OMRON

Sysmac Library

User's Manual for Dimension Measurement Library SYSMAC-XR014

W574-E1-02

NOTE

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, mechanical, electronic, photocopying, recording, or otherwise, without the prior written permission of OMRON.

No patent liability is assumed with respect to the use of the information contained herein. Moreover, because OMRON is constantly striving to improve its high-quality products, the information contained in this manual is subject to change without notice. Every precaution has been taken in the preparation of this manual. Nevertheless, OMRON assumes no responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of the information contained in this publication.

- Trademarks -

- Sysmac and SYSMAC are trademarks or registered trademarks of OMRON Corporation in Japan and other countries for OMRON factory automation products.
- Microsoft, Windows, Windows Vista, Excel, and Visual Basic are either registered trademarks or trademarks of Microsoft Corporation in the United States and other countries.
- EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.
- ODVA, CIP, CompoNet, DeviceNet, and EtherNet/IP are trademarks of ODVA.

• The SD and SDHC logos are trademarks of SD-3C, LLC.

Other company names and product names in this document are the trademarks or registered trademarks of their respective companies.

Copyrights

Microsoft product screen shots reprinted with permission from Microsoft Corporation.

Introduction

Thank you for purchasing an NJ/NX-series CPU Unit or an NY-series Industrial PC.

This manual contains information that is necessary to use the function blocks in the Dimension Measurement Library. ("Function block" is sometimes abbreviated as "FB".) Please read this manual and make sure you understand the functionality and performance of the NJ/NX/NY-series CPU Unit before you attempt to use it in a control system.

This manual provides function block specifications. It does not describe application restrictions or combination restrictions for Controllers, Units, and components.

Refer to the user's manuals for all of the products in the application before you use any of the products.

Keep this manual in a safe place where it will be available for reference during operation.

Features of the Library

Dimension Measurement Library is the system which connects the NJ/NX/NY-series Controller, ZW-7000 Confocal Fiber Displacement Sensor Controller, and E9NC-TA0 Contact-Type Smart Sensor through EtherCAT communications. It is used when you perform various dimension measurements. When you use the Dimension Measurement Library, you can improve measurement accuracy, enlarge measurement range, and reduce programming work.

Intended Audience

This manual is intended for the following personnel, who must also have knowledge of electrical systems(an electrical engineer or the equivalent).

- · Personnel in charge of introducing FA systems.
- Personnel in charge of designing FA systems.
- · Personnel in charge of installing and maintaining FA systems.
- Personnel in charge of managing FA systems and facilities.

For programming, this manual is intended for personnel who understand the programming language specifications in international standard IEC 61131-3 or Japanese standard JIS B 3503.

Applicable Products

This manual covers the following products.

Item	Product name	Model numbers	Version
Sysmac Library	Dimensiton Measurement Library	SYSMAC-XR014	Version 1.0.0 or higher
Automation Software	Sysmac Studio	SYSMAC-SE	Version 1.15 or higher
Device	CPU Unit	NX701-□□□	Version 1.10 or later
		NJ101-□□□ ^{*1}	
		NJ501-□□□	Version 1.08 or later
		NJ301-□□□□	
	Industrial PC	NY500-1000	Version 1.12 or later

*1. You cannot use these function blocks with the NJ101-90 \Box

Part of the specifications and restrictions for the CPU Units are given in other manuals. Refer to *Related Manuals* on page 11.

Manual Structure

Special Information

Special information in this manual is classified as follows:

Precautions for Safe Use

Precautions on what to do and what not to do to ensure safe usage of the product.

Precautions for Correct Use

Precautions on what to do and what not to do to ensure proper operation and performance.

Additional Information

Additional information to read as required. This information is provided to increase understanding or make operation easier.

Version Information

Information on differences in specifications and functionality for CPU Units and Industrial PCs with different unit versions and for different versions of the Sysmac Studio are given.

Note References are provided to more detailed or related information.

