cause:

Too much Proportional

gain or

too little Damping

Fix:

Decrease Kp

Increase Kd

Position Offset

Cause:

Friction or Constant

Force

Fix:

Increase Ki

Increase Kp

Sluggish Response

Cause:

Too much Damping or

too little Proportional

gain

Fix:

Increase Kp or

Decrease Kd

Physical System

Limitation

Cause:

Limit of the

Motor/Amplifier/Load

and gain combination

Fix:

Evaluate Performance

and

maybe add Kp

Typically, start by increasing Kp until an “Overshoot and Oscillation” condition is observed and then

increase Kd and Ki until the performance goals for the step response are achieved. When executing the

step response make sure that the Servo Command is selected on the Right Axis as shown in the red box in

image below.

If there is a truncation of the

servo command at the

beginning of each move the

maximum output command,

as determined by

Motor[x].MaxDac, has been

reached. In this case adding

more Kp will not improve the

Step Response’s

performance.

Project

System

144

Step 3 (Tuning Kvff, Kaff, and Kfff)

Select “Parabolic Velocity” under the “Trajectory Selection” in the Interactive Tuning Window. Select a

move size and speed that will simulate the fastest, harshest moving conditions it is expected that the

machine will experience. By tuning the motor at these settings the motor should be able to handle all the

easier moves.

After commanding the Parabolic Velocity move the commanded Velocity Profile and Acceleration Profile

should look like this:

Velocity

Commanded

Profile

Acceleration

Commanded

Profile

Observing the table below, match the actual position response to one of the response shapes below and

then adjust the appropriate gain as listed next to each plot. In each of the plots below the vertical axis

corresponds to Actual Velocity [cts/msec] and the horizontal axis to Time [msec]:

High Vel./F.E.

Correlation

Cause: Damping

Fix: Increase Kvff

High Vel./F.E.

Correlation

Cause: Friction

Fix:

Add Kfff

and/or turn on Integral

Gain (Ki)

High Acc./F.E.

Correlation

Cause: Inertial Lag

Fix:

Increase Kaff

High Acc./F.E.

Correlation

Cause:

Physical System

Limitation

Fix:

Use softer acceleration

or add more Kfff

Project

System

145

Negative Vel./F.E.

Correlation

Cause:

Too much Velocity

Feedforward

Fix:

Decrease Kvff

High Vel./F.E.

Correlation

Cause: Damping

& Friction

Fix:

Increase Kvff first

Possibly adjust Kfff

Negative Acc./F.E.

Correlation

Cause:

Too much

Acceleration

Feedforward

Fix:

Decrease Kaff

High Vel./F.E. &

Acc./F.E.

Correlation

Cause:

Inertial Lag &

Friction

Fix:

Increase Kaff

Possibly adjust Kfff

Note

The aforementioned guidelines are just for tuning the PID parameters.

For more details on configuring filters or custom servo algorithms,

please consult the other areas of this manual or check the Power

PMAC User’s Manual’s “Setting Up the Servo Loop” section.

Project

System

146

Current Loop Tuning

This tab has three sub tabs, Simple Auto-Tune, Auto-Tune and Interactive Tune. The first subtab is

Simple Auto-Tune:

The next subtab is Auto-Tune:

Move this slider to the right to increase the desired bandwidth of the current loop

Press this button to perform the autotuning

Once the autotuning has completed this button will become enabled so that a Re-tune

can be performed

Specify the desired

bandwidth [Hz] of the

current loop

Specify the desired
damping ratio [unitless]

of the current loop

Check this box for the

autotuner to determine

an appropriate

bandwidth

These three radio buttons are used to choose where

to place the proportional gains in the current loop,

whether in back, forward, or both backward and

forward paths

Specify the output magnitude for the
test as a percentage of the maximum

permitted magnitude as specified by

Motor[x].MaxDac

Specify how long to output to the

motor

Adjusts Motor[x].IiGain

Press this to perform the autotuning

Adjusts Motor[x].IpfGain

Adjusts Motor[x].IpbGain

Select the magnitude of the excitation

used for tuning the current loop in units

of 16-bit DAC bits

Select the magnitude of the

excitation used for phasing the
motor

Specify how long to apply the
excitation to the motor when tuning

the current loop

Press this to start the tuning process

Press this to remove power from the

motor

Adjusts Motor[x].IaBias

Adjusts Motor[x].IbBias

Project

System

147

Open Loop Test
There are three sub tabs under the Open Loop Test tabs, Step Test, Sinusoidal Test and Sinesweep Test.

The Step Test instantaneously commands first positive voltage and then negative voltage to the motor:

This should produce a plot similar to the one shown below; this is with two repetitions:

If the encoder feedback is working properly there should ba a positive actual velocity (pink) when the

servo command (yellow) is positive and negative actual velocity when the servo command is negative. If

the actual velocity is the opposite of what the previous sentence describes try changing the encoder

decode direction of the Axis Interface and rephase the motor, if it is commutated.

The encoder decode for Gate1-Style Axis Interfaces is in Gate1[i].Chan[j].EncCtrl.

For Gate3-Style it is in Gate3[i].Chan[j].EncCtrl.

To reverse the direction, if this structure is a 3, change it to 7 and vice versa. This only applies to

quadrature encoders.

Specify the percentage of the
maximum output specified by

Motor[x].MaxDac

Specify how long to apply

voltage to the motor

Specify how many times to

execute the positive-then-

negative voltage command

sequence

Press this button to start the

test

Project

System

148

WARNING

Deactivate the bus power and allow the amplifier’s capacitors to

discharge fully before swapping motor phases, as described

below, in order not to risk the cause of Electric Shock. Receiving

the discharge of bus capacitors can be fatal!

Another way to change the motor’s direction is by swapping two phases of the motor leads and then

rephasing the motor.

The Sinusoidal Test applies a sinusoidal voltage to the motor:

You should get a plot similar to this:

Specify the amplitude of the sine wave as a
percentage of the maximum output specified

by Motor[x].MaxDac

Specify the frequency of the sine

wave to apply to the motor

Press this button to start the

test

Specify how many times to
execute the positive-then-

negative voltage command

sequence

Project

System

149

The Sinesweep Test applies a sine wave voltage signal to the motor. This signal is different from the

Sinusoidal Open Loop Test in that while the Sinusoidal test remains at a constant frequency the

Sinesweep test’s frequency increases either linearly or logarithmically, at the user’s choice, over a time

span the user specifies:

“Sweep Method” describes the manner in which to increase the frequency of the wave being commanded

to the motor. Selecting Linear will increase the frequency (f(t) below) linearly such that the frequency

change with time (t below) follows the following formula:

f(t)=((fend – fstart)/(Tsweep))t + fstart,

where fend is the “End Frequency” specified, fstart is the “Start Frequency” specified, and Tsweep is the

“Sweep Time” specified. Selecting Logarithmic will increase the frequency logarithmically according to

the following equation:

(𝑡) = 𝑓𝑠𝑡𝑎𝑟𝑡 ∙ (
𝑓𝑒𝑛𝑑

𝑓𝑠𝑡𝑎𝑟𝑡
)

𝑡
𝑇𝑠𝑤𝑒𝑒𝑝

This is an example plot of a linear sweep:

- “Start Frequency” is the initial frequency [Hz] of the sine signal at the start of the move.

- “End Frequency” is the final frequency [Hz] of the sine signal at the end of the move. The

signal should reach this frequency by the end of the “Sweep Time” [sec] specified in the

field immediately below this one.

- “Sweep Time” is the time span [sec] over which the sine wave will be commanded to the

motor; this is the time span over which the sine wave’s frequency will increase either

linearly or logarithmically as specified in the “Sweep Method” parameter two fields below

this one.

Project

System

150

Position Loop Auto Tuning
This tab can automatically tune the motor. This is a good starting point for finding gains that can get the

motor moving. It is recommended, however, to do Interactive Tuning after this in order to achieve the

performance goals desired.

There are two sub tabs on this tab, Simple Auto-Tune and Advanced Auto-Tune. The first is Simple

Auto-Tune:

After clicking Auto-Tune Motor the following screen will be displayed:

Select the type of control signal the

amplifier receives here

Increase the desired bandwidth of the closed-loop

motor by dragging this slider to the right

Check this box to permit the

autotuner to configure feedforward

gains

Click here to start the autotuning

process

Once the autotuning has been
performed click here to recalculate

the gains

This is the minimum distance [motor units] the motor must

travel before the autotuner will calculate the servo loop gains

This is the maximum distance [motor units] the tuner will

allow the motor to travel

Click Implement to use the gains the autotuner
calculated, which are shown under

“Recommended Gains”

Click Restore to revert the changes that

Implement made returning the original gains

Project

System

151

Advanced Auto-Tune offers several more options for tuning the motor:

Select the type of control signal the

amplifier receives

Specify the desired bandwidth [Hz]

of the closed-loop motor This is the minimum distance [motor

units] the motor must travel before the

autotuner will calculate the gains

This is the maximum distance

[motor units] the tuner will allow

the motor to travel

Specify the percentage of the maximum

permissible output as specified by

Motor[x].MaxDac

Specify the amount of time to apply

voltage to the motor during the test

Specify the number of positive-

then-negative voltage commands to

give to the motor during the tuning

process

After executing the autotune click

this to recalculate the gains if any

parameters have changed on this tab

Click this to initiate the autotuning

Specify the damping ratio [unitless]

of the closed-loop motor

Adjust the magnitude of

Motor[x].Servo.Ki here

Enable or disable velocity
feedforward or acceleration

feedforward by checking or

unchecking these boxes,

respectively

Check these boxes to automatically

calculate an appropriate bandwidth,

sampling period or low pass filter

Click to permit the

motor to move only in

the positive direction

during tuning

Click to permit the

motor to move only in
the positive direction

during tuning
Click here to leave the

motor where it ended up

after the tuning rather
than jogging back to the

original position

Project

System

152

Trajectory Prefilter Setup
The Trajectory Prefilter Setup is used to enable the Trajectory Prefilter feature of Power PMAC and

configure whether to use it as a Notch Filter, a Low Pass Filter or both as there are two filters available

which can be applied to the trajectories. The Trajectory Prefilter filters any trajectory that the Power

PMAC generates before commanding it to the motor in order to prevent low frequency oscillations from

occurring at the machine’s end effector. The Setup screen appears as follows:

Clicking “Show Prefilter Block Diagram” shows this screen demonstrating the algorithm used for the

prefilter:

The filter coefficients
currently in the

PowerPMAC are in the

Actual column and the
coefficients that the

Prefilter Setup tool

calculates are listed
under the Proposed

column

This field becomes 1

when the prefilter is
enabled. Some other

information about the

filter appears below this

field

Select the update
period for the prefilter

in units of servo cycles

Filter characteristics

can be entered

manually

Select what kind of filters is wanted for the two filters offered.

Then, for Notch, type the resonant frequency [Hz] required to

filter in the box. For Low Pass, type the cutoff frequency [Hz]

in the box Click this button to
automatically calculate

the filter specifications

based on the frequency

entered to the left

Click to calculate the

coefficients for the filter based

on the specifications entered

Click to implement these

coefficients making the
Proposed become the Actual

coefficients

Click to completely remove the

prefilter

Project

System

153

Adaptive Control Setup
The Adaptive Control Setup tab contains parameters related to setting up Adaptive Control:

Type in the parameters required in order to configure Adaptive Control and then click “Set Adaptive

Control” to enable the feature. Click “Restore to Regular Servo” to remove the feature. Click “ON” to

turn the feature on, or “OFF” to turn it off.

Note

To learn about how to set these parameters properly please refer to

“Adaptive Servo Control” in the Power PMAC User’s Manual.

Project

System

154

Interactive Filter Setup
Selecting the “Interactive Filter Setup” tab on the Position Loop Interactive Tuning window will open up

the following screen:

On the “Specify Position and Velocity Loop Filters” tab choose which filters are to be added to the

system and then select the associated parameters for those filters by either typing in the parameter or by

adjusting the parameter using the slider.

Choose the various move trajectories to execute on this motor in order to test the filter. Using the Tool

interactively adjust the filters and observe their effects easily and flexibly.

Project

System

155

The “Specify Trajectory Prefilter” tab shows similar settings allowing the selection of various types of

prefilters, the adjusting of their associated parameters and then the execution of moves in order to observe

the effects of the filters:

Gain-Scheduled Adaptive Control Setup

Gain Scheduled adaptive control is a variation of the adaptive control algorithm. In the standard adaptive

control algorithm, the control gains are updated such that the closed loop bandwidth of the system

remains the same (i.e. the same closed-loop performance) when the overall estimated gain changes (i.e.

when the load changes).

In the gain-scheduled adaptive control algorithm the control gains are updated such that the closed loop

bandwidth and the damping ratio change in a linear fashion depending upon the estimated gain or load

changes.

The setup parameters Estimation Minimum DAC and Estimation Time are the same as in standard

adaptive control. The user has to specify the minimum plant gain (i.e. at maximum inertia), the maximum

plant gain (i.e. at minimum inertia), the desired bandwidth, and desired damping ratio corresponding to

the two cases above.

Project

System

156

The default tab looks like the following:

Cam Learning Control Setup

Cam learning control algorithm is a spatial, position-based, iterative control algorithm where the torque

compensation table for a target motor following its source cam table is automatically filled. The control

law is a proportional learning control law and is given as:

𝑈𝐿𝐶 (𝑘 + 1) = 𝑈𝐿𝐶 (𝑘) + 𝐾𝐿𝐶 ∙ 𝑒(𝑘)

where k is the cycle number for the cam profile, ULC(k) is the control effort at cycle k, KLC is a

proportional learning gain, and e(k) is the following error at cycle k. Note that the above control law is an

integrator in the cyclic base; that is, if the disturbances acting on the target motor are not time varying, it

will eliminate the following errors at steady state.

The user has to specify the source cam table, the learning gain, the minimum error in terms of motor

units, and the maximum compensation torque. The software checks if there are active cam tables and

populates the combo box accordingly.

The minimum error acts like a dead zone in that the torque compensation table value for a cam zone will

stay the same if the following error at the specific zone is less than this value at the last iteration.

The maximum compensation DAC specifies the maximum and minimum values for the torque

compensation table values.

The cycle time specifies the time for the total cam profile in terms of seconds.

The live tuning feature allows the user to tune the learning gain via providing the maximum and RMS

following error values for each cycle.

Project

System

157

Interactive Filter Setup
Selecting the “Interactive Filter Setup” tab on the Position Loop Interactive Tuning window will open up

the following screen:

On the “Specify Position and Velocity Loop Filters” tab choose which filters are to be added to the

system and then select the associated parameters for those filters by either typing in the parameter or by

adjusting the parameter using the slider.

Choose the various move trajectories to execute on this motor in order to test the filter. Using the Tool

interactively adjust the filters and observe their effects easily and flexibly.

Project

System

158

The “Specify Trajectory Prefilter” tab shows similar settings allowing the selection of various types of

prefilters, the adjusting of their associated parameters and then execution of moves in order to observe the

effects of the filters:

Gain-Scheduled Adaptive Control Setup

Gain Scheduled adaptive control is a variation of the adaptive control algorithm. In the standard adaptive

control algorithm, the control gains are updated such that the closed loop bandwidth of the system

remains the same (i.e. the same closed-loop performance) when the overall estimated gain changes (i.e.

when the load changes).

In the gain-scheduled adaptive control algorithm on the other hand, the control gains are updated such

that the closed loop bandwidth and the damping ratio change in a linear fashion depending upon the

estimated gain or load changes.

The setup parameters Estimation Minimum DAC and Estimation Time are the same as in standard

adaptive control. The user has to specify the minimum plant gain (i.e. at maximum inertia), the maximum

plant gain (i.e. at minimum inertia), the desired bandwidth, and desired damping ratio corresponding to

the two cases above.

Project

System

159

The default tab looks like the following:

Cam Learning Control Setup

Cam learning control algorithm is a spatial (position-based) iterative control algorithm where the torque

compensation table for a target motor following its source cam table is automatically filled. The control

law is a proportional learning control law and is given as:

𝑈𝐿𝐶 (𝑘 + 1) = 𝑈𝐿𝐶 (𝑘) + 𝐾𝐿𝐶 ∙ 𝑒(𝑘)

where k is the cycle number for the cam profile, ULC(k) is the control effort at cycle k, KLC is a

proportional learning gain, and e(k) is the following error at cycle k. Note that the above control law is an

integrator in the cyclic base; that is, if the disturbances acting on the target motor are not time varying, it

will eliminate the following errors at steady state.

The user has to specify the source cam table, the learning gain, the minimum error in terms of motor

units, and the maximum compensation torque. The software checks if there are active cam tables and

populates the combo box accordingly.

The minimum error acts like a dead zone in that the torque compensation table value for a cam zone will

stay the same if the following error at the specific zone is less than this value at the last iteration.

The maximum compensation DAC specifies the maximum and minimum values for the torque

compensation table values.

The cycle time specifies the time for the total cam profile in terms of seconds.

The live tuning feature allows the user to tune the learning gain via providing the maximum and RMS

following error values for each cycle.

Project

System

160

Kill Motors
This menu option kills all motors. This is equivalent to issuing a CTRL+ALT+K command in the

Terminal window.

Project

System

161

CAM Sculptor
This software feature is licensed. This option will allow user to define CAM but if the software is not

licensed it will not allow to download the CAM profiles to Power PMAC.

The help for this menu item is separate and available in the Power PMAC IDE installation under Help

folder. On a standard installation it is available…

Task Manager
The Task Manager:

 Provides information about the Power PMAC CPU and about programs running thereon

 Permits the start and stop of programs

 Displays which servo and phase algorithms the motors used

CPU Information

The first tab of the Task Manager is the CPU Information tab:

Project

System

162

Project

System

163

The table below describes the fields beneath “CPU Information:”

Field Description

Power PMAC Type This field states the type of Power PMAC form factor in which this CPU

resides (e.g. UMAC, Brick, etc.)

Firmware Version The version number of the firmware installed on this Power PMAC CPU

Total Memory The total RAM with which this CPU is equipped

CPU Temperature The present operating temperature of this CPU in degrees Celsius

CPU Frequency The frequency at which this CPU is clocked in MHz

Firmware Date The date of the build of the firmware installed on this CPU

Free Memory The amount of RAM presently unused

CPU The PowerPC CPU’s revision in this Power PMAC

The next section of this tab is the “PMAC Memory Overview”. In this section there are three columns:

Buffer, Total Memory and Used Memory whose purpose is as follows:

 The buffer column describes each buffer in the Power PMAC memory

 The Total Memory column describes how much total memory space is allocated for that buffer

 The Used Memory column describes how much that Total Memory is actually being used or

occupied presently

The table below describes each buffer beneath “PMAC Memory Overview” in the Buffer column:

Buffer Description

Program Buffer Allocates space for motion programs and PLC programs written in Script

User Buffer Allocates space for general purpose use

Table Buffer Allocates space for compensation tables (position and torque)

LookAhead Buffer Allocates space for the Special Lookahead feature

SyncOps Buffer Allocates space for Synchronous Operations (i.e. Synchronous M-Variables)

Symbols Buffer Allocates space for variable names

The exact amount of memory allocated for each buffer can been seen by typing the size command into the

Terminal Window and the exact amount of free memory within those buffers with the free command.

Project

System

164

Tasks
The Tasks tab shows five categories of tasks being executed on the Power PMAC CPU:

The purpose of each column shown in the Tasks tab is described below:

Column Name Description

Tasks Lists the task whose properties are being described in the columns to this right of

this one

Frequency The frequency with which this task occurs

Calculation Time The average time this task requires to finish

Peak Time The largest measured amount of time this task has taken to finish since startup

 % Task Time The percentage of total CPU time this task consumes on average

Project

System

165

The tasks in the Tasks column are described below:

Task Name Type of Calculations Performed Within This Task

Phase Interrupt Phase algorithms, typically used for commutating motors

Servo Interrupt Servo algorithms, typically used for servo control of motors

Real Time Interrupt Move planning, real time Script and C PLCs

Background Tasks Background Script and C PLCs, Background C Applications, Watchdog Timer

Resetting, Checking Limits and Safety Features, Communicating with Host

Computer

EtherCAT Tasks Amount of time taken for EtherCAT task.

Clicking each task in the Task column will show details about that task in the Details box at the bottom of

the Task Manager window.

Clicking on Phase Interrupt will show:

 How many motors are being commutated

 How many digital current loops are active

 Whether the A/D converter demultiplexing algorithm is enabled

 Whether the phase divider is active

Example “Details” Contents for the Phase Interrupt task:

Clicking on Servo Interrupt will show:

 How many motors’ servo control is enabled

 How many motors are using user-written servo code

 How many entries are in the Encoder Conversion Table

 How many compensation tables are enabled

 Whether data gathering is enabled

Example “Details” Contents for the Servo Interrupt task:

Project

System

166

Clicking on Real Time Interrupt will show:

 How often the Real-Time Interrupt (RTI) is serviced

 How many motion programs occupy how much space of the Power PMAC’s memory

 Whether the Real-Time PLC (PLC 0) is active

 Whether the user-written Real-Time Interrupt C Program (RTICPLC) is active:

Example “Details” Contents for the Real-Time Interrupt task:

Clicking on Background Tasks shows nothing.

PLCs
Clicking the PLCs tab lists all Background C Applications, Script PLCs, Real-Time C PLCs

(RTICPLCs), and Background C PLCs (BGCPLCs) running on the Power PMAC presently:

In the “PLCs” box there are four columns:

 The Type column shows the type of the program

 The Name column shows the name (if it has been named) or number of the program

 The Size column shows the amount of RAM the program occupies

Project

System

167

 The Running column shows whether the program is running presently

The “Details” box at the bottom of the window shows various properties about the program. The table

below describes these properties:

Detail Name Description

Type The type of program this is

Name The name of the program

ID The ID number of the program, if it has one

Size The amount of RAM this program occupies

Status Shows whether the program is running or not

Full Path For C programs only; describes the directory path for the executable file

Execution Time The time the program takes to finish executing each time it executes

Max Execution Time The longest amount of time this program has taken to run since startup

The user can start a program by clicking on the program in the list and then clicking on the

button, or stop the program by clicking . To refresh the list of programs, press .

Programs
The programs tab lists all motion programs in the Power PMAC:

Project

System

168

In the “Motion Programs” box there are five columns:

 The Type column shows the type of the program

 The Name column shows the name (if it has been named) or number of the program

 The Coord column shows the number(s) of the coordinate system(s) which is/are presently

running this program (more than one coordinate system can be running the same program

simultaneously)

 The Size column shows the amount of RAM the program occupies

 The Running column shows whether the program is running presently

In the “Details” box there are 7 properties of the motion programs:

Detail Name Description

Type The type of the program

Name The name of the program if it has been named, or the number if not

ID The program ID number

Coordinate System The coordinate system in which this program is presently running

No of Motor Number of motors in this coordinate system

Size The amount of RAM this program occupies

Status Shows whether this program is running or not

Start a program by clicking on the program in the list, clicking on the Start Option menu and then

selecting Start. This option will be grayed out if the coordinate system (CS) column for the selected row

displays “Not Assigned.”

In this case use the second menu option “Assign CS and Start”. Selecting this menu will show a dialog

box where a coordinate system can be specified to start the program. A coordinate system number can be

entered or for multiple entries the numbers should be separated by comma’s. Stop the program by

clicking . To refresh the list of programs, press .

Project

System

169

SubPrograms
The SubPrograms tab shows all subprograms in the Power PMAC:

There are three columns in the SubPrograms tab:

 The Name column shows the name of the subprogram or it’s number if it has no name

 The ID column shows the ID of the subprogram which the IDE has assigned it

 The Size column shows how much RAM this subprogram occupies

To refresh the list of subprograms, press .

Project

System

170

Servo
The Servo tab shows which servo algorithms are being used for which motors:

This tab shows whether the user-written code library is active; that is, whether the user is using any real-

time C routines in the IDE project.

Project

System

171

The IDE recognizes that the user is using real-time C routines if the build action on usrcode.c (in the

IDE’s Solution Explorer under C LanguageRealtime Routines) is set to Compile, as shown in the

screenshot below:

There are three columns on the Servo tab:

 The “Motor” column shows each motor number, ranging from 0 to the value of (Sys.MaxMotors

- 1)

 The “Algorithm” column shows which servo algorithm is being used for this motor. The servo

algorithms available are as follows:

o “Standard Servo”: This is the Power PMAC’s standard, default servo algorithm; basically

PID with some filters, saturations, and deadbands

o “Basic Servo”: This is just a standard PID servo algorithm with no additional filters and

nonlinearities

o “X Coupled Servo”: This is the cross-coupled gantry servo algorithm

o “Adaptive Control”: This is the adaptive control algorithm

o “Using function {user function here}”: This is the user-written servo algorithm, which the

user needs to have written in C code and then set this motor to use that algorithm. In the

example screenshot above the servo algorithm is named “user_pid_ctrl.” See the

“Configuring User-Written Servo Algorithms” section of this manual under the “Project

System” header for more details on configuring user-written servo algorithms.

 The “ServoCtrl” column shows whether this motor is active



Project

System

172

Phase
The Servo tab shows which servo algorithms are being used for which motors:

This tab shows whether the user-written code library is active; that is, whether the user is using any real-

time C routines in the IDE project.

The IDE recognizes that real-time C routines are being used if the build action on usrcode.c (in the IDE’s

Solution Explorer under C LanguageRealtime Routines) is set to Compile as shown in the screenshot

below:

Project

System

173

There are four columns on the Phase tab:

 The “Motor” column shows each motor number ranging from 0 to the value of (Sys.MaxMotors

- 1)

 The “Algorithm” column shows which phase algorithm is being used for this motor. The phase

algorithms available are as follows:

o “Standard Phase”: the Power PMAC’s standard, default motor commutation algorithm

o “Using function {user function here}”: This is the user-written phasealgorithm, which the

user needs to have written in C code and then set this motor to use that algorithm. In the

example screenshot above the servo algorithm is named “user_phase.” See the

“Configuring User-Written Phase Algorithms” section of this manual under the “Project

System” header for more details on configuring user-written phase algorithms.

 The “PhaseCtrl” column shows whether this motor is commutated

 The “CurrentLoop” column shows whether the Power PMAC is closing a digital current loop for

this motor

OS Resources
The OS Resources tab shows all of the processes (also known as threads) running on the Power PMAC.

Choose either to show only the Power PMAC processes (i.e. processes related to the Power PMAC’s

tasks listed in the Tasks tab) or all processes, including processes that may be running in the background

and are not part of the Power PMAC’s tasks:

There are five columns on the “OS Resources” (Operating System Resources) tab:

 The “PID” column shows the Process ID number for this thread

 The “User” column shows with which user this process is associated

 The “%CPU” column shows what percentage of the CPU’s time this process consumes

 The “Mem Used” column shows how much RAM this thread consumes.

 The “Command” column shows the name of the Process; that is, the name of the function which

this thread is executing

Project

System

174

Note

The amount of RAM used is shown in the “Mem Used” column

consists of the sum of the actual RAM the program occupies, and the

shared memory shared between each program using Delta Tau’s C

Libraries. Thus, for example in the screenshot above, seeing “236m”

for several programs does not mean that each one occupies 236 MB

but rather that they all are roughly the same size and share the same

library space, bringing their total up to 236 MB.

EtherCAT
This menu allows the loading and management of the device ESI files or ESI folder.

Help
The Help menu provides a submenu for help on the IDE.

View Database: The database is primarily used for setup program, intellisense, etc.

Project

System

175

PROJECT SYSTEM
IDE 4.x primary focus is on handling everything from the project system. The Project System is far more

powerful as compared to V2.x and V3.x.

The Project System incorporates the entire system setup, ECAT setup and Setup Variable. The Project

System maintains all the saved structure elements as changes are made within project domain. The Build

and download generates a systemsetup.cfg file that contains all the user settings removing the necessity of

the backup of the Power PMAC manually.

The Project System integrates the EtherCAT setup (EC-Engineer) removing the need to use an external

program to setup the network.

Project Organization

Layout
Projects in the Power PMAC IDE are organized into a folder structure which can be navigated within the

Solution Explorer which, by default, is the farthest right window in the IDE. This can be opened by

clicking ViewSolution Explorer from the main IDE screen or pressing CTRL+ALT+L.

The Explorer appears as follows:

On the PC the project file organization looks like this…

Project

System

176

Opening a Project
File-New-Project
Open a new project by selecting File New or from start page New Project as shown in the picture.

A new project menu is added as shown in the picture above. Open New Project from Wizard.

There are many types of project template available. The User can make their own project templates, and

those will be shown in the New Project dialog. Exporting custom project templates is covered in a later

section.