CONTENTS

Introduction	1
Features of the Library	
Intended Audience.	
Applicable Products	
Manual Structure	2
Special Information	2
CONTENTS	4
Terms and Conditions Agreement	6
Warranty, Limitations of Liability	
Application Considerations	
Disclaimers	7
Safety Precautions	8
Precautions for Safe Use	10
Related Manuals	44
Revision History	
,	
Procedure to Use Sysmac Libraries	15
Procedure to Use Sysmac Libraries Installed Using the Installer	
Procedure to Use Sysmac Libraries Uploaded from a CPU Unit or an Industrial PC	
Oswansen Onesifiestiens of Exaction Dissis	
Common Specifications of Function Blocks	
Common Variables	
Precautions	
Individual Specifications of Function Blocks	31
CalcPointMeasurement	
PointMeasure Deviation	
PointMeasure_Torsion	
PointMeasure Curve	
PointMeasure Thickness	
ZW_ZeroResetControl	87
ZW_CmdControl	
LineMeasure_Cartesian	
LineMeasure_CreateShape2D_Master	
LineMeasure_CreateShape2D	
Shape2D_Height	
Shape2D_Edge	
Shape2D_InflectionPoint Shape2D_Angle	
Shape2D_Angle Shape2D Area	
Shape2D_Area	
	200
Appendix	245
Referring to Library Information	
Referring to Function Block and Function Source Codes	

Terms and Conditions Agreement

Warranty, Limitations of Liability

Warranties

Exclusive Warranty

Omron's exclusive warranty is that the Products will be free from defects in materials and workmanship for a period of twelve months from the date of sale by Omron (or such other period expressed in writing by Omron). Omron disclaims all other warranties, express or implied.

Limitations

OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, ABOUT NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OF THE PRODUCTS. BUYER ACKNOWLEDGES THAT IT ALONE HAS DETERMINED THAT THE PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR INTENDED USE.

Omron further disclaims all warranties and responsibility of any type for claims or expenses based on infringement by the Products or otherwise of any intellectual property right.

Buyer Remedy

Omron's sole obligation hereunder shall be, at Omron's election, to (i) replace (in the form originally shipped with Buyer responsible for labor charges for removal or replacement thereof) the non-complying Product, (ii) repair the non-complying Product, or (iii) repay or credit Buyer an amount equal to the purchase price of the non-complying Product; provided that in no event shall Omron be responsible for warranty, repair, indemnity or any other claims or expenses regarding the Products unless Omron's analysis confirms that the Products were properly handled, stored, installed and maintained and not subject to contamination, abuse, misuse or inappropriate modification. Return of any Products by Buyer must be approved in writing by Omron before shipment. Omron Companies shall not be liable for the suitability or unsuitability or the results from the use of Products in combination with any electrical or electronic components, circuits, system assemblies or any other materials or substances or environments. Any advice, recommendations or information given orally or in writing, are not to be construed as an amendment or addition to the above warranty.

See http://www.omron.com/global/ or contact your Omron representative for published information.

Limitation on Liability; Etc

OMRON COMPANIES SHALL NOT BE LIABLE FOR SPECIAL, INDIRECT, INCIDENTAL, OR CON-SEQUENTIAL DAMAGES, LOSS OF PROFITS OR PRODUCTION OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS BASED IN CONTRACT, WARRANTY, NEGLIGENCE OR STRICT LIABILITY.

Further, in no event shall liability of Omron Companies exceed the individual price of the Product on which liability is asserted.

Application Considerations

Suitability of Use

Omron Companies shall not be responsible for conformity with any standards, codes or regulations which apply to the combination of the Product in the Buyer's application or use of the Product. At Buyer's request, Omron will provide applicable third party certification documents identifying ratings and limitations of use which apply to the Product. This information by itself is not sufficient for a complete determination of the suitability of the Product in combination with the end product, machine, system, or other application or use. Buyer shall be solely responsible for determining appropriateness of the particular Product with respect to Buyer's application, product or system. Buyer shall take application responsibility in all cases.

NEVER USE THE PRODUCT FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR PROPERTY WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO ADDRESS THE RISKS, AND THAT THE OMRON PRODUCT(S) IS PROPERLY RATED AND INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM.

Programmable Products

Omron Companies shall not be responsible for the user's programming of a programmable Product, or any consequence thereof.

Disclaimers

Performance Data

Data presented in Omron Company websites, catalogs and other materials is provided as a guide for the user in determining suitability and does not constitute a warranty. It may represent the result of Omron's test conditions, and the user must correlate it to actual application requirements. Actual performance is subject to the Omron's Warranty and Limitations of Liability.

Change in Specifications

Product specifications and accessories may be changed at any time based on improvements and other reasons. It is our practice to change part numbers when published ratings or features are changed, or when significant construction changes are made. However, some specifications of the Product may be changed without any notice. When in doubt, special part numbers may be assigned to fix or establish key specifications for your application. Please consult with your Omron's representative at any time to confirm actual specifications of purchased Product.

Errors and Omissions

Information presented by Omron Companies has been checked and is believed to be accurate; however, no responsibility is assumed for clerical, typographical or proofreading errors or omissions.

Safety Precautions

Definition of Precautionary Information

The following notation is used in this user's manual to provide precautions required to ensure safe usage of an NJ/NX-series Controller and an NY-series Industrial PC.

The safety precautions that are provided are extremely important to safety. Always read and heed the information provided in all safety precautions.

The following notation is used.

	Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury. Addition- ally, there may be severe property damage.
▲ Caution	Indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury, or property damage.

Symbols

-

The triangle symbol indicates precautions (including warnings). The specific operation is shown in the triangle and explained in text. This example indicates a precaution for electric shock. The triangle symbol indicates precautions (including warnings). The specific operation is shown in the triangle and explained in text. The triangle symbol indicates precautions (including warnings). The specific operation is shown in the triangle and explained in text.	ı must not do. d in text.
	0 /
This example indicates a general precaution.	0 /
The filled circle symbol indicates operations that you must do. The specific operation is shown in the circle and explained in text. This example shows a general precaution for something that you must do.	d in text.

Cautions

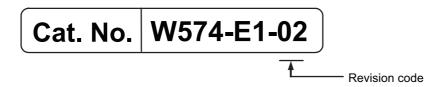
When you use the touch trigger prove sensor, secure the measured object to be	^
fixed.	
Emergency stop circuits, interlock circuits, limit circuits, and similar safety measures must be provided in external control circuits.	$\underline{\land}$
Check the user program, data, and parameter settings for proper execution before you use them for actual operation so that the actual device operates as intended.	$\underline{\mathbb{N}}$
You must confirm that the user program and parameter values are appropriate to the specifications and operation methods of the devices.	\bigwedge
In the function or function block with an Enabled output variable, if the value of Enabled is FALSE, do not use the processing result of the function or function block as a command value to the control target.	$\underline{\land}$
Read all related manuals carefully before you use this library.	$\underline{\mathbb{N}}$
The Sysmac Library and manuals are assumed to be used by personnel that is given in Intended Audience in this manual. Otherwise, do not use them.	$\underline{\mathbb{N}}$
The sample programming shows only the portion of a program that uses the func- tion or function block from the library.	$\underline{\mathbb{N}}$
When using actual devices, also program safety circuits, device interlocks, I/O with other devices, and other control procedures.	$\underline{\mathbb{N}}$
Understand the contents of sample programming before you use the sample pro- gramming and create the user program.	\bigwedge
When you apply a value of an output parameter related to measurement to a target position for motion control, proceed with the design considering that the value is in the movable range of the mechanical device and that sensor and work do not interfere.	\bigwedge
When you use the ZW-7000 Series, fix the target to measure or displacement sen- sor correctly so that the distance between the target and displacement sensor will not change unexpectedly.	$\underline{\land}$
Do not execute multi-execution of motion control instructions for the assigned X axis and Z axis when you execute the LineMeasure_Cartesian function block.	$\underline{\wedge}$
When you execute the LineMeasure_Cartesian function block, confirm in advance that the work and sensor are not interference when a servo axis is moved to the Z-axis search end position.	\bigwedge

Precautions for Safe Use

Operation

- Appropriately set the axis resolution and increasing direction of the servo axis actual position.
- Do not use the filter (median filter, low-pass filter, or moving average filter) that is set in the ZW-7000 Series. If you use the filter in the tracer control, operations may become unstable.
- Select the work to measure for which the height is less than the measurement center distance of the ZW-7000 Series when you execute the LineMeasure_Cartesian function block. Refer to the ZW-7000 Confocal Fiber Type Displacement Sensor User's Manual (Cat. No. Z362) for the measurement center distance.
- When you execute the LineMeasure_Cartesian function block, use the Sysmac Studio or the ZW_CmdControl function block and do not change the setting parameters in the ZW-7000 Series. Unexpected operations may happen.

Related Manuals


The following are the manuals related to this manual. Use these manuals for reference.