Project templates provide a quick way to start Power PMAC programming. Required programs are

already included in the Power PMAC project templates. For example:

Project

System

177

The PowerBrick_LV project template is specific to PowerBrick LV. This template provides the required

subprograms for PowerBrick LV stored under the libraries folder.

PowerBrick_LV project template:

File-New-Project Wizard

This new menu for creating project will walk you through series of questions and on Finish will create

project.

Here is the workflow of creating project from wizard. This functionality will keep growing in the future

releases of the IDE.

You can navigate Back and Next by clicking buttons and use Finish to end wizard and create Project.

Open a new project from wizard by selecting File New  Project Wizard or from start page as shown

above. Project wizard will open see picture mark with 1. It allows you to select necessary Project

template, see picture 2. Follow the wizard Next button

After Step 2 select Next to go to Step 3. Here you can provide Project name and location. Press next to go

to Step 4. In this steps you will see Common Application Homing, Compensation Table, Gantry, TCR.

Choose the application you want to add to the project and press Next to go to step 5.

Note

TCR application will require CK3WGCxxxx Hardware, part of CK3M

series.

Project

System

178

In step 5 user can add number of motors for the application. Currently only three topology types are

supported from wizard. Single feedback, Virtual and Galvanometer. This is shown below.

Click Finish to create Power PMAC project from wizard shown in step 6.

File-Open-Project

Opening an existing project by selecting File Open menu or from start page Open project as shown in

the picture.

Project

System

179

The workflow for Opening an existing project is shown below…

Project

System

180

Project – Context menu
Right click on the Project to get the context menu. Here is the menu looks like…

Build
Build will build the project. This option is mainly for building C application.

The progress of the build is displayed in the output window as shown below.

The output of the build is mainly c programs. For example after successful build operation the c output

file available under Debug or Release folder depending on the mode selected.

Rebuild
ReBuild will build the project. This option is mainly for building C application.

The progress of the rebuild is displayed in the output window as shown below.

Project

System

181

The output of the rebuild is mainly c programs. For example after successful build operation the c output

file available under Debug or Release folder depending on the mode selected.

Clean
Clean will clean the build files from Debug or Release. As specified earlier build files are C files.

The clean is only from the computer. Here is the folder after clean….

Building and Downloading the Project
This process requires two steps; the first step is to set the Solution’s configuration mode.

By default, the Solution configuration is in Release Mode. If the C-App or Script PLC is required to be

debugged, then set the solution configuration to Debug Mode. Debug mode generates a bigger binary file

size and may fill up the Power PMAC disk. It is a good practice to compile the final version of the project

in Release Mode to save space on the Power PMAC.

The Second step is to build and download the project to the Power PMAC. Right click the project’s name

and click “Build and Download All Programs” as shown below:

Set configuration to Debug to debug a C-App or Script PLC

Project

System

182

This will download the entire project to Power PMAC. Selected Script files can download individually or

in multiples by selecting Shift+Click and selecting each file and then clicking “Download Selected Files”.

The screenshot below shows downloading just PLC 1:

The entire project must have been built and downloaded in order to be able to download selected files.

This is because the IDE must compile the C programs and map all variables as a whole; this cannot be

done individually. The “Download Selected Files” feature is intended for development purposes, e.g.

making several iterations of changes to just one file and then testing these changes without having to

download the whole project again.

Note

Build and Download will always generate systemsetup.cfg and will

download to Power PMAC. The file should not be altered as this file

is maintained by Project System.

In the case of an EtherCAT® configuration downloading will also

download the eni.xml and ECATConfig.cfg to Power PMAC.

Map Power PMAC Variables
Mapping, preprocesses all the script files and generates the symbol tables and pp_Proj.h file to be used by

c apps. The progress of mapping is displayed in the output window.

Project

System

183

Export Project with IP Protection

IP (Intellectual property) protection allows OEM builders, independent integrators and users to protect

their intellectual property by encrypting script programs. The encryption is password protected.

The current implementation of IP protection is three level.

1. Customer-A can encrypt the script programs and pass the project on to Customer-B. This is level

one.

2. Customer-B can take the project from Customer-A and add their own logic and protect it by

encrypting and give it to Customer-C. This is level two. Customer-B cannot list or view

Customer-A's code.

3. Customer-C can take the Project from Customer-B and add their own logic and protect their part

by encrypting it and give to Customer-D. This is level three. Customer-C cannot list or view

Customer-A's or Customer-B code.

4. Customer-D cannot list or view Customer-A's or Customer-B code.

Steps
1. Open project (New or previously created)

2. Open project properties to choose how to encrypt the project.

In the properties windows go to the project encryption options

Project

System

184

Select encrypt all project files or some project files and set a password for the project.

If some items are selected to be encrypted click on a project item and choose yes to Enable Encryption

property, build and download to verify the project is building and downloading.

Right click on the project and select Export menu option.

3. Build and Download the project.

Note

Build and Download is a necessary step for the Export Project (IP

Protection) option to become enabled.

Right click on the project and select Export Project (IP Protection)… menu option.

Project

System

185

The opened dialog will ask for an exported project name and the path to export the project to. Click

export once the project name is entered.

4. Click Export to export the project and follow the instruction to name the project and etc.

On opening the exported project, the PowerPMAC script items chosen to be encrypted will have been

replaced by the encrypted versions of the files. The global include *.pmh files will not be exported as an

encrypted item even if they were selected to be encrypted. The password field must be empty so that a

new password can be entered for the exported project. IP protection supports two level password and

three level of IP protection. IP protection will support multilevel c apps as well.

If the Export Project (IP Protection)… is clicked and the build and download of the project have not been

performed the following message will be shown:

5. Opening the exported project will look like the following:

Project

System

186

6. As stated earlier the IDE supports three level IP Protection meaning the project can be exported

twice. If an attempt is made to export for a third time the following warning will be shown:

Export Project Template
This option can be access from Project level context menu. Right Click on the project and select Export

Project Template as shown below.

Project

System

187

Note

IDE V 4.3.0.x and below support accessing Export/Import Project

Template from the File-Export-Project Template menu. This option is

replaced with Template Manager in IDE V4.3.2.x and above.

This option allows the user to:

• Export a project so that other users can use it as a base for their projects.

• To add an icon for the custom template.

• Export a project and automatically add it to their New Project dialog.

• Preview the information about the project that is being imported.

• Delete custom project templates.

• Import a project template in order to use a pre-configured base project.

Note: - The user is prevented from importing a template that is not supported by the current IDE version.

On clicking the option to Export the following dialog will open:

In this dialog the default is set to “Automatically import the template into Power PMAC IDE”. The User

can uncheck this option. On selecting Ok, the template will be created, and a success message will be

displayed.

Project

System

188

The exported template is available to load from File-New-Project, as shown below.

The red square shows the options selected when the template was created.

To share a exported template use the option File-Import-Project Template option as shown below.

Project

System

189

This option allows user to create the base project and export as a template and share.

On selecting, this will open the Import Project Template dialog as shown below:

On clicking OK, the project template will be imported and will be available to use from File-New-Project

dialog.

Comparing a Project
IDE version 4.3 and above allows the User to compare the active project on Power PMAC with the local

one on the PC. On opening the project, the User will see this message…

The User will be presented with three choices.

1. If the User would not like to see the differences, then they will click ‘No’.

2. If the User would like to see the differences between the two projects, then they will click ‘Yes’.

Project

System

190

3. If the User does not want to compare project every time they open their IDE they can select ‘Do

Not Show again’ check box which will stop this dialog from being shown.

The User can enable the compare dialog again by going to Tools-Options-Power PMAC-General Settings.

The option is marked in Red square. Check the box so next time when the IDE opens the project it

compared on load and pop-up the compare dialog. The tool option looks like this…

If the User clicks ‘Yes’ it will open Project compare dialog. The same Project compare dialog can be

opened by right clicking on the solution file and then selecting Compare project context menu. The

context menu looks like this…

The Project Compare view looks like this…

Project

System

191

The user can choose the location of the Power PMAC project from the drop-down list, like this…

If the EtherCAT .eni files are different then the .eni file will be expanded, and the user will see the

comparison of slaves that are part of the eni file on Power PMAC vs PC. It is displayed like this…

Comparing a File
IDE V4.3 onwards will support file comparison directly from the Compare Project dialog. The user can

compare .eni files, as well as navigate files and folders. The user can compare the project opened in the

IDE with a Power PMAC backup project (userflash, userflash.1, userflash.2 etc.).

As described in the compare project, this color indicates the files

are different.

The user can double click on the file to view the difference or right click on the file to open the compare

context menu. The file compare view looks like this…

Project

System

192

The user can scroll up/down the file to see the differences. The user can also use the arrow keys from the

IDE menu to jump to the next/previous difference.

Hover the mouse over the arrow keys to see the tooltip.

Limitation of file compare:

1. The user cannot compare bin files. For example capp1.out

2. The user cannot see the differences between encrypted files (.gpg).

Copying files/folder

It is possible to copy files or copy folder from Active project on PMAC to PC.

On right click to File or folder the context menu will change depending on the permission level.

For example .ecc file cannot be compare (Binary file) and copied so menu will be disabled as shown

below..

Project

System

193

Note

1. The copy is only one direction, Power PMAC to PC (Power

PMAC IDE).

2. Slaves under EtherCAT cannot be copied from Power PMAC

to PC project.

Add EtherCAT
Add EtherCAT context menu adds EtherCAT Master so user can add EtherCAT devices. This option is

dynamic option. If user opens the Basic project where EtherCAT node is not present in the project tree.

Under this case if user required to add EtherCAT network to existing project this option is used.

The workflow is shown below..

Add EtherNet/IP
Add EtherNet/IP context menu adds EtherNet/IP Node so user can configure EtherNet/IP connections.

This option is dynamic option. If user opens the Basic project where EtherNet/IP node is not present in

the project tree. Under this case if user required to add EtherNet/IP network to existing project this option

is used. The workflow is shown below..

Project

System

194

Add Application
Add Application context menu adds Application Node with selected application so user can setup and

configure. This option is dynamic option. If user opens the Basic project where Application node is not

present in the project tree. Under this case if user required to add Application support to existing project

this option is used. The workflow is shown below..

Properties
Right-click on the project and click Properties. The following dialog shows.

Project

System

195

The properties are self-explanatory.

Note

For IDE V4.1.x and above the new property ‘Download

systemsetup.cfg file’ is set to No when the project is upgraded from

V3.x project. For any New Project this property is set to Yes as we

recommend user to use the cfg file. The IDE automatically maintains

the file and saves any changes from IDE domain to this file.

This property is not available for IDE V4.0.x.

The new property “Use new PDO mappingname format” is added to support new naming method for

EtherCAT PDO’s. There is no longer a limitation for EtherCAT PDO names. This property is from V4.3

so if the project is upgraded from previous version this property is set to No and any new Load PDO

mapping command will use the old mechanism of PDO naming.

Project – Common operation
Adding and Removing Files
Add new or existing files to any subfolder by right-clicking it and selecting Add and then either New Item

or Existing Item:

Then browse to the item to be added or included. From IDE Ver. 4.2 Script Language files added to the

project will be displayed in a natural order. The script files can be moved up or down by right click and

opening context menu.

In the previous version of the IDE these files were displayed in alphabetical order.

To remove file simply select file and Delete file.

File Properties
Right-click any file and click Properties. The following dialog is shown:

The Build Action box can be set to either Compile, Content, Embedded Resource or None. For Script

Files none of these options have any effect. For C program files (*.c file extension) setting this to

Compile will cause the file to be compiled. Any other setting will cause the file not to be compiled. All C

header files (*.h file extension) should be set to Content to be linked with the *.c files but not themselves

compiled.

System

Project

System

196

Layout
The system folders store the CPU, Motor, Coordinate system and Encoder settings.

Common for all the views from system folder items
The following button strip is common to all the system folder view. When user clicks the Global Clock

block under System-CPU-System folder node.

Type 1

Up button: Returns back to the originator of the view.

Commonly Used Structure Elements button (Next): This is dynamic Next button and text that appears is

the next logical choice for parameter setup. This button appears if the Next option is available.

Accept: Clicking this accepts the parameter settings once they have been selected. Not clicking on the

Accept means that the settings will not be downloaded to Power PMAC.

Type 2

Up button: Returns back to the originator of the view.

Global Clock (Prev): This is dynamic Prev button and text that appears is the Previous logical choice for

parameter setup. This button appears if the Prev option is available.

Accept: Clicking this accepts the parameter settings once they have been selected. Not clicking on the

Accept means that the settings will not be downloaded to Power PMAC.

CPU
This contains the Power PMAC system setting such as global clock and commonly used Power PMAC

system settings. This is a new view available after V4.2. The commonly used system block is broken

down into separate blocks based on function, for improved usability.

Project

System

197

Clock Settings
The Clock Settings window is used to configure the Global Clock

The first screen is used to set up the global clock frequencies for the system. Type in the frequency

required, in kHz and click “Accept”. The Up arrow navigates back to System block or Left arrow can take

to the next block that is common System elements. The Symbol indicates the master clock source.

Hovering the mouse over symbol will provide more information about settings.

Note

If the software detects the EtherCAT® option but does not detect a

Master Gate it will automatically force Power PMAC to use its

internal clock by setting Sys.CPUTimerIntr = 1. For EtherCAT®

the servo period must be multiples of 62.5 μsec. Upon accepting the

clock settings issue, a save and $$$ in the Terminal Window for

changes to take effect and then check the value of Sys.ServoTime in

the Watch Window to ensure it is counting continuously before

proceeding.

The PWM frequency for each channel on the axis interface cards can also be set if there are any. To

change this right-click on the channel of the PWM frequency to change and then select one of the possible

options displayed as shown below:

Project

System

198

The Window containing four tabs at the bottom of the screen display’s useful information as the system is

configured.

The four columns give further detail as to the origination of the information i.e. the Location and Module.

The Output tab shows every command that is being sent to Power PMAC.

The Messages Tab displays setup-related parameters that have been changed, in this case in the Global

Clock.

Commonly System Elements

This page shows the typical system parameter. Most of the times user will change settings in this page.

Global Abort section will be prefilled for PowerBrick. For regular Gate 3 (Acc24E3 or CK3WAX) user

will need to select.

Project

System

199

When the parameter is selected the details about that parameter will be displayed in the parameter

information panel at the bottom of the page. If any parameter needs additional steps these will also

displayed at the bottom of the page, as shown below.

Memory Buffers

Note

Saved System data structure element values set from Global clock and

Commonly Used Structure Elements are automatically stored and

maintained in the file under the CPU node. Similarly, all the gate

values are stored and maintained automatically under the Hardware

node. These values are used when the build is performed to generate

the systemsetup.cfg file.

Project

System

200

Core Management

Here user can set the relation between task and CPU core. This functionality is not supported on the FW

version lower than 2.6.x.x. here is the core management function support table:

 FW Version ARM Dual Core

CPU (CK3E,UMAC)

CK3M (ARM

Dual Core)

ARM Quad Core

CPU(UMAC)

Other CPU

Less than

2.6.x.x

Not supported and

option grayed out

Not supported

and option

grayed out

Not supported and

option grayed out

Not supported and

option grayed out

2.6.x.x. or above Supported Supported Supported Not supported and

option grayed out

Note

Most of the application will never need to change the default balanced

core management settings. Core management settings are not general

settings.

On clicking the core management, a new dialog will open showing the current settings from the project.

The dialog looks like this..

This dialog is for Quad core. The preset options varies depending on type of the CPU and gate

availability.

ARM Quad Core CPU (CK3M, UMAC)

Dual core compatibility option selection under QUAD core management is designed for users who are

porting from Dual core to Quad core but do not want to change core management.

Dual core compatibility sets the cores similar to Dual core Balanced load configuration as shown below.

Project

System

201

Note

A project must be open to manage core assignment. The new settings

are stored in the project.

The dual core (e.g. CK3M with Gate) dialog looks like this…

The dual core (e.g. CK3E or CK3M with No Gate) dialog looks like this. There is only one setting

possible for this type of configuration…

Balanced load (Default) option is selected when a new project is open. All available preset options are

factory recommended. The settings will reflects how you will see the tasks in the task manager.

Note

Any change to CPU core task management option from current option

requires following steps for successfully applying the change…

1. Build and Download the project

2. Save the project

3. Reboot or power cycle Power PMAC.

There is a possibility that the settings read from the project may not match the preset settings; in this case

an additional Custom entry will be appeended to the table. If the User wants to set different core

assignments than preset settings, then select Tools-Option-Power PMAC-Core Management.

The advanced settings are available for QUAD core CPU only.

The factory recommendation is not to change core assignment settings from this screen unless all the

associated risks are understood. It is recommended to use the selection from preset settings on the core

management screen. The Advanced options dialog looks like this…

Project

System

202

Any change to core management settings are stored in the project, so next time the project is opened these

settings are available.

Note

System difference will display the core management differences

between Power PMAC system (Device) and project, as indicated by a

flashing warning sign at the right bottom corner.

The Tool software makes sure that the Sys.CoreBgcplc = 1, always matches as Sys.CoreBackground and

Sys.corertiplc always matches with sys.corerti. The mismatch is only possible in QUAD core only if user

uses Tools/Option/Core management as a advanced user. Dual core mismatch is not possible from Tool

software.

Example of using Core management

Case 1: UMAC/CK3M ARM Dual core CPU with Gate Hardware Phase/Servo Mode and many

commutated axis

In the situation where we are using many commutated axis with no core management CPU0 is

overloaded. (See below picture) The result could be Phase Errors, Servo Errors, Runtime Errors occur in

customer applications

Project

System

203

Now use core managemt and you will see Phase Errors, Servo Errors and Runtime Errors no longer occur

Here background and pahse task are on core 0 and servo and real time on core 1.

Case 2: UMAC ARM QUAD core CPU with Gate Hardware Phase/Servo Mode with sophisticated

kinematics

In this case real-time interrupt handles motion planning. Application demands large robotic kinematic

application with large computation in real-time. If core management is not used then there is a possibility

of run time error.

Project

System

204

Now use core managemt and you will no longer see run time error or any other calculation error because

of no time.

Advanced System Elements

This dialog allows user to make change at one place. This is designed for advance user and keeps the

backward compatibility with previous IDE (V2.x and V3.x) Setup Variable screen menu.

Project

System

205

Project

System

206

Hardware
This folder contains the Hardware Diagnosis part of the System Setup. The System Setup displays various

parameters associated with the accessory cards in the system in a graphical manner in order that

parameters may be adjusted for setup or diagnosis purposes.

Right click the Hardware Node to refresh the card list as shown below. This menu is available for IDE

version 4.3.2.x and above.

Axis Interface Cards
For example the ACC-24E3’s Hardware Diagnosis page appears as follows:

This screen represents the typical Hardware Diagnosis for an axis interface card. The screen will appear

similarly for ACC-24E2x.

The three kinds of output signals these axis interface accessory cards (ACC-24E2, ACC-24E2A, ACC-

24E2S, and ACC-24E3) can have are DAC, PFM and Direct PWM. Selecting this output signal type in

the “Output” area of the screen will show the characteristics related to that output signal type.

The type of chip and number of

channels are described here

Links to the accessory’s

manual

Name and

model

information
for the board

is shown here

Click this

dropdown
menu to select

different

channels

This field describes the

channel’s hardware

This area describes the

kind of output signal

this channel produces
This area gives several

tabs which display
position feedback, flags

and ADC results

associated with the

selected channel
This area shows

several structures
associated with this

accessory’s channel

Project

System

207

Note

IDE V4.2 onwards the Hardware Card’s will be displayed as detected

and not in Alpha/numeric order.

For DAC output:

For PFM output:

For PWM output:

This slider shows the

voltage output from this

DAC channel from -10

VDC to +10 VDC

This button disables the motor
and manually enables output

from the channel for diagnostic

purposes

Project

System

208

The Position tab displays position feedback information and also status bits related to the encoder

attached to this channel:

The Compare tab shows the current position of this encoder and also the values stored in it:

ACC24E3[i].Chan[j].ServoCapt

ACC24E3[i].Chan[j].HomeCapt

ACC24E3[i].Chan[j].SerialEncDataA

ACC24E3[i].Chan[j].SerialEncDataB

ACC24E3[i].Chan[j].Atan

ACC24E3[i].Chan[j].LossStatus

ACC24E3[i].Chan[j].CountError

ACC24E3[i].Chan[j].LossCapt

Project

System

209

The Flags tab:

The ADC Data tab shows the sinusoidal encoder ADC’s and amplifier ADC’s results:

ACC24E3[i].Chan[j].CompA

ACC24E3[i].Chan[j].CompB

ACC24E3[i].Chan[j].CompAdd

Project

System

210

Digital I/O Cards
The Hardware Diagnosis page for digital I/O cards is much simpler than for axis interface cards. This

screen shows the data registers in the card displaying each bit in each bank with a green light if the bit is

high or with a red light if the bit is low:

MD71xx
CK3M IO accessories the screens are more aligned with SYSMAC Studio.

There are two digital output accessories MD7110 and MD7120. User can Modify Output and read Input.

Click the accessory under Project-Hardware node to open the Hardware diagnostic screen.

You can double-click one of
these rectangles to toggle its

state if it is configured as an

output

This area displays information

about the kind of IC that this

card uses

This area displays information
about the name and model of

this accessory

This box

displays what
kind of

input/output

configuration
this card has.

Some cards’

configurations
can be changes

while others are

fixed at a
certain number

of inputs and

outputs. For
cards that can

be

reconfigured,
“the ctrlReg”

field under this

card’s structure

configures this.

Project

System

211

When the accessory is detected header file will be automatically added to the project under Global

Includes.

Project

System

212

User can change the Name of the Input or Output. For example, user can change the name from Input0 to

Switch0 and from Output0 to AirPressureOn. The change in these names are associated with the file

under Global Includes. After the name is change select “Update variable mapping” to regenerate

respective file.

Project intellisense will show the names of these variables that can be used in PLC or Motion or C code.

Note

Please do not modify the MD7xxx or AD2xxx file. These files are

maintained by IDE.

AD31xx
The Hardware Diagnosis Screens for CK3M Analog accessory AD3100 and AD2100 are accessed by

clicking the accessory under Project-Hardware node to open the Hardware diagnostic screen.

When the accessory is detected a header file will be automatically added to the project under Global

Includes. The User can change the Name of the Input or Output. For example, the User can change the

name from Input0 to Voltage0 and so on. The change in these names are associated with the file under

Global Includes. After the name is changed, select “Update variable mapping” to regenerate respective

file.

Project intellisense will show the names of the variables that can be used in PLC or Motion or C code.

Project

System

213

Note

Please do not modify the MD7xxx or AD2xxx file. These files are

maintained by IDE.

CK3WECSxxxx
This hardware does not have the diagnostics screen but used in the Motor topology. On double clicking it

will give following message.

CK3WGCxxxx
The Hardware Diagnosis/configuration Screens for CK3WGC accessory is accessed by clicking the

accessory under Project-Hardware node.

It shows like this..

The top section shows the detected hardware card and option.

Using this user can setup and diagnose PWM output. It is done in two steps Configuration and Test Run.

Once testing complete, user can press Accept and it generates Ck3WGC Definitions.pmh file under

Global Includes that can be used in Motion program and plc script.

Configuration
Configuration section looks like this.. This is for configuring PWM output. PWM output is intended to

control a Laser source’s power.

Project

System

214

The parameter choices are self-explanatory. The info icon shows additional information about parameter.

User have choice of entering Target Delay Time in usec and then press calculate to fill Delay and Delay

unit box or enter the Delay and Delay unit to get Delay Time in ns.

PWM frequency (Frequency) I drop down list calculated using following formula…

𝑓𝑃𝑊𝑀(kHz) =
105

 16 × 𝑃𝑊𝑀𝑃𝑒𝑟𝑖𝑜𝑑

User can start typing and the list will filter based on the input.

Test Run
Test Run section looks like..

As the section name this will allow user to test the configuration setting. On pressing Test it will

configure the card settings and depending on type of the Pulse the user can verify output. If the burst

mode selected then on Test it will show you Pulsesremaining as shown below…Asked for 4000 and

remaining 1706.

Project

System

215

The second option is [Continuous], which does not allow the user to enter a number. When Continuous is

selected and when Test is pressed, the number inside PulsesRemaining is expected to become 4095 and

not decrease until the user selects the Abort button.

Accept
On accept generates Ck3WGC Definitions.pmh file under Global Includes that can be used in Motion

program and plc script. The file contains PTR variable for read and write the hardware register of the

CK3WGC card.

EtherCAT
Master0
On clicking the Master node0 it will open the Master0 device editor. This section includes network

related or master related settings. Some of those settings will also affect the “Master” section of the ENI.

Under General, user can choose to setup the ECAT clock either using time or freq mode. For 16 kHz

clock user must select frequency mode.

Tasks + Sync Units

Project

System

216

In this tab, the user can define additional cyclic tasks and master sync units. After adding a new

Master sync unit, the user can assign one or more slave sync units on tab “Slave - Sync Units” to this

master sync unit.

As shown above a new Task IO Task Rate is added. From FW 2.6 a new EtherCAT structure element is

added to handle the additional task. At this point only one additional task can be added per master.

On adding the task, it will set ECAT[i].TaskID1Ext. User can verify the value in the Power PMAC

Message – Output Tab.

Example: Typical use of the additional cyclic task….

In a high-performance application, the EtherCAT servo drives must be updated at 8 kHz (125 μsec) to get

enough response. There is an I/O device on the network that cannot reliably be updated faster than 2 kHz

(500 μsec). This I/O device is assigned to Task ID 1 and ECAT[i].TaskID1Ext is set to 3 so it is only

updated every 4th cycle.

To use the new Cyclic task user can click on the slave that needs to assign the task and then select Sync

Units Tab. (Slave--Sync Units Tab) Under Master Sync Unit select the Id1 from drop down as shown

below… Red square indicate the slave and the Master Sync ID.

Project

System

217

EtherCAT Master-Node Properties

Master-Node Properties

On selecting the Master Node view the EtherCAT properties as shown below.

Allow Duplicate PDO Mapping
Default: False

If set to true then Load PDO mapping will ignore the duplicate mapping found. It will print found

duplicate mappings with addresses in the Power PMAC Message window as Warning. If EtherCAT

network is unable to activate this could be one of the reason.

In the default state Load PDO mapping will fail if it finds duplicate PDO mappings.

Remove Station Address from PDO Variable
Default: False

Note: need to have the Solution Property "Use new PDO mapping name format" set to Yes

- this is selected in the Solution - Property page of Explorer Tree (Rt-Clk on Solution name)

If set to True when PDO variable names are generated by IDE the slave station address will NOT be

appended as part of the variable name. The slave name (assigned or custom edited) in the Device General

Tab Name field will be used as the PDO variable name created in the ECATMap.pmh file.

EXAMPLE: below a drive was given the custom name of "Drive3"

Before: #define Slave_1002_R88D_1SN01L_ECT_6040_0_Controlword

ECAT[0].IO[16].Data

After: #define Drive3_6040_0_Controlword ECAT[0].IO[12].Data

Project

System

218

EtherCAT Master-Node Context Menu

The EtherCAT folder stores the EtherCAT master and Slave information. Use the context menu to

configure and setup an EtherCAT network. The context menu is self explanatory.

Show Master Status
This menu will open Master status view, displaying important network registers. The bottom info ribbon

will display respective structure element, description, range and default value. The default update period

is 100 msec. that can be change. For measurement purpose user can reset all the Max. Time settings. The

details of these structure elements are available in Power PMAC Software reference manual.

Project

System

219

Diagnosis Mode
(Ref: EC-Engineer manual)

This mode is available to analyze EtherCAT networks that are controlled by the Acontis Master Stack.

Automated control systems usually require high availability of the whole system and, due to the rough

industrial environment, this is often hard to achieve.

High availability should be guaranteed for an automated control system so it is important to verify and

maintain the field bus. In this mode it is possible to look into the "health" of the EtherCAT system.

Detection of signs of system degradation prior to running into a system failure will be of great benefit. In

that case it is possible to exchange the problematic components (cables, slave devices).

When the Diagnosis mode is selected it will detect the devices on network. The screen will look like this:

Project

System

220

The General Tab displays information on the current state of the state machine of the master which can be

modified.

The Process Data Image Tab displays information on the process variables which can be modified. The

variables will be forced to the value the entered. The user can press the release button to stop forcing the

user-entered value to the variable. Selecting a process variable will show a chart of the values. This chart

will be updated every 250 milliseconds.

The Watch list enables the monitoring of selected variables.

The Performance Tab displays information like the busload per cycle and per second.

The Variable Tab displays information on the the trace variable which can be modified. The chart will

update every 250msec.

The CoE Object-Dictionary Tab displays information on the values of the object dictionary of the master

which can be modified.

The History Tab contains the diagnosis history.

Network Mismatch Analyzer
This option is useful when there is a mismatch between the eni file from the project and actual devices on

the network. It is difficult to figure out where the mismatch is and for this this tool is useful that identifies

mismatch.

This option only active if the Diagnosis mode is active. If user switches to Diagnosis mode and gets the

following error …

The diagnosis option will ask to open Network Mismatch analyzer. On selecting OK it will open the

analyzer as shown below…

Project

System

221

If ‘No’ option selected then user will need to open the analyzer manually using the Network Mismatch

Analyzer option from Master Node Context menu as shown below…Please see it is enabled only in

Diagnosis mode.

The second way of opening the Mismatch Analyzer is when user uses Activate EtherCAT option to

enable EtherCAT network and if there is a mismatch between eni and actual devices then software will

capture the bus mismatch error and will ask user to open the mismatch analyzer automatically as shown

below work flow….

Project

System

222

The error is also displayed in the Power PMAC message window like this…

Line Crossed Analyzer
If user have connected a line to a wrong port, you can see in the Line Crossed Analyzer which slave is

Incorrectly connected. The wrong entries will be red. It is very difficult to identify wrong connection on a

bigger network. This tool is useful for identifying. If there is a line error pop up message will be displayed

like this and then user can open the Line cross analyzer.

This error is detected when user is scanning the network using Scan EtherCAT Network context menu.

Project

System

223

Here is the typical workflow …

Scan EtherCAT Network / Append Slave
Select Scan EtherCAT network it will issue scan command and detect the connected EtherCAT devices

on the netwrok. If the EtherCAT devices are not connected user can still configure EtherCAT network

using Append Slave menu. When the slave devices are added to the Master, either using Scan or Append,

then the Master node looks like this:

Project

System

224

Note

From IDE V4.2 onwards ECAT devices will be displayed as the

information is received from the scan/Append slave and not in

Alpha/numeric order

Import Slaves from ENI
This feature allows you to import slaves from the eni file, that was either created with different eni tool

generator or eni file was generated previously from the Power PMAC IDE software.

On selecting the menu it will open file selection dialog.

Case 1: Here is the example of import slave from eni file where the esi file is not present in the Power

PMAC IDE. Under this case the error will be displayed requesting importing esi file using ESI manager

from EtherCAT menu.

To access esi manger choose

Case 2: Here is the example of import slave from eni file where the esi file is present in the Power PMAC

IDE system. Under this case the import slave will be successful and slave will be listed under master

node.

Project

System

225

Please check the warning message under Power PMAC Messages. There is one know limitation with

import eni feature, it will not import distributed clock settings and advanced option settings from Slave

Advanced tab if the slave was configured with these settings. The reason for limitation is specification of

eni file do not store this information so it is not available.

This feature is best if number of slaves importing from the file are less than 5!

Export ENI file
This option allows user to generate the eni file for available connected to the Master node and export it to

folder. This menu option is helpful when you have generate the eni file and share with other users. After

exporting the eni file you can again import it to the Power PMAC project as explained above.

The practical use of this feature is configuring the EtherCAT network without physical devices and share

with other users.

Here is typical export process.

Load Mapping to Power PMAC
As the name says, this command read the mapped variables from currently connected EtherCAT device

and generate following files and add it to the project.

1. The eni.xml (EtherCAT network information) is generated and copied to the Project-

Configuration folder. This file is copied to Power PMAC from Build and Download project

process. On the Power PMAC after Build and Download, the files is placed under

/var/ftp/usrflash/Project/Configuration folder.

2. The mapping file ECATConfig.cfg is created and copied to the Project-Configuration folder. This

file is copied to Power PMAC from Build and Download project process. On the Power PMAC

after Build and Download, the files is placed under /var/ftp/usrflash/Project/Configuration folder.

Project

System

226

3. The ECATMap.pmh and ECATMap.h files are created and copied to the Power PMAC Script

Language-Global Includes and C Language-Includes folders for use in C app and script

languages. These header files consist of #defines values to access ECAT mappings in C app or

script languages.

Typical flow will look like this…

On selecting Load mapping to Power PMAC, the process indicates its progress by showing a dialog and a

message in the Power PMAC message box.

Project

System

227

Note

1. It is not necessary to copy the EtherCAT files manually to the

project like in V2.x and V3.x; V4.x automatically manages

these files.

2. EtherCAT header files collapse/expand feature is available in

te IDE 4.3.2.x and above

Load Mapping to Power PMAC from ENI

Similar to Import slave from eni this option allows user to generate mapping from eni and add it to the

project similar to Load Mapping to Power PMAC. The process is identical to “Load Mapping to Power

PMAC” except user will need to input the eni file from file dialog.

Export EtherCAT Configuration Template
This context menu allows the User to set the EtherCAT slave slave/slaves network and export as a

template to be used in the future. If the User has a lot of slaves with the same configuration (e.g. PDOs,

InitCmds) then the User can use this feature to speed up development.

Note

It is possible to have slave network of commonly used EtherCAT

devices and export it as one template for future use.

Steps to export EtherCAT configuration template

1. Configure EtherCAT Slave/Slaves network by either using Append slave or scan slave

2. Load PDO mappings

3. Make sure the EtherCAT network can be activated.

4. On success deactivate the network, right click on the Master node and select Export EtherCAT

Configuration Template menu. The following dialog will open…

Project

System

228

Enter all the necessary field’s

Import EtherCAT Configuration Template
This context menu allows the User to apply the exported template. Right click on Master node and select

the Import EtherCAT Configuration Template menu. The following dialog will open…

Enter all the necessary field’s and click OK to import the template. On success the User will see the

following message.

Once imported the project system will automatically apply and the new slaves will be copied from this

template (if available) and from the ESI cache. This behavior is also used for the bus scan.

Select Master EtherCAT node and check the Properties. If the template is imported successfully then the

Master node properties (shown below) will show name of the Template file, whether revision will be

ignored or not and the Use EtherCAT template for matching slave. The property

Project

System

229

Watch EtherCAT mapped variable
This context menu option allows the user to monitor/set (write-only) EtherCAT mapped variables. On

clicking it the Watch EtherCAT Mapped Variables dialog will be opened, displaying current downloaded

EtherCAT mapped variables as shown below…

The variable list is slave based and the user can collpase and expand the slaves to monitor the variables.

Read-only variables cannot be altered and are grayed out. Write-only variables can be altered by the user

and the new value will be downloaded to the Power PMAC.

Project

System

230

Activate/Deactivate EtherCAT
This is used to Activating the EtherCAT network. Ecat[m].Enable = 1 command send to Power PMAC,

where m is master index. The command is successful if the eni file and actual physical network matches.

If there is mismatch an error will be thrown. At this point user can open Network mismatch analyzer to

identify missing device.

On Activate EtherCAT the visualization in the project tree for the ECAT devices will be change

according to the state of the ECAT device. Possible ECAT state visualizations are…

On successful Activation of the ECAT network this context menu command will change to Deactivate

EtherCAT. This command is used for deactivating EtherCAT network, Ecat[m].Enable = 0 command is

send to Power PMAC.

EtherCAT - Slave-Node Context Menu
Right click on any slave and it will open the context menu with commands associated with that slave.

IDE V4.3.2.x and above will support Hot Connect Group.

The context menu looks like this…

The following sections will explain the menu features in more detail.

Disable Slave
This allows the user to disable the slave in the EtherCAT network. If, in the motion or PLC files, the PDO

names are used then user will not be required to change the program even if the slave is disabled. The

user must use the #define keyword in the programs instead of the actual EtherCAT structure element as

these are managed automatically.

The following steps are needed for successful disabling of a slave.

1. Select a configured EtherCAT network that can be activated like below.

Project

System

231

2. If the User wants to disable Slave_1002 then first deactivate the EtherCAT network, right click

on the slave and select Disable. It will provide you steps what to do next as a warning message.

On clicking OK the slave will be marked disabled. The workflow of disabling slave shows like…

Note

The disabled slave(s) must be removed physically from the network

The ECATMap.pmh will show the disabled slave. The disabled slave is marked 511 but all the

mappings are kept same

Project

System

232

3. The user will be required to remap, using Load mapping command and then build and download

project. Activate the EtherCAT network. User will not require to change motor configuration.

4. If the User wants to Enabled, previously disabled Slave_1002 then first deactivate the EtherCAT

network, right click on the slave and select Enable. It will provide you steps what to do next as a

warning message. On clicking OK the slave will be part of EtherCAT network. The workflow of

enabling slave shows like…

Note

The Enabled slave(s) must be connected physically in the network in

the same position. It is not recommended to change the physical

position in Disable/Enable slave process.

The ECATMap.pmh will show the slave not disabled anymore.

5. The user will be required to remap, using Load mapping command and then build and download

project. Activate the EtherCAT network. User will not require to change motor configuration.

Project

System

233

Note

1. ‘Disable Slave’ feature will reduce total number of slave

connection from 512 to 511 and Number EtherCAT structure

element IO mappings from 8192 to 8191.

2. Disable Slave feature is not replacement for Hot connect.

Hot (Connect) Create Group
To create the hot connect group the user needs to select the Create Group context menu option by the

right-clicking the slave. The user can select multiple slaves using CTRL+Mouse to add them to the group.

On selecting a group, a dialog will be displayed as below…

• General

o MSU Id: Generated Master Sync Unit Id

o Name: Name of the group

• Pinned Group

o Input Offset: Fixed input offset of the group in the process data image in bytes

o Output Offset: Fixed output offset of the group in the process data image in bytes

• Hot Connect Group

o Identification Offset: Register offset where the identification can be read from the slave

o Identification Value: Hardware identification value or configured station alias address can be

used.

As soon as the group is formed, the icon for the slave in the solution explorer will change and the group

tab will be added to the slave editor, as shown below…

Project

System

234

EtherCAT – Import SYSMAC Studio safety mapping file
This is a special slave context menu available only for OMRON Safety Module NX-SL3300, NX-

SL3500, NX-SL5500, NX-SL5700.

This menu improves the setup time and ease of integration of safety controller with Power PMAC.

Following shows the typical workflow.

On accept the mapping will be imported and added and available under PDO mapping.

Example - Safety Controller integration with Power PMAC IDE
Scope
Commissioning Safety PLC (NX-SL3300 or NX-SL3500) with 1S servo drive under the control of

PMAC. Steps involving SYSMAC studio are out of the scope and this document assumes user has

completed necessary steps involving SYSMAC studio.

Power PMAC IDE4.5.x or above

Project

System

235

Steps
1. Sysmac Configuration

2. Download Sysmac project to ECC203 and SL3300

3. Export Sysmac PDO configuration

4. PMAC-IDE configuration

Power PMAC IDE Configuration
4.1 Reset & Re-Initialize Power PMAC. Scan EtherCAT Network. This will look like in the IDE

Project

System

236

4.2 Set “Shift Time” to 250uS for all 3 ECAT devices (ECC203 and 2 drives)

Project

System

237

4.3 Set CPU speed @ 2 kHz. The example is tested up to 2kHz

4.4 This is most important step , use the exported file from SYSMAC studio . The safety PDO map

file name CouplerMemoryMap.xml. See below image of the import file using context menu on

coupler. This option only available for OMRON safety controller and it’s a dynamic context

menu.

Project

System

238

4.5 On successful import the viewer will be opened and shown below. Leave Select All selected and

click Accept Leave checkbox Convert BOOL-USINT selected

4.6 After proper import, the Variables in Safety module should look like this

Project

System

239

4.7 On each drive (Inputs / Outputs) Safety Process Data with telegram 273th need to be selected.

4.8 When PDO is complete, Slave to Slave communication need to be establish 4 connection for

INPUTs - (this will vary with different configuration)

Project

System

240

1

2

3

4

Project

System

241

4.9 4 connections for OUTPUTs - (this will vary if configuration is different).

 Every time when modifying ECAT network Slave to Slave need to be Disconnected and Connected

again.

1

2

3

Project

System

242

4.10 When completed, Connections menu should look like this

4.11 Check the CPU clock to match the selected 2kHz for ECAT master

4.12 Load Mapping to PowerPMAC Enable the ECAT using right click context menu from Master

node. Alternatively you can type in terminal window this command “ECAT[0].enable=1”,

though it is recommended to use clicking context menu. When RESET button is pressed, the

CONTACTOR should enable and drives should remove STO (“St” on LED display) and go to

normal operation (“—“ on LED display).

4

Project

System

243

EtherNet/IP

EtherNet/IP protocol is a member of the CIP network family of protocols, published by the ODVA.

Power PMAC is an EtherNet/IP (EIP) adapter (slave) and will connect to an EtherNet/IP (EIP) scanner

like NJ/NX controllers.

Prerequisite for Power PMAC EtherNet/IP adapter
EtherNet/IP functionality support table…

FW Version ARM Dual core CPU CK3E/CK3M ARM QUAD core CPU

2.5.4.x or

above

EIP supported EIP Not supported EIP Not supported

2.6.x.x or

above

EIP supported EIP supported EIP supported

Note

EtherNet/IP must be enabled on the board. Upgrading the firmware to

2.5.4.x in the field on an existing board will not support the

EtherNet/IP. In this case please contact to local support office.

The EtherNet/IP folder node in a Power PMAC project stores the EtherNet/IP connection information.

An EtherNet/IP folder will be included when creating a new project using ‘New Project’ and select the

project type ‘Power PMAC project with EtherNet/IP’.

To add EtherNet/IP to an existing project, right click on the solution to open the context menu and select

‘Add EtherNet/IP’ from the menu as shown below…

Once the EtherNet/IP node is added to the project, the user can add the connection to setup different

variable data types to be shared with the scanner. The project looks like this with an EtherNet/IP node…

Project

System

244

At the time of project loading the EtherNet/IP status is updated, provided an EtherNet/IP node is present.

In the above image the current status of the network is “Deactivated”.

The User is encouraged to use context menu commands from the EtherNet/IP node to activate and

deactivate EtherNet/IP functionality.

EtherNet/IP project node
To set the EtherNet/IP update rate, select the EtherNet/IP project node. Update settings are available in

the property window associated with the project node. It is displayed like this…

The range of the Update rate is 5 to 4294967295 uSec.

EtherNet/IP context menu
On right clicking the EtherNet/IP node following context menu is available.

Project

System

245

Add EtherNet/IP Connection:
As the name says, this menu allows the User to add a connection. A total of 32 connections can be added.

Each input and output assembly per connection allows 504 bytes of data to be shared. The User can add

only one data type per connection. In the current version of the IDE setup tool, the User cannot mix and

match variable data types in one connection.

Note

User can add one data type variable per connection. There can be 32

connection possible and each can have one data type.

On clicking the menu, the user can add the connection using the following dialog…

On pressing OK, two connections will be added to the project tree. The project tree will look like this…

To setup EtherNet/IP, select the Connection1 or Connection2. When the EtherNet/IP configuration dialog

opens it will look like this…

Project

System

246

In the current setup tool, the following are the supported data types.

To add the variables, click the Add variable button. It will open the following dialog…

On clicking OK, 5 variables of type UINT are added under Input assemblies, as shown below…

The tool software will automatically generate the default names as shown. The User can change the

variable name either by editing or at the time of creation as shown below…

Project

System

247

Here the default Connection1_input base name is changed to MyInputSwitch. When customizing the

names it is users reaponsibility to create unique names to avoid programming errors.

Each individual variable name is supported with a context menu. The menu is quite simple and self

explantory. It looks like this…

Similarly, the User can configure output assemblies and other necessary connections.

On completing the configuration of Input and Output assemblies, press Accept. The Accept button is per

connction and will not be applied to all.

Note

On completing the EIP configuration press Accept. Accept is per

connection.

Once Accepted, it will create ethernetip.pmh and ethernetip.h to be used in programming the Power

PMAC.

These newly created variables are available in the program editor and in the intellisense view.

The project tree will now look like this…

The variables are well organized per connection and can be collapsed or expanded per connection.

Project

System

248

The ethernetip.pmh will look like this…

Watch EtherNet/IP Variables
This context menu option allows the User to monitor/set (write-only) EtherNet/IP configured variables.

On clicking it the Watch EtherNet/IP Variables dialog will be opened, displaying currently downloaded

EtherNet/IP configured variables, as shown below…

Watch EtherNET/IP Variables will automatically update the read and write variables on activating the

EtherNet/IP.

The User can write to Output variables depending on their byte size. If the value is more than the byte

size, it will be indicated with RED square.

Note

Watch EtherNet/IP variables window requires the project to be built

and downloaded to Power PMAC.

If the Watch EtherNet/IP Variables menu is opened without a project built and downloaded, the following

will be displayed…

Project

System

249

Activate/Deactivate EtherNet/IP
This menu is for activating and deactivating EtherNet/IP. When necessary EtherNet/IP setup is

completed, the User can build and download a project. To test EtherNet/IP, right click on the EtherNet/IP

node and select ‘Activate EtherNet/IP’. On success, the node will display its status like this…

Note

Activate EtherNet/IP sends Eip.Enabled = 1 command to Power

PMAC. The User is required to enable the individual connection for

testing using Eip[n].Enabled = 1 from the Terminal Window where n

is the connection number(32 max)

To deactivate, please right click on the EtherNet/IP node. Now the menu will display ‘Deactivate

EtherNet/IP’. On success, the node will display its status like this…

Note

Deactivate EtherNet/IP sends Eip.Enabled = 0 command to Power

PMAC. The User is required to disable the individual connection for

testing using Eip[n].Enabled = 0 from the Terminal Window where n

is the connection number(32 max)

Project

System

250

EtherNet/IP Configuration Steps
Here is a basic step to create an EtherNet/IP configuration.

Requirement: Power PMAC with factory installed 2.5.4.x FW that supports EIP as an Adpater (Slave) to

a

 NJ/NX as Scanner(Master) with Sysmac Studio

1. Create a Power PMAC project using Open New dialog like this…

Select the ‘Power PMAC with EtherNet/IP’ project type. If you open the normal Power PMAC

project, then you will need to add an EtherNet/IP node.

Set the appropriate Update Rate in usec…

2. Add EtherNet/IP connection(s)

Right Click the EtherNet/IP node to add the connection(s)

3. Add variable(s) into input/output assembly in each connection and Accept variables. Remember:

only one variable data type is allowed per connection.

On accept, make sure the ethernetip.pmh and ethernetip.h are created under the project node, as

shown here…

4. Build and download the project

Project

System

251

This is an important step in the EtherNet/IP configuration. Build and download creates the

ethernetip.xml file. Download copies the file to the Power PMAC project configuration location.

This file is important for EtherNet/IP data transfer. This file is not visible in the project as the file

is maintain by the tool software. This file must not be altered by the User. The file looks like

this…

5. It is recommend that after building and downloading, to save the project and issue the

$$$ command. This will automatically enable EIP. Please refer the above ethernetip.xml file

image, I particular the following attributes:

enaOnStartup="true" This is for EIP level and command is Eip.enabled = 1

enaOnStartup="true" This is for connection level and the command is Eip[0].Enabled = 1

These are set to true, and this is the reason that after saving and issuing the $$$ command, the

EtherNet/IP automatically gets activated.

If the project is not saved, then the User will be required to activate the EtherNet/IP by right

clicking the node and then individually enabling the connections from the Terminal Window.

Please refer to the Activate EtherNet/IP section.

6. At this stage we expect the NJ/NX Scanner (master) is configured to communicate with an

adapter using Sysmac Studio. This setup is out of scope for this manual. Please refer to Sysmac

Studio documentation.

Project

System

252

Motors – Context Menu
Right click on Motor node for available context menu.

Add Motor
You can add a motor by right clicking on the motors node and select add motor

Motor Context menu is dynamic. When any motor is added to the project a new menu dynamically

become visible, as shown below…

The Add motor dialog will open. The User can select a single or multiple motors to add, up to

Sys.MaxMotors. If a motor already exists in the project this motor number will not be added but other

selected Motors will.

The User will also be able to select a previously saved Template to use for the Motor configuration.

Note

IDE V4.2 onwards Motors added to the project will be displayed in a

natural order

Project

System

253

In the IDE the motor configuration is in the form of a Topology view.

Currently there are six types of Motor configuration supported thorough Topology diagrams.

 Single feedback

 Dual Feedback

 EtherCAT

 Galvanometer

 Step & Direction (No Feedback)

 Virtual (No Feedback)

 Direct Microstepping (no Feedback)

The Topology dropdown is blank by default as the User needs to select the Topology type.

Note

When a Motor is added to a project the motor structure elements are

saved to a file. Any motor structure element changes within the

project domain will be automatically updated and maintained within

the file. When the build is performed the motor file will be used to

generate the systemsetup.cfg file. No backup is needed for the motor

parameters as long as the changes are being made in the project

system.

The following section will describe different Topology available for Add Motor menu.

Topology Color code

Project

System

254

Common Motor Topology navigation guidelines
The Topology is a guide through the various different blocks. Once a block is accepted the next Block

will be made available to edit.

Click Database icon to open part manager where user can Add/Modify/delete Amplifier database.

Click Save icon to save the Amplifier setting

The tick indicates that a view has been opened and that the data has been Accepted.

Note

The difference in the single and dual feedback is that in dual feedback

the user can set the second encoder and in hardware interface block

can set the pEnc2 address differently .

Project

System

255

Topology- Single Feedback
The Single Feedback Topology is for a Single feedback solution, for position only.

If a Single Feedback Topology is selected, a Single Feedback Topology view will be displayed and the

selected motor will be added under the Motor node in the Solution Explorer.

Topology- Dual Feedback
The Dual Feedback Topology is for a Dual feedback solution; one for position and one for velocity.

If a Dual Feedback Topology is selected a Dual Feedback Topology view will be displayed and the

selected motor will be added under the Motor node in the Solution Explorer.

Topology- EtherCAT
The EtherCAT Topology is for setting up an EtherCAT motor using an EtherCAT slave amplifier.

Project

System

256

If an EtherCAT Topology is selected an EtherCAT Topology view will be displayed and the selected

motor will be added under the Motor node in the Solution Explorer.

Topology dropdown allows the User to change the type of Feedback type. The User cannot go from

Single Feedback or dual feedback to EtherCAT and vice-versa.

Once the motor is added it will show up under the Motors node as shown below:

When the previously saved project is open that has motor and on opening if the Motor folder shows the

motors like this….

The Yellow warning sign indicates that the project cannot find the associated motor file. In this case

either user has to locate the file if it is accidently got deleted. Worst case user will require to add the

motor again as the settings are lost.

Topology- Step & direction (No Feedback)
The Step & direction (No Feedback) is setting the PFM mode and there is no feedback.

If a Step & direction (No Feedback) Topology is selected a No Feedback Topology view will be

displayed and the selected motor will be added under the Motor node in the Solution Explorer

Project

System

257

The PFM block allows the User to set up a Motor (Stepper) with no feedback. After following the

topology workflow, when the PFM block is clicked, the User will see the dialog shown below.

This page will be prepopulated based on the Max frequency entry from the Amplifier page.

The following screen shots explain important properties and their settings.

Project

System

258

Topology- Galvanometer
The Galvanometer Topology is for setting Galvo using CK3WGCxxx or Acc84 with either XY2-100 or

SL2-100 protocol. On adding motor it will look like this..

User needs to Accept Protocol setting by selecting protocol from dropdown. Depending on card option

protocol will be added to the list. User will also needs to enter number of bits. This all information is

available with the amplifier that is used to control the galvo. Last select the type of parity. Default is Even

parity.

Hardware interface page will display available channels based on the hardware detected. Accept the

connected channel and Galvo is ready to go!

Power PMAC message window will display all the values that are downloaded to Power PMAC.

Project

System

259

If Hardware mismatch is displayed (Above image) under Protocol settings and Hardware interface this

means the detected hardware does not support Galvanometer Topology.

Topology- Virtual (No Feedback)
The virtual Motor topology is setting virtual motor. From Add Motor menu select Vitual (No Feedback)

topology. It will show like this..

Adding virtual motor is simple as shown above once motor is added you are ready to Jog the motor in any

direction. All the Topology block are Green meaning completed and settings are Accepted and

downloaded to Power PMAC. Power PMAC Messages window show you what is downloaded to Power

PMAC.

Topology-Direct Microstepping (No Feedback)
The Direct Microstepping topology is mainly used with Power Brick LV. From Add motor select Direct

Microstepping topology and follow the workflow as shown below…

Project

System

260

Sync All Motor Settings (PMAC to Project)
On selecting this option it will update the configuration for all the motor that are added under the motor

Node. This command is useful to synchronize Motor structure element between Power PMAC and motors

that are present in the project under Motor node.

Motor – Context menu
This menu is available when any type of motor is added and displayed under Motors node.

Right-clicking on a motor node will open up a context menu containing various useful operations as

shown below

Compare
The compare feature is available for motors or coordinate systems. It allows the comparison of motor

structure elements or coordinate system elements. The structure elements are categorized. A maximum of

nine motors or nine coordinate systems can be compared at a time. The Compare motor function is

available from the Delta Tau menu or by right clicking on the Motor in the Solution Explorer.

The following dialog shows the Compare feature being accessed from the Delta Tau menu.

The default view shows all the Motor structure elements. These can be hidden by selecting the arrow to

the left of the name.

Project

System

261

Copy
Right click on Motor to Copy motor settings. All the settings except addresses are copied for paste motor.

.Copy motor not supported for virtual motor.

Note

Copy Motor function not available for Virtual(No Feedback) type

motor topology

Paste
User can paste the motor by right clicking on Motors folder. This is dynamic menu if the Motor is copied

only then this option will be available.

Only Amplifier, Motor, Encoder blocks are copied user will still require to go to Hardware interface and

click Accept and then continue following the topology blocks

Troubleshooters
Troubleshooters are available which can generate reports and help in identifying or analyzing the Power

PMAC structure elements. The menu is accesible from the Delta Tau Menu or by right clicking on the

Motor in the Solution Explorer.

The following dialog shows the Compare feature being accessed from the Delta Tau menu.

Project

System

262

The available Troubleshooters are

1. Motor Report

2. Why is my Motor not moving

3. Why is my motor moving slowly

Layout
The dialog below shows the Troubleshooter for “Why is my Motor not moving”. The default location of

this dialog is the Editor window. The dialog can be moved as required by dragging it to another docking

point.

Project

System

263

Symbols Function

Allows to change the motor number

This Combo box allows the selection of the troubleshooter

type. The available Troubleshooters are:

Filter This Combo Box allows the choice of what to display in the

report. The possible choices are:

The default is set to Errors and Warnings.

To export the report in a .csv format.

Indicates a Test has failed.There is an error in the setting of

the setup element.

Indicates a warning. Further analysis is needed for that

particular setup element.

Indicates that the Test has passed

More detail information is available for the error or warning

only.

Status bar showing test execution progress.

Indicates if the Power PMAC is either Online and connected

or Offline and disconnected.

Sync Motor Settings (PMAC to Project)Upload
Upload motor gives the ability to upload the currently saved motor structure elements from the Power

PMAC to the project.

On selecting this option, a confirmation dialog will be displayed as shown below:

Project

System

264

On Clicking Yes, if the Motor View Editor is open in the IDE, a confirmation dialog will be displayed

confirming that any unsaved data will be lost by performing the upload.

On a successful upload the motor in the project will be synchronized with the Power PMAC motor

structure elements.

Note

This option is useful if the Motor structure element has been changed

outside of project domain such as in the Terminal window.

Export as Item Template
The Motor can be exported or imported as item templates. All the motor settings will be exported during

this process.

The typical use of the Motor template is to setup a complete Motor, including Custom Amplifier and

encoder, and then share this with another user.

This User can then Import the Motor, using Import item template option, and use it in their project saving

the time of having to create the Motor from new.

If the Power PMAC hardware is identical then user will not need to do complete motor setup for the

imported motor.

Using this option the User can:

• Export a Motor in order to use it in another project

• Import a Motor to reuse in their own project

• Create a new Motor/ from an Imported Motor/ Item Template

• Choose whether or not to automatically Import an Item Template into Power PMAC IDE project

at the point that it is exported

• Use a motor template based on a custom amplifier or motor definition that is not present in their

system

• Is warned if they try to Export a motor template targeting multiple gate addresses

• Is warned if they try to create a motor from a template and their system does not have a suitable

gate available so that it is clear that the Hardware Interface page will need to be updated

Project

System

265

• Check they have the correct template by viewing the motor manufacturer and model number in

the template

• Be sure that a motor that is created from a template will have the correct encoder information as

this is saved on creation of the template

• Delete imported Custom Item templates

To export a Motor settings as a Template the user will need to right click on Motor node under Motors

and choose the “Export as Item template” option as shown below:

On selecting the option, a new export item template dialog will be displayed, as shown below:

On selecting Ok the acknowledge message will be displayed and template will be exported and stored into

the location defined in the dialog.