Manual name	Cat. No.	Model numbers	Application	Description
NX-series CPU Unit Hardware User's Manual	W535	NX701-□□□□	Learning the basic specifi- cations of the NX-series NX701 CPU Units, includ- ing introductory information, designing, installation, and maintenance. Mainly hard- ware information is pro- vided	An introduction to the entire NX701 CPU Unit sys- tem is provided along with the following informa- tion on the CPU Unit. Features and system configuration Overview Part names and functions General specifications Installation and wiring Maintenance and inspection
NX-series NX1P2 CPU Unit Hardware User's Manual	W578	NX1P2-000	Learning the basic specifi- cations of the NX-series NX1P2 CPU Units, includ- ing introductory information, designing, installation, and maintenance. Mainly hard- ware information is pro- vided	An introduction to the entire NX1P2 CPU Unit sys- tem is provided along with the following informa- tion on the CPU Unit. Features and system configuration Overview Part names and functions General specifications Installation and wiring Maintenance and Inspection
NJ-series CPU Unit Hardware User's Manual	W500	NJ501-□□□ NJ301-□□□ NJ101-□□□	Learning the basic specifi- cations of the NJ-series CPU Units, including intro- ductory information, design- ing, installation, and maintenance. Mainly hardware informa- tion is provided	An introduction to the entire NJ-series system is provided along with the following information on the CPU Unit. Features and system configuration Overview Part names and functions General specifications Installation and wiring Maintenance and inspection
NY-series IPC Machine Controller Industrial Panel PC Hardware User's Manual	W557	NY532-□□□	Learning the basic specifi- cations of the NY-series Industrial Panel PCs, including introductory infor- mation, designing, installa- tion, and maintenance. Mainly hardware informa- tion is provided	An introduction to the entire NY-series system is provided along with the following information on the Industrial Panel PC. Features and system configuration Introduction Part names and functions General specifications Installation and wiring Maintenance and inspection
NY-series IPC Machine Controller Industrial Box PC Hardware User's Manual	W556	NY512-□□□	Learning the basic specifi- cations of the NY-series Industrial Box PCs, includ- ing introductory information, designing, installation, and maintenance. Mainly hard- ware information is pro- vided	An introduction to the entire NY-series system is provided along with the following information on the Industrial Box PC. Features and system configuration Introduction Part names and functions General specifications Installation and wiring Maintenance and inspection

Manual name	Cat. No.	Model numbers	Application	Description
NJ/NX-series CPU Unit Software User's Manual	W501	NX701-□□□□ NJ501-□□□□ NJ301-□□□□	Learning how to program and set up an NJ/NX-series CPU Unit.	The following information is provided on a Control- ler built with an NJ/NX-series CPU Unit. CPU Unit operation
		NJ101-000 NX1P2-000	Mainly software informa- tion is provided	CPU Unit features Initial settings Programming based on IEC 61131-3 language
NY-series IPC Machine Controller Industrial Panel PC / Industrial Box PC Software User's Manual	W558	NY532-000	Learning how to program and set up the Controller functions of an NY-series Industrial PC	specifications The following information is provided on NY-series Machine Automation Control Software. Controller operation Controller features Controller settings Programming based on IEC 61131-3 language specifications
NJ/NX-series Instruc- tions Reference Manual	W502	NX701-000 NJ501-000 NJ301-000 NJ101-000 NX1P2-0000	Learning detailed specifica- tions on the basic instruc- tions of an NJ/NX-series CPU Unit	The instructions in the instruction set (IEC 61131-3 specifications) are described.
NY-series Instructions Reference Manual	W560	NY532-0000 NY512-0000	Learning detailed specifica- tions on the basic instruc- tions of an NY-series Industrial PC	The instructions in the instruction set (IEC 61131-3 specifications) are described.
NJ/NX-series CPU Unit Motion Control User's Manual	W507	NX701-000 NJ501-000 NJ301-000 NJ101-000 NX1P2-0000	Learning about motion con- trol settings and program- ming concepts of an NJ/NX-series CPU Unit.	The settings and operation of the CPU Unit and programming concepts for motion control are described.
NY-series IPC Machine Controller Industrial Panel PC / Industrial Box PC Motion Control User's Manual	W559	NY532-0000	Learning about motion con- trol settings and program- ming concepts of an NY-series Industrial PC.	The settings and operation of the Controller and programming concepts for motion control are described.
NJ/NX-series Motion Control Instructions Ref- erence Manual	W508	NX701-000 NJ501-000 NJ301-000 NJ101-000 NX1P2-0000	Learning about the specifi- cations of the motion con- trol instructions of an NJ/NX-series CPU Unit.	The motion control instructions are described.
NY-series Motion Control Instructions Reference Manual	W561	NY532-0000 NY512-0000	Learning about the specifi- cations of the motion con- trol instructions of an NY-series Industrial PC.	The motion control instructions are described.
Sysmac Studio Version 1 Operation Manual	W504	SYSMAC -SE2□□□	Learning about the operat- ing procedures and func- tions of the Sysmac Studio.	Describes the operating procedures of the Sysmac Studio.
ZW-7000 series Confo- cal Fiber Type Displace- ment Sensor User's Manual'	Z362	ZW-7000□	Learning how to use the ZW-7000 series Confocal Fiber Type Displacement Sensors.	Describes the hardware, setup methods and func- tions of the ZW-7000 series Confocal Fiber Type Displacement Sensors.

Revision History

A manual revision code appears as a suffix to the catalog number on the front and back covers of the manual.

Revision code	Date	Revised content
01	November 2016	Original production
02	December 2016	Corrected mistakes.

Procedure to Use Sysmac Libraries

Sysmac Library User's Manual for Dimension Measurement Library (W574)

Procedure to Use Sysmac Libraries Installed Using the Installer

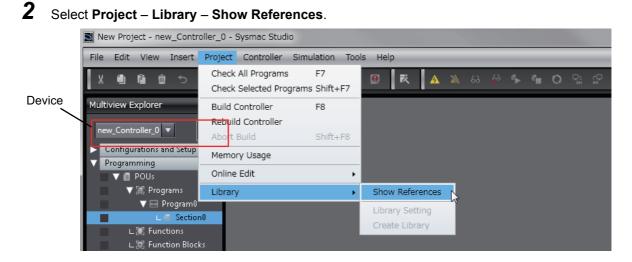
This section describes the procedure to use Sysmac Libraries that you installed using the installer. There are two ways to use libraries.

- · Using newly installed Sysmac Libraries
- Using upgraded Sysmac Libraries

Version Information

To use Sysmac Libraries, you need the Sysmac Studio version 1.14 or higher.

Using Newly Installed Libraries


1 Start the Sysmac Studio and open or create a new project in which you want to use Sysmac Libraries.

offline	Project Pr	operties	
New Project	Project name	New Project	
Dpen Project	Author		
import	Comment		
Export	Туре	Standard Project	
A Online	Select	Device	
4 Connect to Device	Category	Controller	
7 connect to bevice	Device	NJ501 🔻 ⁻ 1500	
License	Version	1.10 Cr	eate

Precautions for Correct Use

If you create a new project, be sure to configure the settings as follows to enable the use of Sysmac Libraries. If you do not configure the following settings, you cannot proceed to the step 2 and later steps.

- · Set the project type to Standard Project or Library Project.
- Set the device category to Controller.
- Set the device version to 1.01 or later.

Precautions for Correct Use

If you have more than one registered device in the project, make sure that the device selected currently is an NJ/NX-series CPU Unit or an NY-series Industrial PC. If you do not select an NJ/NX-series CPU Unit or an NY-series Industrial PC as the device, Library References does not appear in the above menu. When the device selected currently is an NJ/NX-series CPU Unit or an NY-series is device icon **III** is displayed in the Multiview Explorer.

3 Add the desired Sysmac Library to the list and click the **OK** Button.

📓 Libra	iry Reference									x
	Library name	Name Space	Version	Author	Company	Date Created	Date Modified		Attached Files	
	Control Lib_MC_Toolbox_V1_1		1.1.0	OMRON Corporation	(c)OMRON Corporation 2015. All Rights Reserved.			This is MC Toolbox これはモーション制御		913
										>
+	ŧ						Include the ref	erenced libraries w	hen saving the pr	oject.
										_
					ОК					

The Sysmac Library file is read into the project.

Now, when you select the Ladder Editor or ST Editor, the function blocks and functions included in a Sysmac Library appear in the Toolbox.

For the procedure for adding and setting libraries in the above screen, refer to the *Sysmac Studio Version 1 Operation Manual* (Cat. No. W504).

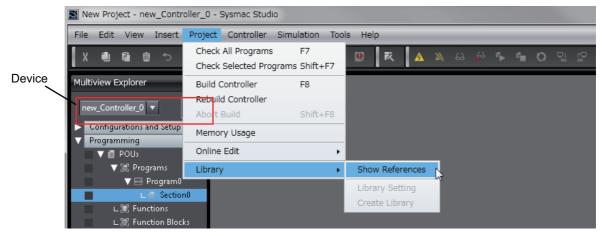
- **4** Insert the Sysmac Library's function blocks and functions into the circuit using one of the following two methods.
 - Select the desired function block or function in the Toolbox and drag and drop it onto the programming editor.