Project

System

266

The User has ability to store the template to any folder by ticking the “Export to the following folder”

checkbox.

By default, the template will be imported to be used in the current instance of the IDE. Un-ticking this

check box will not import the template into the current instance of the IDE.

By Default the template will be available as shown below when Add motor is selected….

Topology Blocks

Note

Please make sure that it is safe to setup a Motor using System

Setup.
Following Topology Blocks sets Power PMAC structure element.

User Unit,

Hardware Interface Block,

Interactive Feedback Block,

Test and Set,

Basic Tuning,

commissioning block.

Project

System

267

Amplifier block
The User can select the Amplifier from the topology block as shown below. As displayed in this screen

the Amplifier can be selected from a list of Delta Tau Amplifiers or, if the Amplifier is not listed, can be

added i.e. if a 3rd party amplifier is being used:

A standard filter is available to choose the amplifer. The User can choose the control and signal type and

input voltage right on the topology block and press Save icon to set the amplifier for the motor. On

success the block will turn Green with chek mark indicator.

From IDE V4.3 the amplifier database view is changed.

To add a new Amplifier entry into the database, click on the database icon . This will open new and

improved amplifier view. The same view can be open from Delta Tau menu under Part Managers.

Note

The User does not need to open a project and add Motor to add

Amplifier/Motor/Encoder parts in the database.

Project

System

268

The amplifier part manger view looks like this when opened from Topology block.

The User cannot edit or delete if the amplifier is a Delta Tau Amplifier. To add a new amplifier press

‘New’ and enter the amplifier parameters from the amplifier manufacturer brochure.

To edit a saved amplifier’s parameters, select the amplifier from the drop down and then press ‘Edit’.

To delete the amplifier from the database, select the amplifier from the drop down and then press

‘Delete’.

The amplifier part manager view looks like this when open from Delta Tau Menu…

The add new amplifier view looks like this…

Project

System

269

Settings parameters are dynamic based upon the control and signal type.

Once all Amplifier parameters are entered click Save.

Amplifier Parameters
The Amplifier parameters needed are described in detail below:

Amplifier Manufacturer

 Manufacturer: The name of the company which makes the Amplifier.

 Part Number: A unique part number to identify the Amplifier’s model.

Supported Control Mode

 Velocity Control: Set this to True if the Amplifier interprets the control signal it receives from the

Power PMAC as a velocity command e.g. this is common for Amplifiers which close their own

position loop such as Amplifiers commonly used for spindles.

 Torque Control: Set this to True if the Amplifier interprets the control signal it receives from the

Power PMAC as a torque command. In this mode the Power PMAC closes its own position and

velocity loops. This is the recommended mode for most applications as it permits complete

control over the current, position and velocity loop gains from within the Power PMAC.

 Sinewave Commutation: Set this to True if using two DAC lines per motor to command an

amplifier which performs Sinusoidal Commutation.

 Direct PWM Control: Set this to True if using a Direct PWM amplifier which expects a PWM

control signal.

Supported Signal Type

 Analog Command: Set this to True if the Amplifier expects to receive an analog voltage as its

control signal.

 PWM Command: Set this to True if the Amplifier expects to receive a PWM signal as its control

signal.

 Step and Direction Command: Set this to True if the Amplifier expects a Step and Direction

(PFM) command as its control signal.

Power Ratings

Project

System

270

 Maximum Input Voltage

o Voltage (Volts): Specify the maximum bus voltage which can be applied to the

Amplifier.

o Type: Specify VAC if the number typed in the Voltage field is AC voltage or specify

VDC if that number is DC voltage.

 Continuous Current

o Continuous Current (Amps): Specify the continuous current rating for the Amplifier.

o Unit: Specify whether this is Amps RMS (type Amp_RMS) or Peak Amps (type

AMP_Peak).

 Instantaneous Current

o Instantaneous Current (Amps): Specify the instantaneous current rating for the Amplifier.

o Unit: Specify whether this is Amps RMS (type Amp_RMS) or Peak Amps (type

AMP_Peak).

 Time Allowed (Seconds): Specify the maximum amount of time the Amplifier can tolerate its

instantaneous current specification. Usually this is around 2.0 seconds, but it can vary between

Amplifiers.

 Input Voltage (VDC): Specify the actual amount of voltage [VDC] to be applied to the Amplifier.

This parameter is moved to topology block.

 Amplifier Fault Polarity: If the Amplifier expects a low-true logic signal for an Amplifier fault set

this to LowTrue. If the Amplifier expects a high-true logic signal for an Amplifier fault set this to

HighTrue.

Current Feedback Information

 Maximum ADC Current: This is the largest absolute magnitude of current [Amps] which the

Amplifier’s current ADC sensors can read.

 ADC Header Bits: This is the number of bits used for the current ADC’s status.

 ADC Resolution (bits): This is the resolution [bits] of the Amplifier’s current ADCs.

 PWM Dead-Time (microseconds): This is the dead-time specified for the Amplifier.

Note

Verify all the contents of each of the fields specific to the Amplifier’s

parameters before moving on as these will be used in subsequent setup

calculations.

Project

System

271

Motor Block
The User can select the Motor from the topology block as shown below. As displayed in this screen the

Motor can be selected from a drop-down list. If the Motor is not listed, then it can be added.

A standard filter is available to choose the motor. The User can choose the motor and click the Save icon

to set the motor. On success the block will turn Green with chek mark indicator.

From IDE V4.3 the motor database view is changed.

To add a new Motor entry into the database, click on the database icon . This will open new and

improved motor view. The same view can be open from Delta Tau menu under Part Managers.

Note

The User does not need to open a project and add Motor to add

Amplifier/Motor/Encoder parts in the database.

Selected (Save) Motor

Project

System

272

The motor part manger view looks like this if opened from Topology block.

To add new motor press ‘New’ and enter the motor parameters from the motor manufacturer brochure.

To edit the saved motor parameters, select the motor from the drop down and then press ‘Edit’.

To delete the motor from database, select the motor from the drop down and then press ‘Delete’.

The motor part manager view looks like this when open from Delta Tau Menu…

Project

System

273

Add New Motor view looks like this…

Motor Parameters
The motor parameters which are needed are described in detail below:

Motor Manufacturer

 Name: The name of the motor’s manufacturer.

 Part Number: The manufacturer’s part number for this motor.

Motor Specifications

 Motor Type: The type of motor, whether it is Brush or Brushless.

 Nominal RPM: The rated continuous RPMs for this motor.

 Maximum RPM: The maximum possible RPM rating.

 Linear Motor: Set this to True if using a linear motor else set this to False.

Motor Electrical Specifications

 Inductance (mH): The phase-to-phase inductance of the motor in millihenries.

 Resistance (Ohms): The phase-to-phase resistance of the motor in Ohms.

 Number of Poles: The number of poles the motor has.

 Delta Winding: Set this to True if this motor has a Delta Winding or else set this to False.

Project

System

274

Motor Built-In Feedback

 Absolute: Set this to True if this motor has an absolute feedback sensor or else set this to False.

 Feedback Type: Specify what kind of feedback this motor has or if there is no feedback set this to

None.

 Resolution: Specify the resolution of the encoder in counts per revolution. For serial protocols use

units of Least Significant Bits (LSB). For linear motors use the number of encoder counts per

electrical cycle of the motor.

 Hall Sensor Available: Set to True if this motor has a Hall Sensor it can use for feedback.

Motor Power Rating Specifications

 Continuous Current

o Continuous Current (Amps): The amount of current [Amps] which the motor can safely

sustain for an indefinite period of time.

o Current Unit: Select Amp_Peak if the continuous current limit is in units of Amps Peak

otherwise select Amp_RMS.

 Instantaneous Current

o Instantaneous Current (Amps): The amount of current [Amps] which the motor can

sustain for only a finite period before being damaged. This time is specified in “Time

Allowed” below.

o Current Unit: Select Amp_Peak if the instantaneous current limit is in units of Amps

Peak otherwise select Amp_RMS.

 Time Allowed (Seconds): The maximum amount of time during which the motor can sustain the

amount of current specified by the Instantaneous Current limit.

Rating

 Maximum Voltage (VDC): The maximum amount of DC voltage which can be supplied to the

motor before damaging the motor.

Note

Verify all the contents of each of the fields specific to the Motor’s

parameters before moving on as these will be used in subsequent setup

calculations.

Project

System

275

Encoder Block
The User can select the Encoder from the topology block as shown below. As displayed in this screen the

Encoder can be selected from a drop-down list. If the Encoder is not listed, then it can be added.

A standard filter is available to choose the encoder. The User can choose the encoder and press Save icon

to set the encoder. On success the block will turn Green with check mark indicator.

From IDE V4.3 the encoder database view is changed.

To add a new encoder entry into the database, click on the database icon. This will open new and

improved encoder view. The same view can be open from Delta Tau menu under Part Managers.

Project

System

276

Note

1. Encoder drop down list is dependent upon the detected Power

PMAC hardware. If the User cannot see the encoder that

means it is not supported by the detected hardware.

2. User units are part of Encoder topology block

3. The User does not need to open a project and add Motor to

add Amplifier/Motor/Encoder parts in the database.

The encoder part manger view looks like this if opened from Topology block.

To add new encoder press ‘New’ and enter the encoder parameters from the encoder manufacturer

brochure.

To edit the saved encoder parameters, select the encoder from the drop down and then press ‘Edit’.

To delete the encoder from database, select the motor from the drop down and then press ‘Delete’.

Project

System

277

The encoder part manager view looks like this when open from Delta Tau Menu…

Add New Encoder view looks like this…

Project

System

278

User Units Block
The User Units enables the setting of the Motor position units in terms of engineering units like mm, inch,

meters, etc.

This block is used to make it easy to change the defined units for a motor even if the configuration for the

motor has been completed.

If an incorrect value is entered, then use $$$*** command to go back to default settings or use Reset to

raw units. When Reset to raw units is clicked following are the changes in the Encoder Topology Block…

As soon as the units are changed the PosSf are recalculated and the User can view the newly calculated

value by clicking on icon.

The view looks like this…

Project

System

279

The dropdown list for User Units is represented by Motor[x].posunit as shown below.

Motor[x].PosUnit Selected Unit Motor[x].PosUnit Selected Unit

0 None selected 8 Mil (in/1000)

1 Feedback unit (ct) 9 Revolution

2 Meter (m) 10 Radian (rad)

3 Millimeter (mm) 11 Degree (deg)

4 Micrometer (μm) 12 Gradian (grad)

5 Nanometer (nm) 13 Arcminute (')

6 Picometer (pm) 14 Arcsecond (")

7 Inch (in) 15 Reserved

Note

For example, when User Units are selected for motor 1 then the

Coordinate System axis definition for that motor is simply #1->X.

This will allow the user to command the motor in User Units. If the

motor units for Motor 1 are in mm then #1J1 is 1 mm command and

so on and so forth.

Calculating User units count by entering expression
Press = sign in the User units text block and start typing expression. Press enter to evaluate the expression

and show the result in the User Units text box. As shown below…

The expression is stored in the project so next time when the project is opened and user opens the Motor

topology and hoover the mouse on the User Units block the tool tip will show the expression.

The info icon next to expression text will display information about expression as shown below.

Project

System

280

Hardware Interface Block
Proceeding to the Hardware Interface step of the System Setup will show this screen:

The expression evaluator available in all topology types except Galvo and Virtual.

This part of the System Setup configures command control signals being produced from Axis Interfaces

in the system and amplifier-related flags which these Axis Interfaces read from or send to the amplifier.

For UMAC, these Axis Interfaces will usually be ACC-24E2, ACC-24E2A, ACC-24E2S, or ACC-24E3.

Each field is described in detail below:

Amplifier Control/Signal

 Control Type: Displays the type of control signal (Position, Velocity, Torque, Sinusoidal, Direct

PWM, or Direct Micro stepping) that the amplifier connected to this Axis Interface’s channel

supports.

 Signal Type: Displays selected signal type (Analog, Direct PWM, or Step & Direction).

Note

On this page these two parameters are read only so, in order to make a

change, the User must go back to Command and Feedback type page.

Amplifier Interface

 Amplifier Advanced Interface Mode: Setting this to True permits gives the ability to obtain the

AmpEna and AmpFault bits from different locations than the address of the channel which

produces the command signal. Setting this to False assumes that AmpEna and AmpFault come

from the channel which produces the command signal (Command Signal Channel; see next field).

 Command Signal Channel: Specify the structure of the channel which sends the command control

signal to the Amplifier.

Project

System

281

 Amplifier Fault Level: Select Low True if the Amplifier expects a Low-True signal to indicate an

amplifier fault. Select High True if the Amplifier expects a High-True signal to indicate an

amplifier fault.

 Amplifier Enable Signal Output Channel: Specify the structure of the channel which produces

this motor’s Amplifier enable signal.

 Amplifier Fault Signal Input Channel: Specify the structure of the channel which produces this

motor’s Amplifier fault signal.

Feedback Interface

 Dual Feedback Interface Mode: If the motor has separate encoders for position and velocity

feedback then select True.

 Primary Feedback Channel: Select the structure of the primary feedback channel; typically, this is

the position feedback channel.

 Secondary Feedback Channel: Select the structure of the secondary feedback channel; typically,

this is the velocity feedback channel. This property is grayed out for Single Feedback Motor

Topology but available for edit for Dual Feedback Motor Topology.

Flag Interface

 Hardware Overtravel Limits Input Channel: Select the Axis Interface channel which reads the

hardware overtravel limits.

Note

If “Hardware Mismatch” error message is displayed it is probably

because the chosen control type or signal type is not compatible with

the Amplifier chosen in the Amplifier Information section of the setup

or with the motor type chosen in the Motor Information section.

 Home Flag Input Channel: Select home flag input channel from available list. Usually the default

is not needed to change.

Interactive Feedback Block
The Interactive Feedback screen displays real-time plots of the feedback devices associated with the

motor on the right side and fields containing feedback-related data. The purpose of this screen is to help

determine whether the encoder feedback is working properly. The User can try to physically move the

encoder by hand and observe whether the feedback can been seen to change on the screen.

Note

The contents of the Interactive Feedback screen change greatly

depending on which kind of feedback is selected. The following

example is for Quadrature Encoders which are very common encoder

types. If using another encoder type, like an absolute serial encoder,

this screen would configure the number of bits of feedback data,

absolute power-on position and phasing, and other parameters relevant

to that encoder type.

Project

System

282

The screen below shows a Quadrature Encoder:

The left axis of the plot shows the units of the encoder output’s waveform while the bottom axis shows

time passing in units of seconds. “ServoCapt”, indicated by the red curve, is EncTable[x].PrevEnc; the

ECT output before being scaled by EncTable[x].ScaleFactor. “Motor Input”, indicated by the blue curve,

is Motor[x].Pos; that scaled output of the ECT entry.

Note

If the “Motor Input” curve does not change as the encoder spins, make

sure that the Accept button has been clicked on the previous screen;

the Hardware Interface screen.

The fields shown on this screen are described below:

 Position Captured on Servo Clock: This is the encoder’s position captured at the Power PMAC’s

servo frequency.

 Encoder Loss Detection Status Bit: This field shows the status (0 or 1) of the encoder loss

detection status bit, Motor[x].EncLoss.

 Encoder Conversion Table Result: Shows the result of the Encoder Conversion Table (ECT)

entry associated with this encoder.

 Motor Actual Position: Plots the position of the motor after being read by the encoder and

processed by the ECT entry. This is the Motor[x].ActPos structure.

 Motor Actual Velocity: Plots the velocity of the motor after the motor’s position is read by the

encoder and then numerically differentiated. This is the Motor[x].ActVel structure.

 Encoder Direction: Specify whether the positive direction of the motor is Counter Clockwise or

Clockwise (for Rotary Encoders only).

 ECT Scale Factor: The ECT will read the encoder’s address, perform the shifting specified in

EncTable[x].index1 and EncTable[x].index2, and then multiply this value by the ECT Scale

Factor, EncTable[x].ScaleFactor, before producing the final output of the ECT entry.

 Motor Position Input Scale Factor: This field sets or shows Motor[x].PosSf, which specifies the

scale factor by which the actual position value read at the register specified by Motor[x].pEnc is

Project

System

283

multiplied before being used in actual-position calculations in the outer (usually position) loop of

the motor.

 Motor Velocity Input Scale Factor: This field sets or shows Motor[x].Pos2Sf, which specifies the

scale factor by which the actual position value read at the register specified by Motor[x].pEnc2

is multiplied before being used in actual-position calculations in the inner (usually velocity) loop

of the motor.

The screen below shows a serial encoder, in this example from a Panasonic MSMD082S1S encoder:

This image is from the V3.x but works same way in Newer IDE with newer screen layout

Note

Absolute phase position feedback in parallel/serial mode only supports

binary data. If an encoder has Gray code mode, the conversion from

binary to Gray code will take place in the hardware (DSPGate or

FPGA) before the data is read by the CPU.

Safety Review
From V4.3 IDE the previous I2T blocked is renamed as Safety Review. These settings in the Power

PMAC limit current and voltage outputs in order to prevent damaging motors and amplifiers. The

Position limits section on this view is for the Servo Safety which is for configuring following error limits.

Software position limits are read-only as without Home reference the software limits won’t work

correctly. The user can reset the Software Limits to default settings if they are different.

The Safety Review screen appears as follows:

Project

System

284

The information icon will display additional information about the parameter or the how the value is

calculated as displayed in the above image.

Under the I2T Information section, the Safety Input section allows the user to edit the values which are

prepopulated from the Amplifier and Motor database. Most users will never need to change from these

prepopulated values. An information icon for each parameter will show additional information.

The next sections is for “Calculated Values”, which contains three fields:

 Continuous Servo Output: This is the calculated continuous output limit from the servo loop in

units of a 16-bit DAC. It is calculated based on the limits entered for Continuous Current,

Instantaneous Current and Maximum Time Allowed, under the “Data Input” area of this view.

When “Accept” is clicked this value will be written to Motor[x].I2TSet.

 Integrated Servo Output Limit: This is the maximum output from the servo loop’s integrator

based on the current limits entered. When “Accept” is clicked this value will be written to

Motor[x].I2TTrip.

 Maximum Servo Output Limit: This is the maximum value which the servo loop can output.

When “Accept” is clicked this value will be written to Motor[x].MaxDac.

Press the “Accept” button to accept the settings and move on to the next topology block.

Test and Set Block

Note

Please make sure that it is safe to Test and set the motor System

Setup - Test and Set Topology block.
It is recommended external Emergency Stop switch connected that

will kill the amplifier power in case of motor runaway or loss of

communication.

Project

System

285

This block performs a series of tests to ensure that the motor is working correctly. The tests which are run

depend upon which kind of motor is being used.

The two selections available here are;

 “Auto” - to run the predefined tests and configure the motor.

“Manual” - to manually specify parameters for each test and execute them sequentially.

In the manual screen each step in the testing process is listed with a Step Number, Description, Progress,

and Result as shown below:

“Progress” shows how far along the test has progressed.

“Result” will state whether the test passed (“Pass”) or failed (“Fail”). The tests listed here depend on

whether a Brush motor or a Brushless motor are being used.

Brush Motors

If using a brush motor this window will run three tests:

Open Loop Test

This test issues an open loop command to the motor outputting the voltage to it without closing the servo

loop. The purpose of this test is to ensure that a positive output command produces positive motion on the

motor and that a negative output command produces negative motion. There are four parameters that can

be adjusted in the Open Loop Test when using it in “Manual” mode:

 “MotorNumber” selects which motor will execute the test.

 “Magnitude (%)” selects what percentage of the total output magnitude permitted by

Motor[x].MaxDac to output to the motor for the test.

 “Duration (msec)” specifies how long to output voltage to the motor during the test.

Project

System

286

 “Iterations” specifies how many times to output voltage to the motor. Each iteration consists of

applying the magnitude of output specified in “Magnitude (%)” in the positive direction, and then

once again in the negative direction.

A correct Open Loop Test should appear as follows where a positive output command produces positive

encoder motion and a negative command produces negative encoder motion:

If the motor’s motion is the inverse of this i.e. a positive command produces negative motion and a

negative command produces positive motion, then try changing the direction of the encoder decode

structure. This structure is Gate1[i].Chan[j].EncCtrl for Gate1-Style Axis Interfaces and

Gate3[i].Chan[j].EncCtrl for Gate3-Style Axis Interfaces. For Quadrature Encoders, to change the

direction of the encoder decode using these structures change the structure’s value to 7 if it was 3 or to 3

if it was 7. Swapping the two leads of the motor can also be tried.

Measure DAC Bias Value

This test will output a zero-voltage command to see whether the motor moves. If it moves there is a bias

on the DACs. It will then vary the DAC voltage until the motor stops moving in order to calculate this

offset and then write it to Motor[x].IaBias.

There are two parameters that can be adjusted when executing this test manually:

 “MotorNumber” indicates which motor to perform the test.

 “Iterations” indicates how many times the window should try varying the output to the motor in

order to determine the DAC bias.

Brushless Motors

If using a brushless motor this window will run eight tests:

Detect Current Sensor Direction

This test determines the directional sense of the current sensors being used to measure the currents in the

motor’s phases, as specified by Motor[x].PhaseOffset.

The only parameter to specify when executing this test manually is the motor number (MotorNumber):

Project

System

287

Note

Setting the Motor[x].PhaseOffset parameter correctly is extremely

important because failing to do so can cause the current loop to be a

positive feedback loop thus potentially causing damage to the motor

or amplifier.

Measure Current Sensor Bias Value

This test measures any offset present on the ADCs which read the values of the current flowing through

the motor’s phases A and B. It does this by commanding a zero output and observing the current flowing

through the phases for a brief period. The bias values are then stored in Motor[x].IaBias for phase A and

Motor[x].IbBias for phase B.

The only parameter to specify when executing this test manually is the motor number (MotorNumber

below):

Voltage Six Step Text

This test applies voltage across the motor’s phases in order to commutate it one revolution. The test

measures how many counts per electrical cycle in order to set Motor[x].PwmSf, Motor[x].PhaseOffset,

and Motor[x].PhasePosSf.

During the test a plot will be displayed showing the ADC results for the current values on phases A (red)

and B (blue) on the vertical axis moving with Time (horizontal axis):

Three parameters can be adjusted in this test:

Project

System

288

 “MotorNumber” indicates which motor to perform the test.

 “Magnitude” is the voltage to be applied to the motor in units of 16-bit DAC bits.

 “Commutation Size” is an input from the user; it specifies how many counts per commutation

cycle. It is in units of the LSB of the register to which this motor’s Motor[x].pPhaseEnc

structure points.

Tune Current Loop

This test will command current to the motor’s phases and then calculate gains for the motor’s current

loop. The current loops gains are stored in the following structures: Motor[x].IiGain, Motor[x].IpfGain,

and Motor[x].IpbGain.

The parameters available when executing the test manually are shown below:

 “MotorNumber” indicates which motor to perform the test.

 “Magnitude” is the current to put through the motor’s phases in units of 16-bit DAC bits.

 “Duration” is how long to apply current to the phases [msec].

 “Desired Bandwidth” is the amount of bandwidth, which was specified, for the current loop to

have [Hz] was specified.

After the test tunes the current loop it will plot the current loop’s response, which should look more or

less like the image below, where the actual current (red) rises to the desired current (blue):

Project

System

289

The desired current is on the left axis in units of 16-bit DAC bits and time is on the horizontal axis in

units of milliseconds.

Often the automatic tuning is adequate but if interactive fine-tuning is required please refer to the the

section labeled “Tuning the Servo Loop in the IDE” in the Power PMAC User’s Manual.

Current Six Step Test

This test applies voltage across the motor’s phases in order to commutate it one revolution. The test

measures how many counts per electrical cycle the motor has in order to set Motor[x].PhasePosSf.

The parameters available when executing the test manually are shown below:

 “MotorNumber” indicates which motor to perform the test.

 “Magnitude” is the current to be applied to the motor in units of 16-bit DAC bits.

 “Commutation Size” is an input from the user; it specifies how many counts per commutation

cycle. It is in units of the LSB of the register to which this motor’s Motor[x].pPhaseEnc

structure points.

Open Loop Test

This test issues an open loop command to the motor outputting voltage to it without closing the servo

loop. The purpose of this test is to ensure that a positive output command produces positive motion on the

motor and that a negative output command produces negative motion.

There are four parameters that can be adjusted in the Open Loop Test when using “Manual” mode:

 “MotorNumber” indicates which motor to perform the test.

 “Magnitude (%)” selects what percentage of the total output magnitude permitted by

Motor[x].MaxDac to output to the motor for the test.

 “Duration (msec)” specifies how long to output voltage to the motor during the test.

 “Iterations” specifies how many times to output voltage to the motor. Each iteration consists of

applying the magnitude of output specified in “Magnitude (%)” in the positive direction, and then

once again in the negative direction.

Project

System

290

A correct Open Loop Test should appear as follows where a positive output command produces positive

encoder motion and a negative command produces negative encoder motion:

If the motor’s motion is the inverse of this i.e. a positive command produces negative motion and a

negative command produces positive motion, try changing the direction of the encoder decode structure

and rephasing the motor (for commutated motors). This structure is Gate1[i].Chan[j].EncCtrl for Gate1-

Style Axis Interfaces and Gate3[i].Chan[j].EncCtrl for Gate3-Style Axis Interfaces. For Quadrature

Encoders, to change the direction of the encoder decode using these structures change the structure’s

value to 7 if it was 3, or to 3 if it was 7. Swapping the two leads of the motor can also be tried.

If the Open Loop Test’s response is not inverted from the picture above, but is rather erratic, try rephasing

the motor or retuning the current loop (see the Tuning section of this manual for more details on tuning).

Phase Reference Search

This test establishes a phase reference for the motor, i.e. it tries to align the rotor with a phase in order to

maximize the motor’s torque output.

There are four parameters that can be adjusted for this test:

 “MotorNumber” indicates which motor to perform the test.

 “Phasing Method” determines which automatic phasing routine to use:

o Set to 1 to use Stepper Method

o Set to 2 to use the Two-Guess Method

 “Magnitude” is the current to apply to the motor when phasing [16-bit DAC bits].

 “Phase Search Time” is how long to apply current to the motor before setting the phase position

to 0

Project

System

291

Basic Tuning Block
The major difference between IDE V2.x or V3.x and V4.x is the Servo loop tuning from Test and Set is

removed and replaced by the Basic Tuning block. The concept of the basic tuning is that for new and

basic users the tuning algorithm should achieve the performance needed therefore not requiring the use of

the Advance tuning.

This is a simple one button tune function. Once the Basic Tuning is complete the bandwidth can be

changed, and the test can be re-run to recalculate the gains. This can be used to optimize the tuning by

utilizing our intelligent tuning algorithm.

Advance tuning is for the expert User who possess the correct knowledge of controls theory.

When Basic Tuning is selected the screen below will be displayed.

If the User is using the FW 2.5.1.7 without a new Tuning package, then a warning will be shown as

below…

It is not mandatory to upgrade the tuning package, but the User does not then they will not get the benefit

of improvements in the tuning and setup algorithms.

Project

System

292

If the User wants to upgrade the tuning package, they can download this from the Delta Tau Firmware

location and use Install package dialog from the from the Delta Tau menu and select File - Install Linux

Package like this…

Once the package is updated then the User can use the Basic tuning block to tune the Torque or velocity

mode and on success proceed to Commissioning and Motor Jog Block to test the motor.

Note

The User only needs to install the Tuning package once. For any

following set up’s the Warning message will not be displayed.

Press “Start Tuning” and a safety warning will be displayed before the tuning starts.

Press Yes to start the Tuning.

On completion synchronize the results on the Power PMAC and project by pressing Accept.

Project

System

293

On successful Tuning the screen will be displayed as shown below:

On Re-calculate it will make another move to accept the changes.

Commissioning Block

Note

Please make sure that it is safe to commission motor paramenters.

Commissioning blocks sets Power PMAC Motor structure elements.

Like Coordinate System, the Commissioning block is a collection categorized Motor elements that are

commonly used.

Project

System

294

Whenever necessary the view will show graphical representation of the parameter.

 This icon in front of parameter means there is additional information available. On clicking the

Icon, a graphical image will be displayed to give a better understanding of the parameter.