riables			<search></search>
	mronLib\MC_Toolbox\FirstOrderlag ble Enabled		OmronLib_MC_Tool F DeadBand {Omro
Enter Variable <mark>—</mark> InC	aic CalcRsit	nter Variatio	FB FirstOrderlag (Or
Enter Variable Kp	Busy -	inter Variable Drug & Drop	FB LeadLag (Omron
Enter Variable Tim	eConst Error-	Inter Variable	the second s
Enter Variable San	npTime Error(D	Enter Variable	
	ErrorIDEx -	Enter Variable	Analog Conversion

 Right-click the programming editor, select Insert Function Block in the menu, and enter the fully qualified name (\\name of namespace\name of function block).

🖶 Section0 - Program0 🗙 🗸 🗸	Toolbox 👻
Variables 🔺	<search></search>
	OmronLib_MC_Toolbox_V F — DeadBand (OmronLib)M FB — FirstOrderlag (OmronLib FB — LeadLag (OmronLib)MC FB — PIDFeedFwd (OmronLib Analog Conversion

Precautions for Correct Use

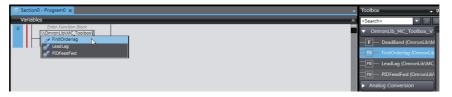

After you upgrade the Sysmac Studio, check all programs and make sure that there is no error of the program check results on the Build Tab Page.

Select Project - Check All Programs from the Main Menu.

Using Upgraded Libraries

1 Start the Sysmac Studio and open a project in which any old-version Sysmac Library is included.

2 Select Project – Library – Show References.


Precautions for Correct Use

If you have more than one registered device in the project, make sure that the device selected currently is an NJ/NX-series CPU Unit or an NY-series Industrial PC. Otherwise, Library References does not appear in the above menu. When the device selected currently is an NJ/NX-series CPU Unit or an NY-series Industrial PC, the device icon **III** is displayed in the Multiview Explorer.

3 Select an old-version Sysmac Library and click the **Delete Reference** Button.

S Ubrary Reference										
	Library name	Name Space	Version	Author	Company	Date Created	Date Modified		Attached Files	
	OmronLib_MC_Toolbox_V1_1		1.1.0	OMRON Corporation	(c)OMRON Corporation 2015. All Rights Reserved.			This is MC Toolboo これはモーション制御		91308675-17a4-4fdb-8c51-95555801a780
Enclude the referenced libraries when saving the project.										
					ОК					

4 Add the desired Sysmac Library to the list and click the **OK** Button.

Procedure to Use Sysmac Libraries Uploaded from a CPU Unit or an Industrial PC

You can use Sysmac Libraries uploaded from a CPU Unit or an Industrial PC to your computer if they are not installed.

The procedure to use uploaded Sysmac Libraries from a CPU Unit or an Industrial PC is as follows.

Version Information

To use Sysmac Libraries, you need the Sysmac Studio version 1.14 or higher.

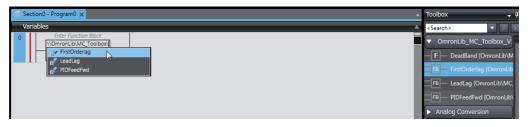
1

Start the Sysmac Studio and create a new project in which you want to use Sysmac Libraries.

New Project	Destant	New Design	_	
+ Hew Hoject	Project name	New Project		
Copen Project	Author		_	
 ش ² Import	Comment			
Export	Туре	Standard Project		
A Online	Select	Device		
4 Connect to Device	Category	Controller	•	
7 Connect to Device	Device	NJ501 🔻 - 1500	•	
	Version	1.10	•	1 de la
🖛 License				
	1		Create	

Connect the computer to the CPU Unit or the Industrial PC and place it online.

3 Upload POUs in which any Sysmac Library is used to the computer.


Now, when you select the Ladder Editor or ST Editor, the function blocks and functions included in the Sysmac Library used in the uploaded POUs appear in the Toolbox.

4 Insert the Sysmac Library's function blocks and functions into the circuit using one of the following two methods.

 Select the desired function block or function in the Toolbox and drag and drop it onto the Ladder Editor.

	on0 - Program0 🗙				-	Toolbox	
Varia	ables				*	<search></search>	▼ 2
		\\OmronLib\MC_Toolbox\Fir				OmronLib_M	
	Enter Variable		CalcRsit _Enter Variation			FB FirstOrde	id {OmronLit
	Enter Variable	Кр	Busy Enter Variable	Drug & Drop			{OmronLib
	Enter Variable	TimeConst	Error Enter Variable				
	Enter Variable	SampTime	ErrorID Enter Variable				Fwd {Omron
			ErroriDEx Enter Variable			Analog Conve	
			and the second second			BCD Convers	

• Right-click the programming editor, select **Insert Function Block** in the menu, and enter the fully qualified name (\\name of namespace\name of function block).