The User Units, to the right of the data entry, will display whatever has been set in the User Units

window. For example, if, in the User Units block on the topology, inch is set then all the User Unit fields

will show inch.

The other commissioning blocks are

Project

System

295

The Advanced view will be displayed and likes this:

Note

The Advanced System Elements View can be accessed from the

Commissioning View. This shows the categorised motor setup

elements. This view is for Users who do not want to use the topology

approach and have the expertise to setup the Power PMAC. As with

the topology approach all the values are written into their relevant files

and used, when built, to generate the systemsetup.cfg.

The Advance view can be accessed by selecting Commissioning – Advance System Elements block.

Coordinate Systems-Context menu
A Coordinate System can be added to the project by right clicking the Coordinate Systems node in the

Solution Explorer, as shown below:

Project

System

296

When “Add a Coordinate System” is selected a dialog box will be displayed and the number of the

Coordinate System can be selected, as shown below:

The dropdown box will display default coordinate system number of 0. The range available is from 0 to

Sys.MaxCoords.

Note

When the Motor is added to a project the Coordinate System structure

elements are saved to a file. Any Coordinate System structure element

changes within the project domain will be automatically updated and

maintianed within the file. When the build is performed the

Coordinate System file will be used to generate the systemsetup.cfg

file. No backup is needed for the Coordinate System parameters as

long as the changes are being made in the project system.

 On clicking the OK the Coordinate System view will be displayed, as shown below.

These settings are for coordinate system elements.

Project

System

297

On clicking any of the Coordinate System blocks a common view will be opened in the editor. The layout

and navigation are the same across the Coordinate System and Motor commissioning blocks.

For example:

CoordinateSystem-Context menu
This menu is available when any type of motor is added and displayed under Motors node.

User can access the Advanced System Elements. These

are for Expert PMAC Users

Project

System

298

Right-clicking on a motor node will open up a context menu containing various useful operations as

shown below … For convinience a word CS = Coordinate System will be .

Compare
The compare feature is available for coordinate systems. It allows the comparison of coordinate system

elements. The structure elements are categorized. A maximum of nine coordinate systems can be

compared at a time. The Compare function is available from the Delta Tau menu or by right clicking on

the CoordinateSystems in the Solution Explorer.

The following dialog shows the Compare feature being accessed from the Delta Tau menu.

The default view shows all the coordinate structure elements.

Project

System

299

Upload
Upload coordinate system gives the ability to upload the currently saved CS structure elements from the

Power PMAC to the project.

On selecting this option, a confirmation dialog will be displayed as shown below:

On Clicking Yes, if the CS View Editor is open in the IDE, a confirmation dialog will be displayed

confirming that any unsaved data will be lost by performing the upload.

Project

System

300

On a successful upload the CS in the project will be synchronized with the Power PMAC motor structure

elements.

Note

This option is useful if the CS structure element has been changed

outside of project domain such as in the Terminal window.

Export as Item Template
The CS can be exported or imported as item templates. All the CS settings will be exported during this

process.

The typical use of the CS template is to setup a complete CS, and then share this with another user.

This User can then Import the CS, using Import item template option, and use it in their project saving the

time of having to create the CS settings from new.

Using this option the User can:

• Export a CS in order to use it in another project

• Import a CS to reuse in their own project

• Create a new CS/ from an Imported CS/ Item Template

• Choose whether or not to automatically Import an Item Template into Power PMAC IDE project

at the point that it is exported

• Delete imported Custom Item templates

To export a CS settings as a Template the user will need to right click on CoordinateSystem node under

Coordinate System and choose the “Export as Item template” option as shown below:

On selecting the option, a new export item template dialog will be displayed, as shown below:

Project

System

301

On selecting Ok the acknowledge message will be displayed and template will be exported and stored into

the location defined in the dialog.

The User has ability to store the template to any folder by ticking the “Export to the following folder”

checkbox.

By default, the template will be imported to be used in the current instance of the IDE. Un-ticking this

check box will not import the template into the current instance of the IDE. In this case use Template

Manager from File Menu to import Coordinate system template.

By Default the template will be available as shown below when Add Coordinate System is selected….

Encoder
The Encoder tables’ settings are stored in the Encoder file. The Hardware Interface block on the Motor

Topology writes to the Encoder file on Accepting the data. These settings are then used in creating the

Project

System

302

systemsetup.cfg on build. On double clicking the Encoder viewer. This is read-only and will allow user to

verify encoder table setting for configured motor. The viewer will look like this…

Application
This is the new folder added in the Power PMAC project. The application folder can be added to existing

project by right clicking the project and selecting Add Application context menu. The work flow is shown

below. The Add Application is dynamic. As soon as the folder is added to the Project the Add

Application menu will disappear from context menu. If user only adds one application then the context

menu will dynamically change to Add Application Item to add other applications from the list.

Another way to get Application folder in the project is using Project Wizard to create project. It is

explained under File –NEW-Project/Project Wizard

There are currently four Power PMAC common application are supported

1. Compensation Table

2. Gantry

3. Homing

4. TCR (Requires CK3WGCxxxx hardware)

Project

System

303

Note

Application Expectation:

Motor is fully configured using System Setup (Recommended) and

can freely jog

Compensation Table
To add this App use the Add Application or use Project wizard. Typical workflow shown below. This

workflow shows that the compensation table application added using Add Application item context menu.

As shown above the compensation added under Application Node, marked with Red square.

As it is part of the project it is integrated with project so all the setup parameters are stored with the

project.

The Power PMAC Comp Table Setup window is used for setting up Compensation Tables in Power

PMAC (i.e. the members of the CompTable[x] structure). Power PMAC Compensation Tables can be

configured for 1D, 2D. The main window for a 1D Compensation Table appears as follows:

Project

System

304

Project

System

305

A 2D Compensation Table appears as follows:

The Comp Table Setup grid contains three sections:

A. Configurable items in the property grid are categorized into three sections:

1. The “CompTable Configuration” includes the following items:

a) Comp Table Number: runs from 0 to 255.

b) Comp Table Dimension: allows the user to select the dimension of the Compensation

Table from three choices: 1D-Linear; 2D-Planar.

c) Source Motor: Depends upon the dimension of the Compensation Table: 1 for Linear,

2 for Planar. User has the option to select the motor number for each source motor.

For 1D, only SourceMotor1 is displayed; 2D, SourceMotor1 and SourceMotor2;

d) Number of Targets: Power PMAC Compensation Tables support up to 8 target

addresses. The number of targets depends on the correction type. The correction type

“Actual Position – Inner and Outer Loops” requires two addresses for each target

motor, yielding a maximum of 4 target motors. All other correction types require

only one address for each target motor and therefore support up to 8 motors.

Depending on the number of targets, the grid will show TargetMotor1,

TargetMotor2…, up to TargetMotor8.

e) Correction Type: There are 6 different types of corrections as shown below:

Project

System

306

Note that the “Actual Position - Outer and Inner loops” option requires two addresses

for each target motor. All other types require only one address for each target motor.

f) Target Motors: specify the motor number for each target.

2. “Data Properties” grid items include three parameters for each dimension:

a. “First Data Point” is the table’s starting point in motor units in the given dimension.

b. Total Span specifies the length of the compensation table in motor units.

c. “Number of Zones” is equal to the number of sections between the First Data Point

and the Last Data Point, which can be computed as (First Data Point + Total Span).

3. “Comp Table General Properties” include:

a. Interpolation method: Linear or cubic.

With linear (first-order) interpolation, the correction in the dimension of the source is

calculated as a linear fit between the points on either side of the present position. It

can have sudden changes in slope as it passes a point in the table, which may result in

noticeably rough motion.

With cubic (third-order) interpolation, the correction in the dimension of the source is

calculated as a cubic fit using two points on either side of the present position. The

slope of the correction is always continuous, yielding smooth motion. This

interpolation takes about twice the calculation time of first-order interpolation.

b. Boundary control: Three option as shown below…

c. Output control: Supports two options.

4. Data Values for each Dimension:

Based on the Data Properties grid items, enter data values at equally spaced points

between first and the last point.

For 1D Tables, a 1D list of points is generated. Each correction value entered in the list

corresponds to the CompTable[n].Data[i] structure, where n specifies the Compensation

Table number and i specifies the 1st dimension point index.

For 2D Tables, a 2D Data Grid is generated. Each correction value entered in the 2D grid

corresponds to the CompTable[n].Data[j][i], where n specifies the Compensation Table

number, j specifies the 2nd dimension point index and i specifies the 1st dimension point

index.

5. At the bottom of the screen, three buttons are provided for the user’s convenience to achieve

the following tasks:

Project

System

307

a. Download Settings and Data to PMAC allows the user to download complete

Compensation Table configurations and data values to Power PMAC. This should be

done after the Table is crafted using this tool. On Download it also creates

compatable.pmh file under Global Includes. It stores the table so on build and download

it will get loaded to Power PMAC after reset. It shows like this…

b. Load Data from file (CSV) prompts the user to open a data file corresponding to a

previously configured Compensation Table. If the dimension in the property grid and

data values (given by a comma separated file) match, then the values are appropriately

added in the data grid.

Following is typical csv file for 1D and 2D…

1D csv file

2D csv file

Project

System

308

c. Upload Date from PMAC button uploads Table number n corresponding to the table

selected in the CompTableNumber field and its data values from Power PMAC and

displays the complete configuration on the screen.

Gantry
To add this App use the Add Application or use Project wizard. Typical workflow shown below. This

workflow shows that the gantry application added using Add Application item context menu.

As shown above the Gantry added under Application Node, marked with Red square.

As it is part of the project it is integrated with project so all the setup parameters are stored with the

project.

The below screen shows the configuration screen…

Project

System

309

Gantry configuration involves two steps Configuration and Test .

1. Configuration
The Leader DropDown automatically filled if the motor exists in the project OR motors are active

(Motor[n].servoctrl = 1). The follower is always next sequential number from Leader motor number.

Current setup supports one leader and one follower.

Hoovering the mouse will give following warning…

This motor was set up outside of the system setup environment. Motor Structure elements will not be

saved automatically. It is the user's responsibility to update/save those in their pmh files.

A disadvantage is the Gantry motor setup elements will not be written to the file and user will require to

maintain the settings on their own.

It is our recommendation to use motors that are that are part of the project and configured using system

setup to get all the project integration benefits.

Press this to refresh and update drop down.

Like across the IDE the info icon will provide additional information about the parameter or control.

Please enter the skew removal rate. It is important to enter the non-negative floating skew rate for proper

functioning of gantry.

On completing the configuration press Accept to setup gantry configuration for Leader and Follower. On

success the output will be written to Power PMAC message window as well as respective Motor file. On

build and Download these settings will be part of systemsetup.cfg file. A sample settings are shown

below..

2. Test
The one important step before testing gantry is making sure the direction of the leader and follower is

same. To do so the open loop control is provided. We recommend to use very low % MaxDac . This %

can be selected in increments of 0.1.

Enter appropriate %MaxDac in the numerical box. The DAC output will be displayed in the Dac Value

RO box.

Project

System

310

Using + and – button test the gantry motor direction. If the directions are same then you can use Jog Box

to verify Gantry motion.

Couple will enable gantry functionality indicated by Green switch. Couple OFF will decouple the gantry

configuration. Default is Off because this is Gantry setup and user is setting up.

Note

Please choose appropriate and safe Open loop value by choosing safe

%MaxDac value. If the leader and follower motion direction are not

same, choosing high MaxDac value may damage the machine.

Couple is ON

Couple is OFF

Typical Gantry Setup Steps

1. Open Project using Wizard and make sure to select Gantry application

2. Setup minimum two motors using system setup

3. Select Gantry and in the leader box select leader. Follower will be automatically added

4. This completes the gantry configuration

Project

System

311

5. Go to test section. Default is decouple, in this make sure the direction of motion is same for both

motors using small open loop move. Increments are 0.1%. Once direction confirmed click Couple

to couple leader and follower

6. Using Jog control Servo On and try to Jog the gantry axis.

7.

Note

Please choose appropriate and safe Open loop value by choosing safe

%MaxDac value. If the leader and follower motion direction are not

same, choosing high MaxDac value may damage the machine.

Removing Gantry
To remove the Motors from gantry mode, simply right click on the gantry and select Delete or select

gantry App and press Delete Key. On delete it will ask you to confirm the selection as shown below…

On selecting OK it will remove all the motor that are set in gantry mode and it will also update msetup

file.

Once Delete there is no UNDO! User will need to reconfigure gantry.

Homing
To add this App use the Add Application or use Project wizard. Typical workflow shown below. This

workflow shows that the Homing application added using Add Application item context menu.

As shown above the Homing added under Application Node, marked with Red square.

As it is part of the project it is integrated with project so all the setup parameters are stored with the

project.

The below screen shows the configuration screen…

Project

System

312

Homing configuration requires total 6 steps. Next section will explain these section.

1. Configuration
Here is the configuration section. Select appropriate type for setting homing.

It can be Single Motor or Gantry motor. Default is Single motor. If Gantry is selected we will

automatically check for follower motor and fill the box else error will be displayed when you will hoover

the mouse on the Follower box that is with Red border.

follower found and Gantry homing selected

Project

System

313

No follower found and Gantry homing selected…

Hoovering the mouse will give following warning…

This motor was set up outside of the system setup environment. Motor Structure elements will not be

saved automatically. It is the user's responsibility to update/save those in their pmh files.

Warning sign indicates that the selected motor is not present in the Project tree under System-Motors.

A disadvantage is Homing motor setup elements will not be written to the file and user will require to

maintain the settings on their own.

It is our recommendation to use motors that are that are part of the project and configured using system

setup to get all the project integration benefits.

It is our recommendation to use motors that are that are part of the project and configured using system

setup to get all the project integration benefits.

Press this to refresh and update drop down.

 IF user is setting multiple homing configuration then after

completing any configuration for motor then the motor will appear in the drop-down next to Copy

Homing settings From Motor. This is beneficial if the homing configuration is same for other motors and

will save the time.

Operation Timeout and Amp enable delay as they say are for compensating for homing condition delay

and can be varied depending on the system.

2. Starting Location
Here is the configuration screen. It is simple and self-explanatory. Make choices to set Starting location

Project

System

314

GoTo options are . These options are disabled if Home To option are selected as

Touch Probe 1S D input or Touch Probe 1S Z input. Default is None.

3. Home
Here is the configuration screen. It is simple and self-explanatory. Make choices to set Home condition.

Home To Drop down choices

Gated w/flag choices

Project

System

315

Default is Encoder Index and Gated w/flag is None

These choices are dynamic and depending on GoTo and Home To can change.

Gated w/AQuadB option only available if the Home To is selected as Index.

Touch Probe 1S D input and Touch Probe 1S Z input these are two methods for EtherCAT OMRON 1S

drive only.

Power PMAC IDE will keep enhancing Homing for EtherCAT in future versions.

Note

EtherCAT Homing supprt for OMRON 1S drive only. Touch Probe

1S (D input/Z input) option will be only availabe if the Power PMAC

IDE detects the Motor uses 1S drive.

4. Home Offset and Soft Limits
Here is the configuration screen. It is simple and self-explanatory. Enter the appropriate value if needed.

5. Motion Diagram

This section based on combination of GoTo, GoTo Direction, Home To, Home To Direction.

The diagrams are not available for Present Position (HMZ) and Absolute Encoder (HMZ.)

Here is the sample diagram for selected combination.

Project

System

316

The info icon will provide Homing scenario for the current selction for the motion diagram. Here is the

sample info card for motion diagram.

Following are the cases currently Motion diagram is available for..

Motion diagram number is not present on the user interface this is reference table for possible

combinations. Each combination will have its own info card.

Project

System

317

6. Test
This section as it said allows user to verify the Homing setup.

After setting all the section 1 to 4 user can Accept the setting.

Note

Homing Accept Expectation:

Build and Download of the project is necessary if user using C app

otherwise Download All is necessary before testing the Homing

configuration.

Here is the configuration screen

Project

System

318

After Accept, build and Download the project. This will ensure the new configuration is uploaded to

Power PMAC.

On Accept it will create following PLC and Motion program and automatically add to the project.

Project

System

319

After Build and Download user can press Run Test and this will start Homing move for the selected

Motor and configured condition. On success the screen will show like this … This is for current

combination of homing configuration…

User can Abort the test using Abort Test button and only visible when Run Test is active.

User can use Homing status/Homing flag status to test the homing sequence by manually moving the

motor or user can also check the limit or home switches and verify it’s functioning using Homing status.

Typical Homing setup steps
1. Open Project using Wizard and make sure to select Homing application

2. Setup motors using system setup

3. Open Homing setup screen by double clicking the Homing from Application node.

4. Select Motor type

5. Motor number will fill up automatically if Motor is setup else press refresh to update the list.

Select the Motor from drop down.

6. If some other motor is already configured it will available to copy else ‘Copy Homing Settings

From Motor’ drop down will say No motors.

7. Select Go To option and set Speed and Type of acceleration from Starting location

8. Select Home To option and set Speed and Type of acceleration from Home location

9. If needed setup Homing offset and soft limits. These value will be stored in the Motor setup file.

10. Make sure the Motion diagram shows the requested homing sequence.

11. Accept the settings to create necessary PLC and Motion program

12. Download all Programs or Build and Download the project.

13. Test the homing sequence using Run Test button. On pressing the button IDE issues following

command

HmMtr(motor number) = 1

Enable PLC HomingPLC

Project

System

320

Once the homing works satisfactorily user can invoke the Homing PLC for the appropriate motor

from any other PLC based on the Input.

Removing Homing
To remove the homing configuration, simply right click on the homing and select Delete or select homing

App and press Delete Key. On delete it will ask you to confirm the selection as shown below…

On selecting OK it will remove homing configuration for the motors. It will also remove the files created

by homing setup on Accept . Following files will be removed on deleting homing application from

project…

HomingDefinitions.pmh

HominIO.pmc

Homing.pmc

Homing.plc.

Note

Once Homing application is Delete there is no UNDO! User will need

to reconfigure homing.

TCR
To add this App use the Add Application or use Project wizard. Typical workflow shown below. This

workflow shows that the TCR application added using Add Application item context menu.

As shown above the TCR added under Application Node, marked with Red square.

Project

System

321

As it is part of the project it is integrated with project so all the setup parameters are stored with the

project.

The below screen shows the configuration screen…

1. Configuration

Below is the configuration Section. The user interface allows user to configure table. The table is used to

generate Trigger output by Commanded distance for Rapid processing. The configuration parameter are

self-explanatory. The info icon will provide additional information about the parameter as shown below..

Project

System

322

User can chose source of the clock , Polarity. Compare Location is fully editable table where user can

import the table from csv file or type the table entry for quick testing the TCR feature. User can delete ,

export or clear the Table.

The Compare Table option must be disable while loading (Download) the table to the card. There are total

4095 entries possible in the table.

The csv format is simple two column, first the number and the second column value, as shown below…

The info icon next to the table will show the csv file format too, as shown below..

Project

System

323

On pressing Download it does following action

1. The table is downloaded CK3WGC hardware.

2. It also writes what we are writing to the Power PMAC Message window.

3. Generates file specified by user under Table file name under Global includes folder.

User can use this file from their HMI software and using gpascii command will be able to download the

table to the hardware. The command for Table.pmh file is..

Gpascii –iTable1.pmh

On pressing Accept it generates TcrDefinition.pmh file that user can use in motion, plc script file. The file

looks like..

This Application is supported by CK3WGCxxxx hardware only if user opens TCR application that does

not have the CK3WGCxxxx hardware the user interface will show the warning as shown below..

Project

System

324

C Language

Background Programs
This folder contains the files for background C programs. These are applications that run in the free

background time of Power PMAC. A new C application can be added by right-clicking the Background

Programs folder and then clicking “Add a new Background C Application”:

Give the application a name and the IDE will create a new folder for that application’s source code files

underneath the Background Programs folder.

If the application needs to run at startup right-click the application’s subfolder e.g. called “capp1” in the

screenshot above, click Properties and then in the Properties Window select “Yes” in the “Run at startup”

field as shown below:

Downloading the C Source
C source files can be individually selected to be downloaded to the device. By default, no C source files

are downloaded. To change this setting:

1. Right-click on the project and select Properties.

2. Locate the Download C Source Files option and select Yes or No.

3. If Yes is selected the project will download the C source files to the Power PMAC.

Any time changes are made to the Download C Source Options a message indicating that a $$$***

command should be issued before downloading the project will be displayed. Since some of the C source

files might be on the Power PMAC it is necessary to reset the device before downloading the project.

Project

System

325

CPLCs
This folder contains folders for Background C PLCs (BGCPLCs) and Real-Time Interrupt CPLCs

(RTICPLCs). To create a new BGCPLC right-click the CPLCs folder and click “Add a new User CPLC

Project”:

Select the new BGCPLC’s number and the IDE will create a new folder for that BGCPLC’s source code.

It is not possible to create a new RTICPLC folder because only one RTICPLC is permitted on the Power

PMAC. This is found in the folder labeled “rticplc” under the “CPLCs” folder.

Include
The Include folder contains C header files (*.h) which can be included by any of the C program files

(*.c).

Libraries
The Libraries folder contains subfolders which contain libraries which have been written or included. To

create a new subfolder in the library right-click on Libraries and select “Add a new C Library Project”:

Give the library a name and the IDE will create a new subfolder where the source (*.c) and header (*.h)

files can be placed.

Realtime Routines
The Realtime Routines folder contains the source and header files for user-written servo and phase

algorithms. The source file is called usrcode.c and the header file is called usrcode.h.

usrcode.c contains the functions used in user-written servo and phase algorithms. usrcode.h contains the

prototypes of these functions and exports the functions as symbols. Please refer to the section of the

Project

System

326

Power PMAC User Manual called “Writing C Functions and Programs in Power PMACUser-Written

Phase Routines and User-Written Servo Routines” for more details on how to write these files.

To learn how to associate motors with these routines please see the section labeled “Configuring User-

Written Servo and Phase Algorithms”.

Configuration
This folder contains the files which control what is run upon downloading the project to Power PMAC,

upon booting up Power PMAC and upon issuing a save command. The contents appear as follows:

eni.xml
In a project system that is not using EtherCAT this file is empty. For projects with EtherCAT this file

stores the EtherCAT information. This file is generated when the Load Mappings command is selected

from context menu on Master node.

pp_custom_save.cfg
This file is automatically generated from pp_custom_save.tpl when a save command is issued to the

Power PMAC. It contains a backup of the settings of any of the structures added to pp_custom_save.tpl.

If this file is missing from the project e.g. if a project is opened that was created before IDE version

1.7.x.x, it can be generated by right-clicking the Configuration folder and then clicking “Download

Config Files”.

Note

Do not modify this file. It is automatically generated.

This feature requires firmware version 1.6.1.1 or newer and IDE

version 1.7.x.x or newer.

pp_custom_save.tpl
Add any Power PMAC parameter in this file and it will be added to pp_custom_save.cfg upon issuing a

save command to PowerPMAC. For example typing Motor[1].Servo.Kp into this file and then issuing a

save command to Power PMAC will result in the value of this parameter (Motor[1].Servo.Kp=4 by

default) being written to pp_custom_save.cfg.

Project

System

327

To add a whole structure tree use the backup command. For example to back up every setting in the

Motor[1] tree add the command backup Motor[1]. Into the pp_custom_save.tpl. If this file is missing

from the project e.g. if a project is opened that was created before IDE version 1.7.x.x, it can be generated

by right-clicking the Configuration folder and then clicking “Download Config Files”.

Note

After modifying pp_custom_save.tpl right-click the Configuration

folder and click “Download Config Files” so that the changes will take

effect. After this when a save is issued the values of the parameters

specified in this file will be added to pp_custom_save.cfg.

This feature requires firmware version 1.6.1.1 or newer and IDE

version 1.7.x.x or newer.

pp_disable.txt
This file is the first file loaded on the download of the entire project. This file should cause programs to

be aborted, PLCs to be disabled, motors to be killed, and buffers to be cleared; all for safety purposes.

The following is an example:

&*A //Abort All Programs

disable plc 0..31 //Disable all Script PLCs by number

#*k //Kill all the motors is commented out

clear all buffers

pp_inc_disable.txt
This file is the first file loaded on the download of an incremental project, that is, selected files. This file

should cause programs to be aborted, PLCs to be disabled, motors to be killed, and buffers to be cleared;

all for safety purposes. The following is an example:

&*A //Abort All Programs

disable plc 0..31 //Disable all Script PLCs by number

#*k //Kill all the motors is commented out

clear all buffers

pp_startup.txt
This file is the last file loaded on the download of the entire project. The commands within this file will

run when Power PMAC boots up. Typically this file starts the first programs to run on the Power PMAC

on start up. The recommended way of starting Power PMAC is to enable PLC 1 which then initializes

whatever parameters and starts whatever programs have been set. The following is an example:

enable plc 1;

pp_inc_startup.txt
This file is the last file loaded on the download of an incremental project or selected files. Typically, this

file starts the first programs to be run on the Power PMAC on start up. The recommended way of starting

Power PMAC is to enable PLC 1 which then initializes whatever parameters and starts whatever other

programs are needed. The following is an example:

enable plc 1;

systemsetup.cfg

Project

System

328

This file is maintained by project system. It is generated when project is built.

The file looks like this:

This file includes Motor, Coordinate system and Encoder table settings.

Generating Configuration Files

Another feature of the Configuration Folder is the ability to generate Configuration Files which are a file

containing only the structures which have been modified from their default settings since the last factory

reset ($$$***).

To access this feature right-click the Configuration Folder which shows this menu:

“Upload Config Files” will upload any Configuration Files which have been generated from the Power

PMAC to the host computer. “Download Config Files” will download any configuration files which are

stored on the host computer to the Power PMAC. “Generate Configuration File” will create a new

configuration file containing the settings presently in Power PMAC at the time this was selected. Add a

name for the configuration file and it will be stored in the Configuration Folder:

Project

System

329

Note

IDE V4.x maintains the systemsetup.cfg and automatically downloads

so generating config file in no longer needed. This feature is available

for backward compatibility.

Spaces or dots are not supported in this filename. In order to download a configuration file right-click the

file to be downloaded and then click “Check to Config Download”:

The file selected will receive a red check mark to the left of its filename. Then right-click the

Configuration folder and click “Download Config Files” to download this file.

Only one configuration file can be checked at any one time. To deselect a file, preventing it from being

downloaded, right-click the file and then click “Uncheck to Not Config Download”:

Project

System

330

This will remove the check mark from the file and it will not be downloaded when “Download Config

Files.” is selected.

Documentation
This folder contains files for documentation purposes. Any text-based file can be added into this folder.

None of these files get downloaded to Power PMAC but simply remain in the project folder on the host

computer.

Log
This folder contains the log files created when a project is downloaded to the Power PMAC. These file

should never be edited; they are for reference purposes only.

pp_proj.log
This file is a history log of files loaded to Power PMAC since Power On, $$$, $$$*** or downloading

from the IDE.

This log is made up of the following 3 sections:

[PMAC_HARDWARE] Consists of values formatted as follows:
Gate1AutoDetect=0x50

Gate1AddrErrDetect=0x400

Gate2AutoDetect=0x0

Gate3AutoDetect=0x0

CardIOAutoDetect=0x1

CardDPRAutoDetect=0x0

Each bit of the AutoDetect represents a card being detected at the 16 to 20 different possible addresses for

the particular card type. An “AddrErrDetect” non-zero value means that the gate-card was detected at a

second location.

[PMAC_CONFIG] Consists of values formatted as follows:
Successful Configuration using "/var/ftp/usrflash/Project/Configuration/pp_save.cfg"

This section logs the success or failure of loading the saved configuration variables.

Project

System

331

[PMAC_PROJECT] Consists of values formatted as follows:
Start of Project Loading using INI File: "/var/ftp/usrflash/Project/Configuration/pp_proj.ini"

Including Project File: /var/ftp/usrflash/Project/Configuration/pp_disable.txt

Including Project File: /var/ftp/usrflash/Project/PMAC Script Language/Global Includes/global

definitions.pmh

Including Project File: /var/ftp/usrflash/Project/PMAC Script Language/Libraries/subprog template.pmc

Including Project File: /var/ftp/usrflash/Project/PMAC Script Language/Motion Programs/prog

template.pmc

Including Project File: /var/ftp/usrflash/Project/PMAC Script Language/PLC Programs/plc template.plc

Including Project File: /var/ftp/usrflash/Project/Configuration/pp_startup.txt

Successful load of preprocessed File: "/var/ftp/usrflash/Temp/pp_proj.pma"

Run OK on Linux Program: /var/ftp/usrflash/Project/C Language/Background Programs/cplc1.out

This section logs the loading of the Power PMAC project files. This logging occurs after Power On, $$$,

$$$*** and for each download from the IDE.

pp_error.log
This file is a log of any errors on the last loading of the project into the Power PMAC.

pp_error_hist.log
This file is a history log of any errors in the loading of the Power PMAC since Power On, $$$, $$$***, or

downloading from the IDE. It is broken up into the same three sections as the pp_proj.log shown above

Project

System

332

PMAC Script Language Folder
This folder contains all of the programs and header files which are written in the Script language.

Language service for the PowerPMAC script language supports features like light bulb to suggest the fix

or improved error and warning notification,

Also supported is indentation decision maker like do-while, if, for etc.

TO

And shows the code if by hovering the mouse on collapsed sections

The Language service for the Power PMAC script language supports ‘Go to definition’ for subprograms

and ‘Go to Declaration’ for variables. Adding the typed variable, if it is not declared before, will add it to

globaldefinition.pmh file as a potential light bulb fix.

The Language service for the Power PMAC script language reads the value from the Power PMAC and

displays it as below:

Project

System

333

Global Includes
This folder contains all of the header files which are to be downloaded before all other Script programs

are downloaded. These header files usually contain global, csglobal, and ptr variable definitions which

are used in the other programs. The variables can be initialized in these header files. These files can also

contain preprocessor directives such as #define statements.

Kinematic Routines
This folder contains the files for Forward and Inverse Kinematic Subroutines. It is recommended to make

separate files for each subroutine.

Libraries
This folder contains the files for subprograms which can be called by any program written in Script.

Motion Programs
This folder contains the files for motion programs.

PLC Programs
This folder contains the files for PLC programs.

Project

System

334

Debugger

C language debugger
The IDE supports a fully featured GNU debugger which is integrated with modern Visual studio debug

interface. This supports the majority of the debugger functionalities and interfaces including starting,

stopping, breaking, setting break points, stepping, checking the execution stack, fully integrated watch

table, local variables, Auto display, tooltip, and many other modern debugging functionalities.

After successfully downloading the Power PMAC project right-click the Background C Application

(under Background Programs) that is to be debugged as shown below:

Select the context menu “Debug the selected CApp” to start the debugger. This will launch the same

debug environment used when debugging a Script PLC.

A breakpoint can be set before or after the debugger is launched. To set the breakpoint after the debugger

is launched make sure that the Background C Application is in a loop; otherwise the program execution

will be completed and it will not encounter the break point. Breakpoints can be set by pressing F9.

Below is a sample screen shot:

Project

System

335

Script PLC Debugger
The IDE supports debugging of script PLC.

1. Open the project that needs to debug.

2. Build and download the project.

3. Right click on the script PLC to debug.

4. Make sure to have breakpoint on the line in the plc as shown below:

5. Select to Debug PLC from Context menu.

6. The Debugger will be launched and the breakpoint is hit as shown below:

7. Standard Visual studio debug keys like F10, F11, etc. are supported.

Project

System

336

PROJECT ENCRYPTION

To encrypt the project and then download the encrypted project to Power PMAC do the following:

1. Right click on the project in the Solution Explorer and select Properties.

2. From the Properties window choose one of the following 3 options, as shown in the screenshot

below, before downloading the project:

The options are described as follows:

a. Do Not Encrypt Any File: This option is for downloading the project “as-is”, i.e. the

project will get downloaded to the Power PMAC without any encryption. The C source

files will be downloaded if the Download C Source File option is set to Yes. Otherwise,

no C source files will be downloaded.

b. Encrypt All Project Files: This option will force the IDE to encrypt all project files

before downloading them to the Power PMAC.

c. Encrypt Some Project Files: This option will allow only certain files within the project

to get encrypted and be downloaded to the Power PMAC. Once this option is selected

the user should select the files that will be encrypted by right-clicking the file, selecting

Properties and then setting Enable Encryption to Yes, as shown in the screenshot below

Project

System

337

3. Project Password: Once an encryption option is selected a password should be provided to be

used by the encryption tool. The Power PMAC will use the same password to decrypt the files

and load them into Power PMAC. If no password is provided the project will not be encrypted

and the following message will be displayed:

4. Encryption Message: Any time the Project Encryption Option is changed a message indicating

that a “$$$***” should be issued before downloading the project will be displayed. Since some

files might be on the Power PMAC it is necessary to reset the Power PMAC before downloading

the encrypted (or Original project) to the Power PMAC.

5.

Associating Motors with User-Written Servo and Phase

Algorithms

 338

MOTOR SETUP

The following section describes setting up the local motor and EtherCAT motor.

Refer Project folder section for details about each blocks from Topology. To avoid duplication only steps

are listed. In some cases detail information is provided.

Local Motor: (Single or Dual feedback)

1. Open a new project

2. Setup Power PMAC clock settings by clicking System – CPU folder or double-clicking the

Power PMAC block on the Topology view, to open the Global Clock view

3. Go to the Motors Node, right click and Add Motor. Choose either Single Feedback or Dual

Feedback. The feedback type can be changed if necessary.

4. On successful addition of the Motor, the Motor Toplogy View will be displayed.

5. As explained in the Motors section follow the Topology Block flow to setup the Motor. The

Toplogy block coloring will acts as a guide. The User Units block is part of Encoder block and it

is not mandetory though we do recommend it is set.

6. The Commissioning blocks are, also, not mandatory.

7. To complete each block the setting must be Accepted.

Local Motor: No Feedback Motor (Step & Direction)
1. Open a new project

2. Setup Power PMAC clock settings by clicking System – CPU folder or double-clicking the

Power PMAC block on the Topology view, to open the Global Clock view

3. Go to the Motors Node, right click and Add Motor. Choose No Feedback (Step & Direction).

Associating Motors with User-Written Servo and Phase

Algorithms

 339

4. On successful addition of the Motor the Motor Toplogy View will be displayed. See the No

Feedback topology Under Toplogy Section.

5. Click on the Amplifier page and add the amplifier that supports Pulse and direction. This is the

first block in Topology view. The important Amplifier settings for this mode to work are shown

below.

The Max. Pulse Freq and Pulse width unit comes from the Amplifier manufacturer. These settings

are enabled when the control type is Velocity control and signal type is Pulse and Direction from

the amplifier page.

6. Click Motor block to select Stepper or to add Stepper motor.

7. Select Hardware Interface block for making Motor structure element connection. The hardware

inerface page will loook like this. This is for Acc242A and for CK3M the connection will say

CK3M[x].Chan[y]. Note Output Signal type.

8. Select PFM block to set PFM clock and pulse width.

9. The last step is commisioning to set Motor parameters like acceleration, decelaration etc.

10. Once all these steps are foloowed use Jog Ribbon to test the motor moving in both direction

positive and negative

Associating Motors with User-Written Servo and Phase

Algorithms

 340

EtherCAT Network and Motor Setup

EtherCAT is supported when Power PMAC is ordered with the EtherCAT option. EtherCAT option on

Power PMAC CPU (UMAC) comes with PCI Express accessory board plugged directly into the Power

PMAC CPU.

CK3E always come with EtherCAT option and for CK3M EtherCAT is an option.

Note

All Power PMAC CPU support the Acontis stack from Firmware

version 2.4 and above.

CK3E supports Acontis stack for Firmware versions before 2.4

All the necessary hardware connections need to be setup, and if it is a drive, the separate configuration of

the drive. This is typically by means of the drive manufacturer’s software. The Power PMAC tuning

utility can be used only if the EtherCAT drive is used in torque mode.

There are three steps in setting up EtherCAT devices

1. Setup EtherCAT network configuration

2. Load mappings to Power PMAC

3. If the EtherCAT device is an Amplifier, then add and configure the motor.

Note

Prior to configuring EtherCAT network it is necessary to setup

EtherCAT Amplifier (Drive) used in Cyclic Synchronous Torque

mode (CST) or Cyclic Synchronous Velocity mode(CSV) using

vendor tool software.

Step 1: Setup ECAT network configuration
Check and set Power PMAC Clock

For all EtherCAT devices Power PMAC’s servo frequency must be a multiple of 62.5 μsec.

Note

EtherCAT standard specifications can be found at http://ethercat.org/.

1. Open Power PMAC clock settings by clicking System – CPU folder or double-clicking the Power

PMAC block on the Topology view, to open the Global Clock view

http://ethercat.org/

Associating Motors with User-Written Servo and Phase

Algorithms

 341

The required clock rate for the device should be defined in the device’s manual. Most EtherCAT devices

accept clock periods of 250 μsec, 500 μsec, and 1 msec. Set the Power PMAC servo clock frequency to

one of the required frequencies as shown below:

If the frequency is not a multiple of 62.5 μsec then when the EtherCAT device is enabled by right-

clicking on one of the Master nodes will generate an error. The error shown below will be displayed.

The details about the error are displayed in the Power PMAC message window as shown below:

This value must be a

multiple of 62.5 μsec

Select different servo

frequencies with this

dropdown list

Associating Motors with User-Written Servo and Phase

Algorithms

 342

Configure the EtherCAT Device
Open the Master view by clicking the Master node under EtherCAT folder

This will open the Master view in the editor area.

Select a clock frequency that is the same as the Power PMAC servo clock frequency from Cycle Time

element. User can choose to program clock either in time or in frequncy mode . If ECAT drive supports

16 KHz then user must select frewquency mode and then from drop down select 16000 Hz.

Note

Power PMAC servo clock and Cycle Time from Master must match.

The currently connected Power PMAC’s IP address is displayed in the IPAddress field.

Appending or scanning the slave
To add a slave device to master:

Associating Motors with User-Written Servo and Phase

Algorithms

 343

1. Scan the network if the devices are connected to the network

2. Append the slave from the list

Adding slave device to Master using Scan network

Right click on the Master node to open the context menu and select the Scan EtherCAT Network option:

On selecting Scan EtherCAT Network the network scan will begin.

If there are devices already present under the Master node, permission will be requested to remove the

nodes before scanning as shown below:

When there are no slave devices under Master node then scan will continue.

Associating Motors with User-Written Servo and Phase

Algorithms

 344

On completion of the scan a message will be displayed in the Power PMAC messages and the detected

slave device/s will be added under the master node as shown below:

Slave devices will be added to the Master node as shown below:

Adding Slave device to Master using Append Slave

If there are no devices connected on the network, it is still possible to configure the EtherCAT network. In

this case there is a Power PMAC but no EtherCAT device connected. Right click on the Master node and

select the Append Slave option as shown below:

Associating Motors with User-Written Servo and Phase

Algorithms

 345

Selecting Append Slave will open the Append Slave dialog.

Choose the device to add. More than one slave can be added by using Number of Slaves counter. The

default is 1. When a device is added a message will be displayed in the Power PMAC message box and

the Slave will be added under the Master node. For example, as shown below the R88D-KNO1L-ECT-L

Omron Drive slave device is appended to Master.

Naming Slave device

IDE V4.3 onwards supports naming the slave. User can open the slave dialog by clicking the slave from

the project. Select General tab page and change the name. For example, in the following screen the slave

name is change to MyXAxis.

Associating Motors with User-Written Servo and Phase

Algorithms

 346

Note

As per our specification Slave name must start with alphabet

character. Valid names are My_Axis, X_Axis, Y_Axis etc. Invalid

names are 1_Xaxis, 234_Ypos, _12YAxis etc.

As soon as the name change is successful project will be updated too.

Configuring Slave device and Master device

Once the slave is available there are more Tab pages added dynamically to the Master view. For correct

distributed clock operation make sure for Omron devices the distributed clock – Clock Adjustment is set

to master shift mode as shown below:

Associating Motors with User-Written Servo and Phase

Algorithms

 347

The other settings from Master tab pages are rarely changed.

Click on the appended or scanned slave to open the slave device view. Most of the time the default PDOs

are already selected.

Configuring PDO mapping and renaming pdos

To change the PDO selection, select PDO mapping tab and choose new PDO.

Typically, the default PDO’s are set as the settings are read from esi file.

This manual refers to 1S and G5 drives, thus the following PDO mappings are for these drives.

Associating Motors with User-Written Servo and Phase

Algorithms

 348

The majority of users will use CSP mode so most of the default PDO are set to choose mapping for CSP

mode. If the User wants to change the type of control to CST or CSV, then a different set of PDO needs

to be selected.

The User can edit the default name that are read from esi file. The newly named pdos are written to the

header file on Load Pdo mapping context menu command.

The following describes choosing PDO for different types of control for 1S / G5 drive.

Note

For EtherCAT drives, other then OMRON (1S or G5), please refer the

vendor manual for the correct set of PDO.

1S/G5 drive CSP (Cyclic Synchronous Profile/Position mode)

In the figure below the default PDO’s are marked with a blue rectangle whereas the red rectangle marks

Items that must have PDO for the selected cyclic mode.

The User needs to make sure for CSP mode that the PDO must have 0x6n7A where n is axis. So 0x607A

defines mapping for axis 0.

Associating Motors with User-Written Servo and Phase

Algorithms

 349

Note

PDO name can be customize but make sure that customize name must

be in English enven if the IDE is opened in the laguage other than

English.

1S/G5 drive CST (Cyclic Synchronous Torque mode)

This is not default PDO’s and the user has to unselect default PDO and select this PDO.

In the figure below the default PDO’s are marked with a blue rectangle whereas the red rectangle marks

Items that must have PDO for the selected cyclic mode.

The User needs to make sure for CST mode that the PDO must have 0x6n71 where n is axis. So 0x6071

defines mapping for axis 0.

Associating Motors with User-Written Servo and Phase

Algorithms

 350

1S/G5 drive CSV (Cyclic Synchronous Velocity mode)

This is not default PDO’s and user has to unselect default PDO and select this PDO.

In the figure below the default PDO’s are marked with a blue rectangle whereas the red rectangle marks

Items that must have PDO for the selected cyclic mode.

The User needs to make sure for CSV mode that the PDO must have 0x6nFF where n is axis. So 0x60FF

defines mapping for axis 0.

After selecting the appropriate PDO the next step in slave configuration to choose the Init commands.

Init Commands

In this tab the current configured init commands read from device esi file can be viewed and, if allowed,

the add/edit/delete init commands can be used.

1. Lists of Init Commands

 Init Commands comes from the ESI file or will be generated from the configurator. The “Access”

column tells the user if this Init Command can be edited (RW = Read/Write) or not (RO = Read-

Only).

2. Buttons

 New/Copy/Edit/Delete: Used for changing the list

 Up/Down: Moving the selected Init Command up or down

At the moment only Init Commands of the CoE- and SoE- Protocol can be added or changed.

Associating Motors with User-Written Servo and Phase

Algorithms

 351

Just like default PDO are set to CSP mode the Init command matches the control mode and the default is

CSP mode. This is marked by red rectangle below.

Object 6060h: Modes of operation is set to 8 for CSP mode. Follow the table for correct operation mode

and edit the value for object 6060h.

Note

To use control type other than CSP object 6060h must be change to

appropriate mode.

Associating Motors with User-Written Servo and Phase

Algorithms

 352

 Distributed Clock

 Operation Mode: Selectable DC operation modes. The modes cannot be edited.

 Sync Unit Cycle: Base interval in microseconds which will be used from the master

 Overwrite Mode: Overwrites the settings of the selected operation mode (might be necessary, if

the slave doesn’t offer the right operation mode)

Sync Units

 Sync Unit 0

 Cycle Time

o Sync Unit Cycle: Unit is synchronized relative to the Unit Cycle

o User defined: Unit has its own interval

o Shift Time: Unit is adjusted by the shift time. Typically, one half or one quarter of the

EtherCAT cycle time works for most devices. For example, if the clock is 1 msec (1 kHz)

then shift time of 250usec or 500usec will work for most devices.

Note

Refer to the Device manual for guidelines on the exact shift time.

Advanced settings

For the slave to be a potential reference clock then select the Advanced Options Tab to make the changes.

Associating Motors with User-Written Servo and Phase

Algorithms

 353

1. Startup Checking

 Master will check the Vendor ID, Product code and Revision number if the state machine changes

from INIT to PREOP of the slave

 Revision number can be verified six ways:

o “==” HI word is equal, LO word is equal

o “>=” HI word is equal or greater, LO word is equal or greater

o “LW ==” HI word is equal

o “LW ==, HW >=” LO word is equal, HI word is equal or greater

o “HW ==” LO word is equal

o “HW ==, LW >=” HI word is equal, LO word is equal or greater

2. Identification Checking

 If ‘Check Identification’ is selected the Identification Value of the slave is checked. The ‘Select

Local Address’ Box is the register of the Identification Value.

3. Process Data Mode

 Disable LRW: Determines whether LRD/LWR command or the LRW command is used for

accessing process data. Cable redundancy needs LRD/LWR, slave-to-slave-copy needs LRW.

4. Watchdog

 Set Multiplier: Writes the configured value to the corresponding slave register: 0x0400

 Set PDI Watchdog: Writes the configured value to the corresponding slave register: 0x0410

5. Distributed Clocks

Associating Motors with User-Written Servo and Phase

Algorithms

 354

 Potential Reference Clock: Set to use the slave as a potential reference clock

6. Timeouts

 SDO Access: Internal master timeout which is used for accessing the SDO (0 = Use internal

default value of the master)

 Init PreOp: Internal master timeout which is used for changing slave state.

 Pre-Op Save-Op or Safe-Op Op: Internal master timeout which is used for changing slave state.

 Back to Pre-Op, Init: Internal master timeout which is used for changing slave state.

 Op Safe-Op: Internal master timeout which is used for changing slave state.

7. Overwrite Mailbox Size

 Output Size: Overwrites mailbox output size.

 Input Size: Overwrites mailbox input size.

8. Mailbox Mode

 Cyclic: Interval in milliseconds within which the input mailbox will be read (polling mode)

 State Change: The input mailbox will be read only if the status bit is set

Continue setting the PDO and distributed clock setting for rest of the slave devices in the network.

Step 2: Load mappings to Power PMAC
This step is necessary for the EtherCAT network to function properly. Without this step the EtherCAT

motor setup will not work properly.

It is expected that the user has completed configuring the necessary settings for the Master device and the

Slave devices for the network.

Right click on master node to select Load mappings to Power PMAC option, as shown below.

Associating Motors with User-Written Servo and Phase

Algorithms

 355

On selecting Load mapping to Power PMAC, the process indicates it’s progress by showing a dialog and

a message in the Power PMAC message box.

The Progress bar showing the Load mapping function is shown below

The Progress status messages are shown below.

On successful completion of the Load mapping to Power PMAC the following actions are completed.

4. The eni.xml (EtherCAT network information) is generated and copied to the Project-

Configuration folder and then downloads the file to the Power PMAC

/var/ftp/usrflash/Project/Configuration folder.

Associating Motors with User-Written Servo and Phase

Algorithms

 356

5. The mapping file ECATConfig.cfg is created and copied to the Project-Configuration folder and

downloaded to the Power PMAC /var/ftp/usrflash/Project/Configuration folder. After

downloading, the file is loaded to Power PMAC using gpascii –iECATConfig.cfg command.

6. The ECATMap.pmh and ECATMap.h files are created and copied to the Power PMAC Script

Language-Global Includes and C Language-Includes folders for use in C app and script

languages. These header files consist of #defines values to access ECAT mappings in C app or

script languages.

A Header file for script looks like this:

Associating Motors with User-Written Servo and Phase

Algorithms

 357

PDO names constructed with the slave name and pdo name. The user has the ability to

collapse/expand EtherCAT slaves mappings marked with // <Slave Name> and shown above with

an orange Square.

This is explained above in step 1.

Note

3. It is not necessary to copy the EtherCAT files manually to the

project like in V2.x and V3.x; V4.x automatically manages

these files.

4. EtherCAT header files collapse/expand feature is available in

te IDE 4.3.2.x and above

Step 3: Add EtherCAT Motor (Method 1)
Go to the Motors node in the project and right click Add Motor and select EtherCAT Topology.

The user needs to select a slave drive in the orange colored block, EtherCAT Slave Drive. The drop-down

list automatically populates with all the available slave drives from the Project-EtherCAT master node, as

shown below…

Associating Motors with User-Written Servo and Phase

Algorithms

 358

The list shows the all the details about the slaves, including whether the slave is already assigned to a

motor.

Select the appropriate slave from the list and enter the control type. Once selected, the EtherCAT Slave

Drive block will look like this…

If the slave drive has more than one axis, then choose Multiple Axis. On selecting the Multiple Axis

option, the user will be required to enter the axis number as shown below…

Associating Motors with User-Written Servo and Phase

Algorithms

 359

Entering appropriate values in the EtherCAT Slave Drive block will automatically load the data in the

Hardware Interface page from the available mappings.

On entering the correct settings press the symbol to save the changes. On success, the color of the

Amplifier Block will change to green with a check mark as shown below:

The next block to configure will be the User Units.

This is not a mandatory block and it is entirely the user’s choice to define how many counts correspond to

a machine unit. For example, on a machine that needs 32767 counts to move 1 mm due to its mechanism,

then the user would enter the following…

On pressing the save symbol , the block will set all the necessary Power PMAC structure elements to

reflect the User Unit change so the user can program in the User Units (i.e. mm in the previous example).

Associating Motors with User-Written Servo and Phase

Algorithms

 360

Click on the information icon to check the affected structure elements. The view will look like this…

The next block to configure is the Hardware Interface block.

This will associate the EtherCAT connection with the Power PMAC motor and encoder structures. If the

slave values are set correctly in the Amplifier Block, then the Hardware Interface Block will populate

with the correct connection. Verify the entries and press Accept and the Hardware Interface block will be

marked as complete on the topology view. The Hardware Interface screen is shown below:

The selected items are for Cyclic Position mode.

The next block to configure is the Interactive Feedback block to test the encoder feedback. To do this the

EtherCAT need to be activated.

Right click on the Master Node and click on Activate EtherCAT as shown below:

Associating Motors with User-Written Servo and Phase

Algorithms

 361

If the Activation fails, the reason for this will be displayed in the Power PMAC message box.

While Activating, status will indicate the progress as shown below:

On a Successful Activation the Master Node will display “Activated” as shown below:

Associating Motors with User-Written Servo and Phase

Algorithms

 362

The Green circle icon indicates the EtherCAT is activated.

The Red circle indicates the Slave device is deactivated.

On successful activation the User can verify the encoder feedback my moving the motor by hand (if

possible)

The next two blocks are for Safety review and Basic Tuning.

For the Cyclic Position mode these two blocks are not required, and the User can move forward to the

Commissioning block and Motor Jog.

If the Control type is Cyclic Torque or Cyclic Velocity, then the User follow safety review Basic tuning

block.

Note

Safety Review and Basic Tuning Toplogy blocks are enabled only if

the Control type is Cyclic Torque or Cyclic Velocity.

If the Control type is either Torque or velocity, then selecting the Basic Tuning block will generate the

warning if user is using the FW 2.5.1.7 without a new Tuning package as shown below…

Associating Motors with User-Written Servo and Phase

Algorithms

 363

It is not mandatory to upgrade the tuning package, but the User does not then they will not get the benefit

of improvements in the tuning and setup algorithms.

If the User wants to upgrade the tuning package, they can download this from the Delta Tau Firmware

location and use the Update Firmware dialog from the Delta Tau menu and select Kernel Update- Install

Linux Package like this…

Once the package is updated then the User can use the Basic tuning block to tune the Torque or velocity

mode and on success proceed to Commissioning and Motor Jog Block to test the motor.

Note

The User only needs to install the Tuning package once. For any

following set up’s the Warning message will not be displayed.

When all the necessary Topology blocks are Green the User can test the EtherCAT Motor using Motor

Jog block.

This is a simple Jog block for testing the Motor settings. For any advance Jog functionality, the User can

click on the Jog block to open the Jog Ribbon Menu.

If the EtherCAT is not Activated, then the User cannot Jog the motor and it will be indicated on the Motor

Jog Block.

Associating Motors with User-Written Servo and Phase

Algorithms

 364

If the EtherCAT is Activated, then the User can Jog the motor and the movement will be indicated on the

Motor Jog Block by the rotating of the circular icon .

The User can Servo ON and Servo OFF the axis. These commands are basically “#<Motor Number> Jog”

and “#<Motor Number> Kill”.

At this point for the Cyclic Position mode EtherCAT Motor setup is complete.

Associating Motors with User-Written Servo and Phase

Algorithms

 365

Step 3: Add EtherCAT Motor (Method 2-Drag and Drop)

This method is only available for our EtherCAT devices (OMRON-1S or G5). If you are using multiple

EtherCAT drive either 1S or G5 then it possible to use Drag and Drop method. You can either select one

OMRON EtherCAT drive or Multiple OMRON EtherCAT drive. Once select Drag and Drop on to Motor

folder and setup system will configure the motor based on the type of PDO mapping. This is best used

with Cyclic Position mode, as default PDO configuration is set for cyclic position in EtherCAT drive.

Single EtherCAT drive Drag and Drop:
Following picture shows the flow for setup. On success user will need to Enable the EtherCAT network

and Jog the Motor and verify the setup. This is for Cyclic Position mode. For Cyclic Torque Basic Tuning

is needed.

Multiple EtherCAT drive Drag and Drop:
Following picture shows the flow for setup. On success user will need to Enable the EtherCAT network

and Jog the Motor and verify the setup. This is for Cyclic Position mode. For Cyclic Torque Basic Tuning

is needed.

Associating Motors with User-Written Servo and Phase

Algorithms

 366

Project tree will look like this…

Note

1. Only OMRON EtherCAT slave drives support drag and drop.

2. Drag and Drop requires initial PDO mapping for type of

Cyclic control. Default is cyclic position.

Once user uses one of the Drag and Drop it is possible to user other blocks as explained below.

The next possible block the user can configure will be the User Units.

This is not a mandatory block and it is entirely the user’s choice to define how many counts corresponds

to a machine unit. For example, on a machine that needs 32767 counts to move 1 mm due to its

mechanism, then the user would enter the following…

On pressing the save symbol , the block will set all the necessary Power PMAC structure elements to

reflect the User Unit change so the user can program in the User Units (i.e. mm in this example).

Click on the Information icon to check the affected structure elements. The view will look like this…

Associating Motors with User-Written Servo and Phase

Algorithms

 367

EtherCAT need to be activated.

To activate EtherCAT, right-click on the Master Node to open the context menu and click Activate

EtherCAT as shown below:

If the activation fails, the reason for this will be displayed in the Power PMAC message box.

While activating a progress dialog will indicate the progress, along with the status, as shown below:

Associating Motors with User-Written Servo and Phase

Algorithms

 368

On a successful activation the Master Node will display “Activated” as shown below:

A green circle icon indicates that EtherCAT is activated for the slave.

A red circle indicates the slave device is deactivated.

On successful activation the user can verify the encoder feedback my moving the motor by hand (if

possible).

The next two blocks are for Safety review and Basic Tuning.

For the Cyclic Position mode these two blocks are not required, and the user can move forward to the

Commissioning block and Motor Jog.

If the Control Type is Cyclic Torque or Cyclic Velocity, then the next item for the user to configure will

be the Safety Review and Basic Tuning blocks.

Note

Safety Review and Basic Tuning Toplogy blocks are enabled only if

the Control Type is Cyclic Torque or Cyclic Velocity.

If the Control Type is either Torque or Velocity, then selecting the Basic Tuning block will generate the

warning if the user is using FW 2.5.1.7 without a new tuning package as shown below…

Associating Motors with User-Written Servo and Phase

Algorithms

 369

Upgrading the tuning package is not mandatory, but if the user doesn’t then they will not get the benefit

of improvements in the tuning and setup algorithms.

If the user wants to upgrade the tuning package they can download this from the Delta Tau Firmware

location, then use the Update tuning package dialog from the Delta Tau menu and select Install package It

looks like this… enter the appropriate debian package file (.deb) and press Install.

Once the package is updated, the user can use the Basic Tuning block to tune the Torque or Velocity

mode and on success proceed to Commissioning and Motor Jog blocks to test the motor.

Note

The user only needs to install the Tuning package once. For any

following setups the warning will not be displayed.

When all the necessary topology blocks are green the user can test the EtherCAT motor using the Motor

Jog block.

This is a simple jog block for testing the motor settings. For any advanced jog functionality, the user can

click on the jog block to open the Jog Ribbon menu.

If EtherCAT is not activated, then the user cannot jog the motor and it will be indicated on the Motor Jog

block.

Associating Motors with User-Written Servo and Phase

Algorithms

 370

If EtherCAT is activated, then the user can jog the motor and the movement will be indicated on the

Motor Jog block by the rotation of the circular icon .

The user can Servo ON and Servo OFF the axis. These commands are equivalent to “#<Motor Number>

Jog/” and “#<Motor Number> Kill”.