Precautions for Correct Use

• The Sysmac Studio installs library files of the uploaded Sysmac Studio to the specified folder on the computer if they are not present. However, the Sysmac Studio does not install library files to the specified folder on the computer if they are present.

The specified folder here means the folder in which library files are installed by the installer.

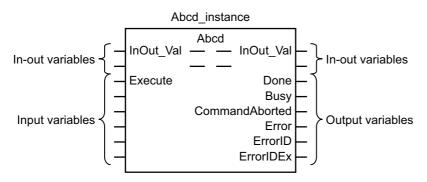
 Note that uploading Sysmac Libraries from a CPU Unit or an Industrial PC does not install the manual and help files for the Sysmac Libraries, unlike the case where you install then using the installer. Please install the manual and help files using the installer if you need them.

Common Specifications of Function Blocks

Common Variables

This section describes the specifications of variables (*EN*, *Execute*, *Enable*, *Abort*, *ENO*, *Done*, *CalcRslt*, *Enabled*, *Busy*, *CommandAborted*, *Error*, *ErrorID*, and *ErrorIDEx*) that are used for more than one function or function block. The specifications are described separately for functions, for execute-type function blocks, and for enable-type function blocks.

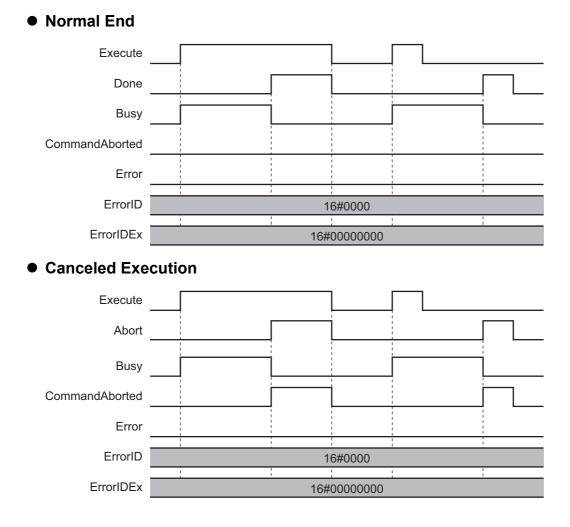
Definition of Input Variables and Output Variables


Common input variables and output variables used in functions and function blocks are as follows.

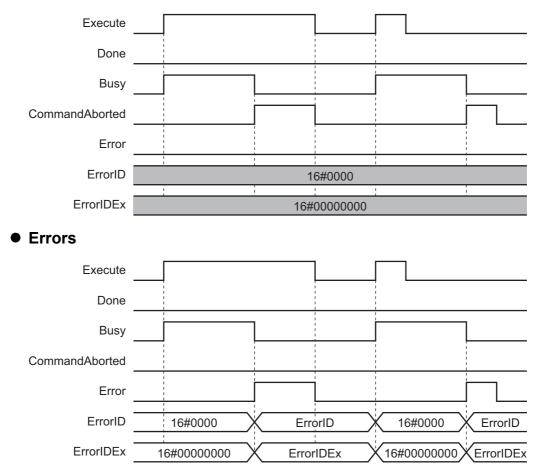
		Data	Function/function block type to use					
Variable	I/O	type	Functio	n block	Function	Meaning	Definition	
		type	Execute-	Enable-				
			type	type				
EN	Input	BOOL			OK	Execute	The processing is executed while the variable is TRUE.	
Execute			ОК			Execute	The processing is executed when the variable changes to TRUE.	
Enable				OK		Run	The processing is executed while the variable is TRUE.	
Abort		BOOL	OK			Abort	The processing is aborted.	
							You can select the aborting method.	