At this point, if configuring for Cyclic Position mode, EtherCAT Motor setup is complete.

Associating Motors with User-Written Servo and Phase

Algorithms

 371

Additional necessary settings for 1S and G5 drive to be used in CST and
CSV mode
To use 1S or G5 in CST or CSV mode the user needs to change the settings on objects marked by the red

rectangle below.

After completing PDO mapping steps the mapping will be available in the .pmh files under the Global

Includes folder of the project. For example:

Slave_0_607F_0_Maxprofilevelocit (or ECAT[0].IO[6].Data)

Slave_0_60E0_0_Positivetorquelim (or ECAT[0].IO[7].Data)

Slave_0_60E1_0_Negativetorquelim (or ECAT[0].IO[8].Data)

The user can write to this object from the terminal window. These values can be changed even after the

network is activated. The details on these settings can be found in the 1S or G5 drive manual. In our test

we have set these values as start point to …

Slave_0_607F_0_Maxprofilevelocit (or ECAT[0].IO[6].Data) = This is dependent on encoder resolution.

For 1S the resolution is 2^17 bit so for the nominal rpm of 3000 the minimum value of 2^17 * 50 user can

change this as necessary.

Slave_0_60E0_0_Positivetorquelim (or ECAT[0].IO[7].Data) = 5000

Slave_0_60E1_0_Negativetorquelim (or ECAT[0].IO[8].Data) = 5000

Note

The User is advised to set these values appropriately for 1S and G5 as

per the requirement and referring to the device manual.

Note

Additional settings must be set in order for 1S and G5 drive to work in

CST or CSV mode. For drive’s other than 1S and G5 similar settings

are needed.

Please check vendor manual for these settings.

Associating Motors with User-Written Servo and Phase

Algorithms

 372

The motor can now be set to Jog by either typing the following command in terminal window, “#<n>J/”

where n is motor number or the Jog Ribbon number, or by using Jog Ribbon.

Associating Motors with User-Written Servo and Phase

Algorithms

 373

MISCELLANEOUS FEATURES OF THE IDE
There are various features available within the Visual Studio based Power PMAC IDE.

Import/Export Settings

This feature allows the layout of the Power PMAC IDE to be changed from the default and saved.

This can be accessed using Tools-Option-Import and Export Settings. Use the location path and name to

store a personal IDE layout.

In a case when the layout is modified for any reason then this can be set back to the newly created layout

by accessing the layout from the windows menu. The image below shows a user loading a layout they

have named “MyNewLayout”.

Associating Motors with User-Written Servo and Phase

Algorithms

 374

View Database
This command is useful for helping to identify any Database related issues. This can be accessed from the

Help menu as shown below:

This is a simple database viewer and will display the tables that are used by the IDE. The viewer looks

like this:

Associating Motors with User-Written Servo and Phase

Algorithms

 375

Import/Export Database
It is possible to enter custom Amplifiers and Motors to be used in the Motor setup. These databases can

be exported or imported using the Import and Export functions in the File menu.

On clicking either option, a choice can be made of which databases to import or export.

On export, a location will be requested to store the file and, on success, a message will be displayed as

shown below:

Associating Motors with User-Written Servo and Phase

Algorithms

 376

Similarly for Import, the user will be reqiuired to select a file to import. If items to import already exist in

the database, a dialog will be displayed where individual items can be selected, as shown below:

Note

The main function of Import and Export is sharing Motor and

Amplifier databases.

Set the Editor area to Full Screen
To set the Editor to Full Screen simply press Alt+Shift+Enter.

Associating Motors with User-Written Servo and Phase

Algorithms

 377

The Editor area will be displayed full screen as shown below:

Associating Motors with User-Written Servo and Phase

Algorithms

 378

ASSOCIATING MOTORS WITH USER-WRITTEN SERVO AND
PHASE ALGORITHMS

After writing usrcode.c and usrcode.h files these can be assigned to certain motors to run their algorithms

through the IDE. To do this, right-click the Realtime Routines folder and click on “User servo setup”:

Selecting this opens the following window:

In this window select the motor to associate with a user-written algorithm. Then select the User Servo or

Phase algorithm which to associate with the motor selected using the dropdown boxes on the right.

Finally click “Apply” to apply the selection. This can be disassociated with all motors from user-written

algorithms by clicking “Clear All.”

New user-written algorithm functioncan be added to the usrcode.c and usrcode.h files by clicking “Add a

New Function” which opens this dialog box:

Name the function and it will be generated in usrcode.c. It’s prototype and symbol exportation will be

generated in usrcode.h.

Note

Setting up custom servo algorithms with this screen will modify

Motor[x].Ctrl, setting it to UserAlgo.ServoCtrlAddr[x]; for phase,

Motor[x].UserPhase will be set to UserAlgo.PhaseAddr[x].

Associating Motors with User-Written Servo and Phase

Algorithms

 379

MACRO PROJECT

To add a MACRO project to the main project right click on the main menu and select Add Macro Project.

The MACRO Project will be added to the Power PMAC Script language folder. The MACRO project

contains a default file named station1.pmh. The MACRO project acts as an independent project and its

contents can only be downloaded to the Power PMAC through a menu available by right clicking on the

MACRO folder. A MACRO file can also be downloaded by right-clicking on a MACRO file and

selecting Dowload Selected Files.

The MACRO project can be used to isolate the main system files from the MACRO-related files such as

PLCs, local settings and station settings.

Associating Motors with User-Written Servo and Phase

Algorithms

 380

PROJECT UPLOAD

To upload a project from Power PMAC a project must be open in the IDE and presently selected. If there

are no projects loaded in the IDE or selected then the Upload Project menu will not be available. Also,

the loaded project in the IDE must not have the same name as the Active Project in the Power PMAC. If

both projects have the same name it will not be possible to open it in the IDE.

Note

Project with EtherCAT cannot be uploaded from Power PMAC. We

do not store device esi file on Power PMAC because it will reduce

program usable memory.

We recommend to use Project Compare dialog and then copy

folder/file from Power PMAC to currently opened project from

Project compare dialog. (See Project Synchronization)

To Upload a project open the File menu and select “Upload Project from Power PMAC” menu option as

shown below:

Choose a folder in which the project will be uploaded. Within that folder the uploaded project will be

created under a new folder with the following format : “IP Address” + “Time of Day”. For example,

10.34.9.240_14_16_9 would represent a project uploaded with an IP Address of 10.34.9.240 @2:16:9

PM.

Associating Motors with User-Written Servo and Phase

Algorithms

 381

If the uploaded project was encypted then the IDE will prompt the user to enter a password. If the

password is incorrect the project will get uploaded but will not be decrypted. If the uploaded project is

not encrypted then it will open in the IDE.

The following is the input box for an encypted project:

The IDE will prompt for the location of the uploaded project and will open the project in the IDE. The

uploaded project will be added to the current open solution.

Associating Motors with User-Written Servo and Phase

Algorithms

 382

Note

If the uploaded project does not contain the source code for C

Libraries, then the uploaded project will show the files in the project

tree, but they will not exist. To be able to upload a full project with all

the source files the project must be downloaded with the “Download C

Source Files” option enabled. To protect source code, encrypt the

project. See the Project Encryption section of this manual for more

details.

Debugger

 383

DEBUGGER

The Power PMAC IDE supports Visual Studio-style debugging for Script PLCs and Background C

Applications. The Debugger’s environment layout is different than the standard IDE environment layout.

There are two prerequisites and for debugging the program:

1. The Power PMAC firmware version must be 1.5.x or greater.

2. Power PMAC project must be built and downloaded at least once before debugging.

Note

If Unsolicited Response window is opened while in Debug mode,

make sure that it is closed before exiting Debug mode. If the window

is not closed, then it will not be possible to establish communication

through another Unsolicited Response window as Unsolicited

Response windows only permit one communication channel at a time.

Debugging a Script PLC
After successfully downloading the Power PMAC project right-click the Script PLC to debug:

Select the context menu “Debug the selected PLC” to start the debugger.

Debugger

 384

This will launch the Debug environment, as shown in the image below. In this environment the Terminal

and the Watch Window are visible. The Debug environment can be customized by adding additional

controls from the Delta TauView menu or from the Delta Tau toolbar. These controls can be helpful in

viewing the variables or debugging programs interactively. This layout is automatically stored by the

Power PMAC IDE as the Debug environment layout and is displayed every time a Debug session is

launched thereafter.

A breakpoint can be set before or after the Debugger is launched by placing the mouse cursor onto the

line to break and then pressing F9. More information about the Debug menu is available under the IDE

Layout section of this manual.

The Debug Environment is shown and annotated below:

Debugger’s built-in

Watch Window.

Displays variables in

scope

The Terminal Window

can be used while

debugging

Standard Watch window

can be used in addition to

the Debugger’s Watch

Window

Debugger

 385

PLC execution will be stopped on the breakpoint indicated by a red dot to the left of the selected line as

shown below:

Once the program has stopped view the Debugger’s Watch Window for the values of variables that are in

scope. In the current version of the IDE the local variables are automatically displayed and the user is not

allowed to add other variables. Additional variables can be added to watch by opening the standard IDE

Watch Window (Delta TauWatch); set these variables’ values using the Terminal Window.

Use F11 to step into function calls or use F10 to step over functions. To stop the debugger simply press

the button from the toolbar, press Shift+F5 or select the menu item DebugStop Debugging. Once

the debugging ceases the standard IDE environment is launched.

PLC execution stops on

the line with the

breakpoint

Debugger

 386

Debugging a Background C Application
After successfully downloading the Power PMAC project right-click the Background C Application

(under Background Programs) that is to be debugged as shown below:

Select the context menu “Debug the selected CApp” to start the debugger. This will launch the same

debug environment used when debugging a Script PLC.

A breakpoint can be set before or after the debugger is launched. To set the breakpoint after the debugger

is launched make sure that the Background C Application is in a loop; otherwise the program execution

will be completed and it will not encounter the break point. Breakpoints can be set by pressing F9. More

information about the Debug menu is available under in the IDE Layout section of this manual.

Debugger

 387

The application will stop at the breakpoint set as shown below:

At this point check the Debugger’s Watch Window for variables that are in scope as shown below:

In the current version of the IDE the variables are automatically displayed and the user is not allowed to

add the variables. Add additional variables to watch by opening the standard IDE Watch Window (Delta

TauWatch); set these variables’ values using the Terminal Window.

Use F11 to step into a function or use F10 to step over a function. When stepping into a function the Call

Stack Window will display the calling sequence. The Debugger supports multiple levels of call-stacks.

The C Application’s execution

stops on the breakpoint.

Debugger

 388

To stop the debugger, simply press the button from the toolbar or press Shift+F5 on the keyboard or

select the DebugStop Debugging menu item. Once the debugging ceases the standard IDE environment

is launched.

MATLAB/Simulink Target for

PowerPMAC

 389

MATLAB/SIMULINK TARGET FOR POWER PMAC

Installing the Power PMAC Target on MATLAB

By default, the MATLAB Component’s installation folder is installed with the Power PMAC IDE. If the

PC’s operating system is 32-bit, it can be found at:

C:\Program Files\Delta Tau Data Systems Inc\2.0\PowerPMAC Suite\MATLAB Component \

ppmacTarget

To install the component in MATLAB, do the following:

1. Launch MATLAB 2013b .

2. Change the “Current Folder” to the above folder.

3. Run the DT_installer.p file by either right-clicking on the file in MATLAB’s “Current Folder”

window and selecting “Run” or by typing DT_installer and pressing enter in MATLAB’s

“Command Window”. The installation interface should then launch.

MATLAB/Simulink Target for

PowerPMAC

 390

4. Press Install and if the MATLAB version is 2013b installation will complete successfully, as

shown below:

5. Exit MATLAB and launch it again.

This file needs to

be run

MATLAB/Simulink Target for

PowerPMAC

 391

How to use Simulink to Generate User-Servo C Code

After installing the Power PMAC Target on MATLAB Simulink can be used for model development and

C code generation. The C code can do user servo algorithm tasks or any mathematical calculation that

needs to be run at a determined interrupt (i.e. at a multiple of Power PMAC’s servo interrupt).

The following example shows how the user can design a PID algorithm in Simulink, use the Target to

generate the C code expressing the algorithm and then deploy the C code through the Power PMAC IDE

as the control algorithm for any motor (virtual or real).

Example: Modeling PID Control of a Brush Motor

Step 1: Design the Model
First, the model should be designed in Simulink with the proper parameters and then verified using the

Simulink source and sink blocks if necessary. The following is an example PID control algorithm model

for a brush motor whose transfer function is approximated by

𝑌(𝑠)

𝑅(𝑠)
=

183

𝑠2 ,

where Y(s) is the output from the motor and R(s) is the input to the motor.

Note

To learn more about how to find an approximation for the motor,

Delta Tau’s Servo Analyzer application can be used. The Tuning

application in Power PMAC IDE can also be used for this purpose.

Note that the values put for the derivative blocks need to be multiplied by this motor’s servo rate, which is

the rate at which the servo algorithm will be executed, and the integration gains need to be divided by that

value. For example if the algorithm is going to be used as the user-servo routine for Motor 1, then in the

Gain Value property of the derivative block, put the numerical value of

Motor[1].Servo.Kvfb*Sys.ServoPeriod*Motor[1].Stime,

and use the numerical value of

Motor[1].Servo.Ki / (Sys.ServoPeriod * Motor[1].Stime)

for the integrator gain. In this example, Kvfb=1500 and Ki=0.01 are used and the servo rate is the default

value of Sys.ServoPeriod=0.00044274211. Motor[1].Stime=1 and Kp=45 are set. In other words,

1500*0.00044274211 and 0.01/0.00044274211 are the values put in the Gain values of the derivative and

the integrator gains, respectively.

MATLAB/Simulink Target for

PowerPMAC

 392

The model can be tested by starting the simulation and checking the results. If the results are not

satisfactory, the parameters can be changed and tuned in Simulink before code generation starts.

For this example, here are the plots Scope and Scope1, showing a step response:

MATLAB/Simulink Target for

PowerPMAC

 393

Step 2: Include Delta Tau Library Blocks in Simulink
The second step includes using the Delta Tau Library blocks in Simulink as for the inputs and outputs of

the algorithm. To do so, launch the Simulink Library browser. The following picture shows how the

Delta Tau library looks after the Power PMAC Target been successfully installed on MATLAB.

The library includes 4 blocks:

 PPMAC_INPUT

 PPMAC_OUT

 PPMAC_Servo_RTN

 PPMAC_Traj

The PPMAC_INPUT and PPMAC_OUT blocks can be used anywhere the user needs to have access to a

memory location in Power PMAC. Use PPMAC_INPUT to get data values from Power PMAC to use in

the algorithm and PPMAC_OUT to set (write) data values to Power PMAC. After putting one of these

blocks into the model double-click it to set the memory location with which it is associated. Double-

clicking an input block will bring up the following screen:

MATLAB/Simulink Target for

PowerPMAC

 394

Here are some examples of memory locations:

Pshm->P[1]

Pshm->Ddata[0]

Mptr->ServoOut

Mptr->IqCmd

Pshm->Motor[3].Kp

This screen below is displayed when an output block is double clicked:

This screen below is displayed when an return block is double clicked:

At this point saving the test model as a different name and then working on the new model for code

generation is recommended.

MATLAB/Simulink Target for

PowerPMAC

 395

In this example there are three input blocks, one output block and one servo return block used and the

parameters are set as shown below:

Mptr->DesPos and Mptr->ActPos are used to have access to the desired position and actual position of

the motor that runs this servo algorithm, respectively. Pshm->P[1] is used as an input; its value will be

added to the corresponding connected signal. Pshm->P[2] is also used in an output block to get the value

of the connected signal and write it to P[2] for parameter monitoring or other purpuses.

The PPMAC_Servo_RTN block can only be used once in a model. The value of the connected signal to

this block will be written to Mptr->IqCmd, which is the DAC output of the motor running the servo

algorithm. If this block is used, the model needs to be built and the C code needs to be generated with the

PowerPMAC.tlc target, which generates servo algorithms, and not PowerPMAC_Traj.tlc, which

generates trajectories. PPMAC_Traj block can also be only used with the PowerPMAC_Traj.tlc target

and not PowerPMAC.tlc.

The models that include Deltau Tau’s Power PMAC Library blocks can only be used for the purpose of

code generation and not simulation (i.e. they cannot be used in Simulink at runtime).

MATLAB/Simulink Target for

PowerPMAC

 396

Step 3: C Code Generation
The third step is to generate the C code. Open the model’s “Model Configuration Parameters” dialog box

which can be found at the “Simulation” menu or by pressing Ctrl+E. Go to the Code Generation pane of

the dialog box and choose PowerPMAC.tlc as the System Target File as shown below:

Setting PowerPMAC.tlc as the system target file forces the Simulink Coder and Embedded Coder to

generate C code that is compatible with Power PMAC’s memory structure and can be downloaded to

Power PMAC. If the servo rate is different than default it needs to be set here at the Solver pane under

Fixed-Step Size.

Apply the changes in the Model Configuration Parameters dialog box and save the model again. Return to

the dialog box and press the Generate Code button in the “Code Generation” pane. The C code will be

automatically generated and saved in MATLAB’s current folder. A report including the C code (.c source

and .h header files) will be automatically opened and saved in the same folder as well.

MATLAB/Simulink Target for

PowerPMAC

 397

Click on the links on the left tab of the report, shown below, to see the generated C code:

MATLAB/Simulink Target for

PowerPMAC

 398

Step 4: Deploy the Model in the Power PMAC IDE
The fourth step is to deploy the model in the Power PMAC IDE. To do so create a new folder, preferably

in MATLAB’s Current Folder. Launch the Power PMAC IDE and create a new project in that folder. In

the Power PMAC IDE, open the “Solution Explorer” window and then the C LanguageRealtime

Routines folder. Right click on the “Realtime Routines” folder, choose “Add Existing item…” (as shown

below) and then go to the folder where the generated code was saved.

Add all of the generated .c and .h files as shown below:

MATLAB/Simulink Target for

PowerPMAC

 399

The generated files are saved in a folder in MATLAB’s Current Folder at the instant when the user-

clicked on the “Generate Code” button on the Model Configuration Parameter’s dialog box. The name of

the folder is the same name as the model but with a _ppmac suffix.

Right-click on “Realtime Routines” and choose “User Servo Setup,”. Choose the number of the motor

that will execute the servo algorithm, select the User Servo’s name and then press Apply, as shown

below:

Add any other necessary files to the project right-click the Project and then click “Build and Download”.

The selected motor’s user servo algorithm will start running as soon as the motor is activated and enabled.

To activate the motor issue a Motor[1].ServoCtrl=1 command and to enable it, issue a #1j/ command

from the terminal Window. To verify that the motor is using the user servo algorithm, check the value of

Motor[1].Ctrl. If it is set to UserAlgo.ServoCtrlAddr[i] then it is using the user servo algorithm.

MATLAB/Simulink Target for

PowerPMAC

 400

Step 5: Verify the Result
To verify the result give the same desired position input to the motor that was commanded in Simulink

(e.g. a Step input of 1000 cts for 0.5 sec). This could be done using the IDE’s Tuning application (from

within the IDE, click ToolsTune). The following image shows a real result from Motor 1 on a UMAC

Demo rack:

The result of the step response from the Tuning software should now be compared with the step response

obtained from Simulink previously to see how closely the model matches the real response.

MATLAB/Simulink Target for

PowerPMAC

 401

Using Tunable Parameters in Models and Code

The parameter values in the previous example model (e.g. Kp=45, Kd=1500*0.000442,

Ki=0.01/0.000442) are hard-coded in the generated C code. In the last example, after a test run of the

project in Power PMAC IDE, if the value for any of those parameters needs to be changed then the C

code needs to be changed and the whole project be built again and downloaded again.

Here is how one can generate C code with tunable parameters. These parameters could then be changed

dynamically as the program is running.

Example: Variable Kp, Kd, and Ki
In the Simulink model, replace the model parameters with Kp, Ki and Kd. Do not specify these

parameters inside the derivative or the integrator blocks themselves; the gains must be separated from the

integration or differentiation blocks (see the following picture):

The parameters Ki and Kd can be put as gains before the integrator and derivative blocks, respectively.

The values of 0.00044274211 and 1/ 0.00044274211 (i.e. the numerical values of the servo period and its

inverse, respectively) need to be set for the gains of the Integrator and Derivative blocks, respectively.

The numerical values of Kp=45, Ki=0.01 and Kd=1500 also need to be present in MATLAB’s base

workspace. To do so, type Kp=45; Ki=0.01; Kd=1500; in the MATLAB command window.

Before generating the C code in the Simulink Model, click on the “DeltaTau” menu, then “Parameters”,

and then “Model Validation”. A message will ask if the parameter’s numerical values need to be attached

as a preload function to the model or not. If “Yes” is clicked the next time the model is opened the same

numerical values for Kp, Kd, and Ki will appear in MATLAB’s workspace. These numerical values will

be used only as an initial value for the parameters; the parameters could be changed later when deployed

in the Power PMAC IDE. In the “Model Validation” program check the model to make sure that only

acceptable Simulink blocks are being used. MATLAB does not yet support some Simulink blocks like the

“Discrete Derivative” and “Discrete Integration” for parameter tuning. Many other blocks like “Gain” and

“Constant” are supported. Using these two blocks with tunable parameters is often enough for many

MATLAB/Simulink Target for

PowerPMAC

 402

models. Note how the Gain blocks are used in the above example in order to tune parameters affecting the

“Discrete Derivative” and the “Discrete Integration” blocks.

Next, in the Simulink model window, click on the “Delta Tau” menu, then “Parameters” and then

“Parameter Assignment”. A dialog will open which asks the user about the memory location in Power

PMAC to which the model parameters should be saved and from which to be updated when the project is

running. There are three options: Sys.DData[i] user buffer memory, Global Variables (P-Variables), or a

custom memory location as shown below:

The parameters will be updated every 500 servo cycles by default. This number can be changed using the

provided text box. The user can also change the initial values of the parameters here as well (in addition

to in the MATLAB workspace). The Power PMAC memory location is also displayed. The Power PMAC

IDE symbols correspond to the symbols that will be created in the Power PMAC IDE project. The user

can write to these variables (e.g. _Kp, _Ki, _Kd) and change the values of the adjustable parameters on

the fly through the Terminal Window, PLC, a motion program ,or in other C programs.

Click on the “Create files” button. When clicked, the model closes and a new model with the same name

but with an additional “_” suffix is created and opened. This model will be used for code generation. This

model has structured, tunable parameters. A new folder is also created in the same folder as the first

model. This folder is named after the first model with “_param_ppmac” suffix. This folder includes 3 text

files named “…_param_update.txt”, “…_param_initial.txt” and “…_MATLAB_definitions.pmh”, which

will be used later.

Start the process of code generation for the new model whose name ends with “_”. To do so, as explained

in the last section, in the Simulink model, open the “Model Configuration Parameters” dialog box from

the “Simulation” menu (or pressing Ctrl+E). In the “Code Generation” pane, go to “Target selection” and

then “System Target File”. Click “Browse” and choose the target. Choose “Power PMAC.tlc” for general

math and/or control loop algorithm (user-servo) code or choose “Power PMAC_Traj.tlc” for the custom

trajectory generation target. Tunable parameters are used in the same way for both these targets. After the

target is chosen, save the model, then go back to the “Model Configuration Parameters” dialog box. Go to

MATLAB/Simulink Target for

PowerPMAC

 403

the “Code Generation” pane and click on “Generate code”. The generated code will be saved in

MATLAB’s Current Folder and a report that includes the generated code will launch. The code is saved

in a folder named after the original model with the “__ppmac” suffix.

The Generated code can be deployed the same way as explained in the last section to the Power PMAC

IDE project, with the only difference being that the file named “…_MATLAB_definitions.pmh” saved in

the “…_param_ppmac” folder also needs to be put in the Power PMAC IDE project in the Script

LanguageGlobal Includes section. See the following picture for an example.

To tune the parameters using the variable names created in the .pmh file. For example, command

“_Kp=44” in the terminal window to set the Kp parameter equal to 44.

MATLAB/Simulink Target for

PowerPMAC

 404

How to Use Simulink to Create a Trajectory

The Power PMAC Target can be used for generating trajectories as well. The generated trajectory will

command motors (not axes) individually. The trajectory can be made by using the PPMAC_traj block

made specifically for this purpose. It can be found in the “Simulink Library Browser” in “Delta Tau

PPMAC Library” within Simulink. The input signal to the PPMAC_Traj block will be the position signal

commanded to the motor. More than one trajectory can be made in every Simulink model. Out of each of

the PPMAC_Traj blocks, only one trajectory is made. For example, five PPMAC_Traj blocks in a

Simulink model makes five trajectories, each of which could be run on any motor. These trajectories need

to have distinct names. The names of these

trajectories will be used to create a flag which

can be used (in addition to a motor number) to

start the trajectory for that specific motor. For

example if the trajectory is named “Sintraj,” to

start this trajectory for Motor 4, user needs to

issue the command “SinTraj_flag(4)=1”. The

trajectory will run as long as it is defined in the

Simulink model. The total amount of time that

the trajectory runs is fixed and cannot be

changed; it must be defined in the Simulink

model in the PPMAC_Traj block’s parameters.

On the right is a screenshot from double-clicking

the block:

 “Trajectory Name” and “Time max” (in seconds) are the two parameters that need to be set for every

PPMAC_Traj block.

Trajectories are usually made using the Simulink source blocks. All the time parameters (if there are any

that need to be set in blocks) must be set in units of seconds. Frequencies must be set in Hz. To access the

“Source” blocks launch the “Simulink Library Browser”, then go to SimulinkSources. Most Simulink

blocks can also be used in the model. Delta Tau does not support the following “Source” blocks for

trajectory code generation using the PowerPMAC_Traj.tlc target:“Counter Limited”, “Digital Clock”,

“Enumerated Constant”, “Random Number”, “Unified Random Number” and “Band Limited White

Noise”. Other “Source” blocks, however, can be used for this purpose. To check if other blocks in other

libraries are supported, check the Simulink Coder’s list for “Supported Blocks for Code Generation” in

MATLAB’s documentation.

MATLAB/Simulink Target for

PowerPMAC

 405

Example Trajectory Generation Model
The following is an example of how to create a model in Simulink. The following picture shows the

model of a time-based sinusoidal input. The sine wave uses, Amplitude=1, Bias=0, Frequency=5 rad/sec,

Phase=0 radians and Sample time=0 sec. The Gain K1 has the value 1000 in the workspace. The picture

also shows the results in a Scope window for a 7 sec simulation. After the designer checks and accepts the

result in the Scope, the scope block can be replaced with a PPMAC_Traj block, as shown in the image

below:

The following image shows a model which has the same Sine Wave and Gain blocks but the Scope has

been replaced with a PPMAC_Traj block for which the trajectory name is set to SinTraj and the Max

Time set to 7 sec. The PPMAC_INPUT and PPMAC_OUT blocks can also be used in trajectory

generation models. In this example, a PPMAC_INPUT block with memory location address

Mptr->ActPos and a PPMAC_OUT block with address pshm->P[1] are used. This way, the signal that

is input to the PPMAC_Traj block, the desired position, is subtracted from the motor’s actual position and

thus the following error is written to the global variable P1, as shown below:

The PPMAC_Servo_RTN block cannot be used for trajectory generation models; it gives an error when

compiled with the PowerPMAC_Traj.tlc system target file. Since there is a tunable parameter K1 in this

MATLAB/Simulink Target for

PowerPMAC

 406

model, click on DeltaTauParametersModel Validation, thereby attaching the parameter as a preload

function to the model. Next, click DeltaTauParametersParameter Assignment is clicked. Leave the

parameters at default and click “Create files.” The new model is named as “…_param_ppmac”. The three

files named “mymdl_param_update.txt”, “mymdl_param_initial.txt” and

“mymdl_MATLAB_definitions.pmh” are created and saved in the “mymdl_param_ppmac” folder. Next,

in the model named “mymdl_”, which is automatically generated, select the menu item

SimulationModel Configuration ParametersCode Generation pane, choose the system target file

“PowerPMAC_Traj.tlc”, and then save the model again. In the “Model Configuration” dialog box, in the

“Code Generation” pane, press the “Generate code” button. The code generation report will open

automatically and the generated code will be saved in a folder called “…_traj_ppmac” where “…” is the

model’ss name (e.g. “mymdl__traj_ppmac” with model name of “mymdl_”).

Next, create a project in the Power PMAC IDE and import the generated .c and .h files to the project. In

addition to those, the two .pmh files named “…_Traj_MATLAB_Defs.pmh” and

“…MATLAB_definitions.pmh,” which can also be found in the “…_traj_ppmac” folder need to be added

to the Power PMAC IDE’s project in the Script LanguageGlobal Includes section. The following

picture shows the files added to the project:

Before initiating the Build and Download, a virtual motor (e.g. Motor 0) could be configured to run the

user-servo algorithm named “Trajectories.” This motor needs to be activated (Motor[0].ServoCtrl=1) to

run the “Trajectories” servo routine. To start running the trajectory that was named SinTraj for Motor 3

for example, set SinTraj_flag(3)=1. The trajectory will finish after 7 seconds and will automatically stop.

MATLAB/Simulink Target for

PowerPMAC

 407

The tunable parameter K1 can be tuned dynamically by modifying “_K1” in the Power PMAC, through

the Terminal Window or PLC, for example. The following image shows Motor[3].DesPos and

Motor[3].ActPos, the desired and actual positions of motor 3, respectively, on the left axis of the plot and

Sys.P[1] on the right axis. Due to sufficient tuning, the plots of Motor[3].DesPos and Motor[3].ActPos

are almost completely overlapping. The value of P[1] is also zero everywhere since the error is almost

zero everywhere.

Appendix

 408

APPENDIX

Application Notes

1. How to use EtherCAT slave naming – OEI Application Team- Mike
Esposito

Scope
Using new naming feature in IDE 4.5 to implement Slave Names and use these for mapping PDO variable

names in your project.

Overview

Here demonstrate how to use ECAT Slave Names for your project.

By default, the IDE uses the Slave Address for creating the Slave name and then using this for

mapping variable names for that slave. This works fine and makes each unique. However, if you

modify the Slave position in the network by adding or moving its location in the network, the

Address changes, Name changes, Variable names change. So now you must modify any code in

the project using this Slave and its mapping variables since the names have changed. It is

possible to control the Slave Address assigned, but using a real name is here suggested as a best

practice.

Instead of using the Slave Address for its name and variable names we can now create our own

unique NAME.

Giving each slave in your ECAT network a unique slave NAME has these benefits:

1. Creates variable mapping names that are more readable and useful in the project code.

2. If the same project later makes a change to the network (add/remove a slave) as long as the

slave names are kept the same then the mapping of variables does not change. So, the project

code using these names

also does NOT need to change, even though the slaves underlying ECAT registers have changed.

 - this isolates your project code from the ECAT registers being assigned

 Here using default ADDRESS Here using custom

NAMEs

Appendix

 409

A. IDE Setup

To use this new feature, you must enable 2 properties within the project. Do this before starting

to setup the EtherCAT slaves.

1. Enable new PDO mapping using Names instead of Address.

 a. Right-Click on the Solution Name (top of explorer tree)

 - select Properties in the list (at bottom)

 b. Set the Property "Use new PDO mapping name format" to [YES]

 - then select [OK] button at bottom to save this setting

Appendix

 410

2. Remove Station Address from PDO Variable naming:
 - this is done so we have only the slave NAME in PDO variables, no addresses

 a. Right-Click on the EtherCAT Master in Tree

 - select the Properties item in menu

 b. In the Properties page set the "Remove Station Address from PDO Variable": [True]

 - close the page with X in top right corner

Appendix

 411

B. Example Usage
Here we show an example of using variable names instead of Address for ECAT slaves setup

and PDO variable names.

1. IDE has been setup to use new Naming and Remove Address from names in PDO

variables as above.

2. Scan the ECAT network and get results similar to below:

 - notice the slaves are all named by default using the address based on where they are in

network

 - here we see Slave_1001, Module 1, 2,… Slave_1002, Slave_1003

 - this is fine but has little meaning in our project

 - later if the network is changed these names may change as well

Appendix

 412

3. Select Each Slave, Double-Click to bring up Device Editor, Select the General Tab

 - here in the Name field create and insert a custom name with meaning to your project

 - this is the name that will be used for PDO variable names later

 - below we change the default name "Slave_1001 (NX-ECC203)" to PanelIO

 - after you finish and click out of the field you will also see the name change in the Tree

 - here we can see setup names for all slaves including the ones on the coupler

 - now instead of: Slave_1001, Module 1, 2,… Slave_1002, Slave_1003

 - we have names: PanelIO, Inputs, Outputs,… Drive3-X, Drive4-Y

Appendix

 413

4. Now finish setup and mapping as usual

 - Load Mapping to Power PMAC

 - Now open the mapping file "ECATMap.pmh" auto generated by IDE

 -notice the PDO variables are all now using names instead of address:

 - For example, the first Drive on the network had these PDO variable mappings by

default:

 - Now the same PDO variables have these mappings:

 - these are much more meaningful and terser, for better use in your project

5. If later the ECAT Network is changed:

 - be sure to use the same names for the same slaves

 - if so then the mapping will go to different ECAT registers BUT the names will be the

same

 - this will keep the project code that uses the variable names working as before the

change

2. Commission Safety PLC (NX-SL3300 or NX-SL3500) Plus 1S servo drive
with Power PMAC – OEI Application Team- Atanas Karaatanasov

Scope
How to commission Safety PLC (NX-SL3300 or NX-SL3500) with 1S servo drive under control of

PMAC. This App Note does not explain how to commission 1S Servo drive, it is out of scope.

Note

The operator should have basic knowledge of Sysmac Studio and

PMAC-IDE.

Appendix

 414

Note: The operator should have basic knowledge of Sysmac Studio and PMAC-IDE.

 This note does not state that is complete.

Legal Note:
Limitation on Liability:

OMRON COMPANIES SHALL NOT BE LIABLE FOR SPECIAL, INDIRECT, INCIDENTAL, OR

CONSEQUENTIAL DAMAGES, LOSS OF PROFITS OR PRODUCTION OR COMMERCIAL LOSS

IN ANY WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS BASED IN

CONTRACT, WARRANTY, NEGLIGENCE OR STRICT LIABILITY.

SOFTWARE / hardware
PMAC-IDE ver: 4.5.x.x

Sysmac Studio ver: 1.45.x

Software / hardware
PMAC-IDE ver: 4.5.x.x

Sysmac Studio ver: 1.44.1

ITEM NUMBER DESCRIPTION NOTES

1 CK3E-1310 / FW 2.6.0.0 PMAC

2 NX-ECC203 / FW1.6 ECAT Coupler Unit Use at least with FW1.6

3 SL3300 Safety PLC

4 SID800 Safety Input Unit

5 SOD400 Safety Output Unit

6 R88D-1SN02L 1S Servo Drive / Motor

7 R88D-1SN02L 1S Servo Drive / Motor

Terms and Definitions

Term Explanation and Definition

EtherCAT Ethernet for Control Automation Technology

SLAVE
Slaves are devices connected to EtherCAT. There are various types of slaves
such as servo drivers handling position data and I/O terminals handling the
bit signals.

1

2 3 4 5 6 7

Appendix

 415

PDO

Communications
(Communications using Process
Data Objects)

One type of EtherCAT communications in which Process Data Objects
(PDOs) are used to exchange information cyclically and in real time. This is
also called “process data communications”.

PDO Mapping The association of objects used for PDO communications.

ESI file
(EtherCAT Slave
Information file)

An ESI file contains information unique to the EtherCAT slaves in XML
format.
You can load ESI files into the Power PMAC IDE, to easily allocate
slave process data and make other settings.

ENI file
(EtherCAT Network information
file)

An ENI file contains the network configuration information related to
EtherCAT slaves.

PMAC IDE
This computer software is used to configure the PMAC Controller, create
user programs, and monitor the programs. PMAC is an acronym for
Programmable Multi-Axis Controller.

1. SYSMAC Configuration
1.1. Create new project.

Note: Any Controller can be selected.

1.2. Configure ECAT devices as per your hardware. Note: Verify the firmware of the coupler (1.6 or 1.7)

and select the proper one.

1.3. Deploy NX safety cards in EtherCAT Configuration and Setup.

Note: Other option is to go online with the coupler and execute “Compare and Merge with Actual

configuration”.

Appendix

 416

1.4. Enable STO for - Drive 1

1.5. Enable STO for - Drive 2

1.6. Select Safety controller

Appendix

 417

1.7. Select Safety input card and Drag-and-drop, desired safety feature:

Appendix

 418

1.8. Drag-and-drop, reset button:

1.9. Drag-and-drop, safety output for external contactor:

1.10. Define fallowing Variables for use in safety program

1.11. Define Exposed Variables

Appendix

 419

To exchange status and control variables between Safety PLC and PMAC. The easiest way is to use

BOOL variables. Variables with other diminutions are also possible. Depend from application goals.

1.12. Developing the safety Program0.

 Drag-and-drop the SF_EmergencyStop function and configure all IO

 using Safety_in_b0, from the PMAC, will reset the SF_EmergencyStop block, same as reset button.

1.13. Add 400mS delay.

If safety command is triggered in mid motion – the motion controller can stop the motor controllable and

then execute STO.

Appendix

 420

1.14. Internal variable:

1.15. Right click to assign S_EStopOut signal - Insert Assignment

1.16. Right click and - Insert Network Below

Appendix

 421

1.17. Define EDM for STO @Drive1 and @Drive2

 Note: using Safety_in_b0, from the PMAC, will reset the SF_EDM block same as reset button.

1.18. Apply additional logic if needed

-This logic will acknowledge/reset safety faults in drives.

Appendix

 422

2. Download SYSMAC project to ECC203 and sl3300

2.1. Online with ECC203

Through USB port. Right click on ECC203 to clear all memory

 ECC203 use type B for USB connection

2.2. Transfer configuration to the ECC203 coupler

2.3. Confirm the following:

2.4. Confirm with OK

Appendix

 423

2.5. The final step

Download the Safety program in the SL3300. Go to SL3300 from the explorer while still online.

2.6. Stop Safety PLC following with few confirmations:

2.7. Select DEBUG Mode, following with few confirmations

2.8. Press Safety Validation with few confirmations

2.9. Bring the Safety PLC in RUN mode

With this STEP, safety configuration in the SL3300 is complete.

Appendix

 424

3. Export sysmac pdo configuration
3.1. Sysmac PDO configuration need to be migrate to the PMAC-IDE.

To do that the first step is to extract PDO configuration for the coupler from Sysmac Studio. Right click

on the Master and Export All Couplers I/O Allocations

 To execute that command ECC203 need to be in offline mode. (not seeing the orange “online” bar

on top of Sysmac)

3.2. Save the ZIP file in desire directory.

Extract the archive. Example: Coupler_20210406_105541.zip

Appendix

 425

3.3. Open CouplerMemoryMap.xml

File with Internet Explorer (IE11), and not with Google Chrome - just to visualize the telegrams. This

page shows the important PDOs related with Safety.

Content should look like this:

yellow – safety

blue – Non-safety – Status\Control communication with PMAC

red – PDO section Input Data set 1,2 and Output Data set 1,2

4. Power PMAC IDE configuration
4.1. Reset & Re-Initialize PMAC.

“$$$***”. Scan EtherCAT Network.

Select Master Shift for CK3E. Select Bus Shift for CK3M with Gate3

4.2. Result:

ECC203 can be in any location of the ECAT network: beginning, middle, end.

Appendix

 426

4.3. Select DC for synchronization. Set “Shift Time” 125uS -250uS for all 3 ECAT devices (ECC203

and 2 drives)

4.4. Set CPU speed @ 2kHz

 Safety program with PMAC was tested up to 2kHz with Dual Core ARM. With Quad Core is

possible to run at 4kHz

4.5. Import Sysmac safety PDO map file: (Right Click SL3300) CouplerMemoryMap.xml

4.6. Safety memory map viewer should look like this. Leave Select All selected and click Accept

Appendix

 427

Leave Convert BOOL-USINT selected.

4.7. After proper import, the Variables in Safety PLC should look like this:

Appendix

 428

4.8. On each drive (Inputs / Outputs) Safety Process Data with telegram 273th need to be selected.

In this example PDO 258th for position close loop control is used.

4.9. When PDO is complete, Slave to Slave communication need to be establish:- 4 Connection for

INPUTs - (this will vary with different configuration)

Appendix

 429

Note: Every time when modifying ECAT network Slave to Slave need to be Disconnected and

Connected again.

4.10. / 4 Connections for OUTPUTs - (this will vary if configuration is different)

Appendix

 430

Note: Every time when modifying ECAT network Slave to Slave need to be Disconnected and

Connected again.

4.11. When completed, Connections menu should look like this:

Appendix

 431

4.12. Check the CPU clock to match the selected 2kHz for ECAT master

4.13. Load Mapping to PowerPMAC .

SAVE(terminal) $$$ (terminal)

Enable the ECAT with command: “ECAT[0].enable=1”

When RESET button is pressed, the CONTACTOR should enable and drives should

remove STO (“St” on LED display) and go to normal operation (“—“ on LED display).

Appendix

 432

4.14. If status bits - diagnostic data, is needed in the PMAC you can find the variables in ECATMap.pmh

Upgrading project from IDEV3.x to IDEV4.x

Use Case 1

This case assumes that the project in IDE3.x is created with the complete Power PMAC setting stored

as .cfg file in the Project configuration folder. For example, let us call this file ‘MyGoodConfigFile.cfg.’

This file includes the following:

 Motor structure element

 Coordinate system structure element

 Gate structure element

 Custom initialize element

1. Open IDE4.x and select Open project.

2. Choose the project that is created using V3.x IDE.

3. On opening the project, a message will be displayed that the project is a ‘One-way upgrade’ process.

A success message will display that the project has been upgraded successfully.

4. On successful downloading of the V3.x project, download the ‘MyGoodConfigFile.cfg’ from

configuration folder. Once this is complete the device is now ready.

Appendix

 433

As explained earlier V4.x will add System, Hardware, Motor, Coordinate and EtherCAT nodes to the

V3.x project. Other than the hardware node, most of the nodes are empty as this is an upgrade project

from v3.x.

Note

IDE V4.0.x will always download the SystemSetup.cfg file on Build

and Download. The Automatic management property ‘Download

Systemsetup.cfg file’ is set to Yes by default.

Note

IDE V4.1.x will automatically set the Automatic management

property ‘Download Systemsetup.cfg file’ to No. Automatic

management of this file is OFF and user will need to set the Project

property to Yes

This process is the recommended way of upgrading the V3.x project to V4.0 and above.

Use Case 2
This case assumes that the user is not using conventional recommended way of creating Power PMAC

settings, saved in a .cfg file, as explained in the Use Case 1 but instead the settings are in the .pmh

and .cfg files.

The .cfg file is created using Create Config file option from Configuration node.

1. Open IDE 4.1.x and select Open project.

2. Choose the project that is created using V3.x IDE.

3. On opening the project, a message will be displayed that the project is a ‘One-way upgrade’ process.

A success message will display that the project has been upgraded successfully.

It is recommended that with this style of project the User should make sure the ‘Download

Systemsetup.cfg file’ property is set to No. Note: - This property is set to No if IDE V4.1.x is used.

In case of IDE V4.0.x, it is recommended that after Build and Download the Power PMAC settings are

download again. It is also recommended to create a configuration file as detailed in Use Case 1.

How to Tune 1S and G5 drive using Advance Tune tool
This section describes Tuning 1S and G5 using the Advance Tune tool option from the IDE when used in

Cyclic Synchronous Torque mode (CST) or Cyclic Synchronous Velocity mode (CSV) mode.

A prerequisite is that the EtherCAT network is configured in either CST or CSV mode and Motor is setup

correctly for EtherCAT.

Due to the transport delays over the network, the servo update frequency for the drive has to be set up to

at least 2 kHz, preferably 4 KHz. The User can set this as described in Step 1 of EtherCAT setup.

It is good practice to check the open loop response to verify whether the drive is properly set before

starting the Auto Tune move.

Appendix

 434

Enable open loop first, this step is necessary if the drive is not activated and perform an open loop test.

The response should look like the graph below. i.e. a linear relationship between the torque command and

motor acceleration

If the open loop response does not show this linear relationship check the Maximum profile velocity,

positive and negative torque limits for the drive.

Go to Advance auto-tune tab under Position Loop Auto-tune, set the excitation magnitude to 10% and

excitation time to 100, similar to the open loop step test values. Set the maximum travel to 1 or 2 motor

revolution in motor units and set the minimum travel 1/10 motor revolution in motor units. e.g. for a

motor with 23-bit encoder Maximum travel is 23 = 8388608.

Check the positive or negative move option. A bandwidth between 5 to 25 Hz can be selected and varying

damping ratios or integral action.

Before performing an auto-tune move, verify the drive is active. Issue a #1out0 command from the

terminal or press enable open loop button.

Appendix

 435

After the autotune move is completed, recommended gains are displayed as shown below.

After implementing the servo gains, verify the tuning via a step move or a parabolic move. Typical

responses are shown below:

Step move

Appendix

 436

Parabolic Move

Appendix

 437

Appendix

 438

Motor-Encoder combination chart supported by System Setup

Power PMAC IDE future version will keep adding more motor-encoder combination as they are

available.

Appendix

 439

ACONTIS Error Codes

(Ecat[n].Error ; n=Master Number)

Appendix

 440

Appendix

 441

Appendix

 442

Appendix

 443

Appendix

 444

	Table of Contents
	Introduction
	system requirements
	DIFFERENCES BETWEEN V3.X AND V4.X
	Overview: Changes from V3.x
	Release notes V4.2
	Release notes V4.3
	Release Notes V4.3.2.x
	Release Notes V4.4.0.x
	Release Notes V4.4.1.x
	Release Notes V4.4.2.x
	Release Notes V4.5.0.x
	Release Notes V4.5.1.x
	Release Notes V4.5.2.x
	Installation compatibility chart
	IDE and Firmware Selection chart

	Known Installation issues caused by Antivirus software
	Display adapter comaptibility issue
	Obtaining the Power PMAC Manuals
	Communicating with Power PMAC
	Establishing Communication
	Changing Power PMAC’s Network Settings
	Changing x86, Hypervisor’s (MotionCore’s) Network Settings

	Re-establishing Communication

	IDE Project Examples
	IDE Layout
	Default Layout
	Alarm Indicator
	System Difference Indicator
	Start Page

	Menus
	File
	File- New Project/Project wizard
	File-Open
	File-Open-From Power PMAC
	Export
	Import
	Template Manager

	Edit
	View
	Project
	Build
	Debug
	Tools
	Delta Tau
	Terminal Window
	Position Window
	Watch Window
	Move up/down:
	Formatting Option:

	Status
	Error Display
	Unsolicited Messages
	Jog Ribbon
	Encoder Conversion Table
	Update Firmware
	Standard Firmware Download Procedure

	Install Package
	Backup Restore
	Backup page
	Restore page
	Verify page
	Recovery Disk page

	Device Imaging (Backup & Restore)
	Compare
	Motors
	Coordinate Systems
	Gate structure element

	Tools
	Tune
	Tuning Window Layout
	Common convention
	Tuning mode, Motor section
	Tuning parameter and performing tuning moves section
	Tuning status section
	Tuning Result section

	Tuning Moves
	Position Loop Tune – Auto – Basic
	Position Loop Tune – Interactive – Step
	Position Loop Tune – Interactive – Parabolic
	Position Loop Tune – Interactive – Point-to-point
	Position Loop Tune – Interactive – Sine/SineSweep
	Open Loop – Step
	Open Loop – Sine/SineSweep
	Current Loop Tune – Interactive
	Current Loop Tune – Auto
	FFT
	Filter options
	Servo loop filter
	Trajectory Prefilter

	Plot
	Step 1 – Possible Data Sources
	Quick Plot
	Detailed Plot
	Manual Plot
	Step 2 – Data to Sample
	Step 3 – Data Processing
	Step 4 – Plotting
	Gathering and Plotting

	Sampling Settings
	Gathering
	Plot Tools
	Tools for Saving and Exporting Plots and Raw Data
	Tools for Filtering Data and Creating Power Spectra
	Saving and Loading Plot Configurations
	Selected Presets

	Scope
	Selecting the Data to Scope
	Changing Vertical Axis Settings
	Changing Horizontal Axis Settings
	Scope Controls

	Tune (Legacy)
	Tuning Window Layout
	Output Tab
	Info
	Output
	Debug
	Error
	Warning
	Position Loop Interactive Tuning

	Test Trajectories
	FFT
	Smooth
	Move Options
	Step
	Ramp
	Parabolic Velocity
	Trapezoidal Velocity
	S-Curve Velocity
	Sinusoidal
	Sinesweep
	User Defined
	Filter Calculator
	Position Loop Filters
	Show Servo Block Diagram
	Interactive Tuning Guidelines
	Current Loop Tuning
	Open Loop Test
	Position Loop Auto Tuning
	Trajectory Prefilter Setup
	Adaptive Control Setup
	Interactive Filter Setup
	Gain-Scheduled Adaptive Control Setup
	Cam Learning Control Setup
	Interactive Filter Setup
	Gain-Scheduled Adaptive Control Setup
	Cam Learning Control Setup

	Kill Motors

	CAM Sculptor
	Task Manager
	CPU Information
	Tasks
	PLCs
	Programs
	SubPrograms
	Servo
	Phase
	OS Resources

	EtherCAT
	Help

	Project System
	Project Organization
	Layout
	Opening a Project
	File-New-Project
	File-New-Project Wizard
	File-Open-Project

	Project – Context menu
	Build
	Rebuild
	Clean
	Building and Downloading the Project
	Map Power PMAC Variables
	Export Project with IP Protection
	Steps

	Export Project Template
	Comparing a Project
	Comparing a File
	Copying files/folder

	Add EtherCAT
	Add EtherNet/IP
	Add Application
	Properties

	Project – Common operation
	Adding and Removing Files
	File Properties

	System
	Layout
	Common for all the views from system folder items

	CPU
	Clock Settings
	Core Management
	Example of using Core management
	Case 1: UMAC/CK3M ARM Dual core CPU with Gate Hardware Phase/Servo Mode and many commutated axis
	Case 2: UMAC ARM QUAD core CPU with Gate Hardware Phase/Servo Mode with sophisticated kinematics

	Advanced System Elements

	Hardware
	Axis Interface Cards
	Digital I/O Cards
	MD71xx
	AD31xx
	CK3WECSxxxx
	CK3WGCxxxx
	Configuration
	Test Run
	Accept

	EtherCAT
	Master0
	Tasks + Sync Units

	EtherCAT Master-Node Properties
	Master-Node Properties
	Allow Duplicate PDO Mapping
	Remove Station Address from PDO Variable

	EtherCAT Master-Node Context Menu
	Show Master Status
	Diagnosis Mode

	Network Mismatch Analyzer
	Line Crossed Analyzer
	Scan EtherCAT Network / Append Slave
	Import Slaves from ENI
	Export ENI file
	Load Mapping to Power PMAC
	Load Mapping to Power PMAC from ENI
	Export EtherCAT Configuration Template
	Import EtherCAT Configuration Template
	Watch EtherCAT mapped variable
	Activate/Deactivate EtherCAT

	EtherCAT - Slave-Node Context Menu
	Disable Slave
	Hot (Connect) Create Group

	EtherCAT – Import SYSMAC Studio safety mapping file
	Example - Safety Controller integration with Power PMAC IDE
	Scope
	Steps
	Power PMAC IDE Configuration

	EtherNet/IP
	Prerequisite for Power PMAC EtherNet/IP adapter
	EtherNet/IP project node
	EtherNet/IP context menu
	Add EtherNet/IP Connection:
	Watch EtherNet/IP Variables
	Activate/Deactivate EtherNet/IP

	EtherNet/IP Configuration Steps
	Motors – Context Menu
	Add Motor
	Topology Color code
	Common Motor Topology navigation guidelines
	Topology- Single Feedback
	Topology- Dual Feedback
	Topology- EtherCAT
	Topology- Step & direction (No Feedback)
	Topology- Galvanometer
	Topology- Virtual (No Feedback)
	Topology-Direct Microstepping (No Feedback)

	Sync All Motor Settings (PMAC to Project)

	Motor – Context menu
	Compare
	Copy
	Paste
	Troubleshooters
	Sync Motor Settings (PMAC to Project)Upload
	Export as Item Template

	Topology Blocks
	Amplifier block
	Amplifier Parameters
	Amplifier Manufacturer
	Supported Control Mode
	Supported Signal Type
	Power Ratings
	Current Feedback Information

	Motor Block
	Motor Parameters
	Motor Manufacturer
	Motor Specifications
	Motor Electrical Specifications
	Motor Built-In Feedback
	Motor Power Rating Specifications
	Rating

	Encoder Block
	User Units Block
	Calculating User units count by entering expression

	Hardware Interface Block
	Amplifier Interface
	Feedback Interface
	Flag Interface

	Interactive Feedback Block
	Safety Review
	Test and Set Block
	Brush Motors
	Brushless Motors

	Basic Tuning Block
	Commissioning Block

	Coordinate Systems-Context menu
	CoordinateSystem-Context menu
	Compare
	Upload
	Export as Item Template

	Encoder

	Application
	Compensation Table
	Gantry
	1. Configuration
	2. Test
	Typical Gantry Setup Steps

	Removing Gantry

	Homing
	1. Configuration
	2. Starting Location
	3. Home
	4. Home Offset and Soft Limits
	5. Motion Diagram
	6. Test
	Typical Homing setup steps

	Removing Homing

	TCR
	1. Configuration

	C Language
	Background Programs
	Downloading the C Source

	CPLCs
	Include
	Libraries
	Realtime Routines

	Configuration
	eni.xml
	pp_custom_save.cfg
	pp_custom_save.tpl
	pp_disable.txt
	pp_inc_disable.txt
	pp_startup.txt
	pp_inc_startup.txt
	systemsetup.cfg
	Generating Configuration Files

	Documentation
	Log
	pp_proj.log
	pp_error.log
	pp_error_hist.log
	PMAC Script Language Folder
	Global Includes
	Kinematic Routines
	Libraries
	Motion Programs
	PLC Programs

	Debugger
	C language debugger
	Script PLC Debugger

	Project Encryption
	Motor Setup
	Local Motor: (Single or Dual feedback)
	Local Motor: No Feedback Motor (Step & Direction)
	EtherCAT Network and Motor Setup
	Step 1: Setup ECAT network configuration
	Check and set Power PMAC Clock
	Configure the EtherCAT Device
	Appending or scanning the slave
	Adding slave device to Master using Scan network
	Adding Slave device to Master using Append Slave
	Naming Slave device
	Configuring Slave device and Master device
	Configuring PDO mapping and renaming pdos
	Init Commands
	Distributed Clock
	Advanced settings

	Step 2: Load mappings to Power PMAC
	Step 3: Add EtherCAT Motor (Method 1)
	Step 3: Add EtherCAT Motor (Method 2-Drag and Drop)
	Single EtherCAT drive Drag and Drop:
	Multiple EtherCAT drive Drag and Drop:

	Additional necessary settings for 1S and G5 drive to be used in CST and CSV mode

	Miscellaneous feAtures of THE IDE
	View Database
	Import/Export Database
	Set the Editor area to Full Screen

	Associating motors with User-Written Servo and Phase Algorithms
	MACRO Project
	Project upload
	Debugger
	Debugging a Script PLC
	Debugging a Background C Application

	MATLAB/SImulink target for Power PMAC
	Installing the Power PMAC Target on MATLAB
	How to use Simulink to Generate User-Servo C Code
	Example: Modeling PID Control of a Brush Motor
	Step 1: Design the Model
	Step 2: Include Delta Tau Library Blocks in Simulink
	Step 3: C Code Generation
	Step 4: Deploy the Model in the Power PMAC IDE
	Step 5: Verify the Result

	Using Tunable Parameters in Models and Code
	Example: Variable Kp, Kd, and Ki

	How to Use Simulink to Create a Trajectory
	Example Trajectory Generation Model

	Appendix
	Application Notes
	1. How to use EtherCAT slave naming – OEI Application Team- Mike Esposito
	Scope
	Overview
	A. IDE Setup
	B. Example Usage

	2. Commission Safety PLC (NX-SL3300 or NX-SL3500) Plus 1S servo drive with Power PMAC – OEI Application Team- Atanas Karaatanasov
	Scope
	Legal Note:

	SOFTWARE / hardware
	Software / hardware
	Terms and Definitions
	1. SYSMAC Configuration
	2. Download SYSMAC project to ECC203 and sl3300
	3. Export sysmac pdo configuration
	4. Power PMAC IDE configuration

	Upgrading project from IDEV3.x to IDEV4.x
	How to Tune 1S and G5 drive using Advance Tune tool
	Motor-Encoder combination chart supported by System Setup
	ACONTIS Error Codes