		Data	blo	nction/func ck type to			
Variable	I/O	type	Function block			Meaning	Definition
			Execute- type	Enable- type	Function		
ENO	Output	BOOL			OK	Done	The variable changes to TRUE when the processing ends normally.
							It is FALSE when the processing ends in an error, the processing is in progress, or the execution condition is not met.
Done		BOOL	OK			Done	The variable changes to TRUE when the processing ends normally.
							It is FALSE when the processing ends in an error, the processing is in progress, or the execution condition is not met.
Busy		BOOL	OK	OK		Executing	The variable is TRUE when the process- ing is in progress.
							It is FALSE when the processing is not in progress.
CalcRsIt		LREAL		OK		Calculation Result	The calculation result is output.
Enabled		BOOL		OK		Enabled	The variable is TRUE when the output is enabled. It is used to calculate the con- trol amount for motion control, tempera- ture control, etc.
Command Aborted		BOOL	ОК			Command Aborted	The variable changes to TRUE when the processing is aborted.
							It changes to FALSE when the process- ing is re-executed the next time.
Error		BOOL	OK	OK		Error	This variable is TRUE while there is an error.
							It is FALSE when the processing ends normally, the processing is in progress, or the execution condition is not met.
ErrorID		WORD	OK	OK		Error Code	An error code is output.
ErrorIDEx		DWORD	OK	OK		Expansion Error Code	An expansion error code is output.

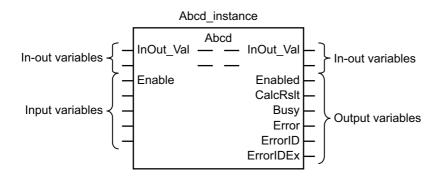
Execute-type Function Blocks


- Processing starts when *Execute* changes to TRUE.
- When *Execute* changes to TRUE, *Busy* also changes to TRUE. When processing is completed normally, *Busy* changes to FALSE and *Done* changes to TRUE.
- When continously executes the function blocks of the same instance, change the next *Execute* to TRUE for at least one task period after *Done* changes to FALSE in the previous execution.
- If the function block has a *CommandAborted* (Instruction Aborted) output variable and processing is aborted, *CommandAborted* changes to TRUE and *Busy* changes to FALSE.
- If an error occurs in the function block, Error changes to TRUE and Busy changes to FALSE.
- For function blocks that output the result of calculation for motion control and temperature control, you can use the BOOL input variable *Abort* to abort the processing of a function block. When *Abort* changes to TRUE, *CommandAborted* changes to TRUE and the execution of the function block is aborted.

- If *Execute* is TRUE and *Done*, *CommandAborted*, or *Error* changes to TRUE, *Done*, *Command-Aborted*, and *Error* changes to FALSE when *Execute* is changed to FALSE.
- If *Execute* is FALSE and *Done*, *CommandAborted*, or *Error* changes to TRUE, *Done*, *Command-Aborted*, and *Error* changes to TRUE for only one task period.
- If an error occurs, the relevant error code and expansion error code are set in *ErrorID* (Error Code) and *ErrorIDEx* (Expansion Error Code). The error codes are retained even after *Error* changes to FALSE, but *ErrorID* is set to 16#0000 and *ErrorIDEx* is set to 16#0000 0000 when *Execute* changes to TRUE.

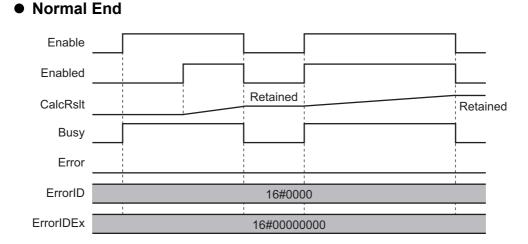

Timing Charts

This section provides timing charts for a normal end, aborted execution, and errors.

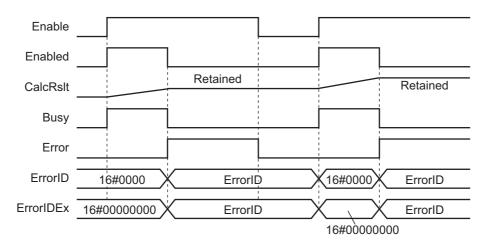

Sysmac Library User's Manual for Dimension Measurement Library (W574)

Aborted Execution

Enable-type Function Blocks


- · Processing is executed while Enable is TRUE.
- When *Enable* changes to TRUE, *Busy* also changes to TRUE. *Enabled* is TRUE during calculation of the output value.
- If an error occurs in the function block, *Error* changes to TRUE and *Busy* and *Enabled* change to FALSE. When *Enable* changes to FALSE, *Enabled*, *Busy*, and *Error* change to FALSE.

- If an error occurs, the relevant error code and expansion error code are set in *ErrorID* (Error Code) and *ErrorIDEx* (Expansion Error Code). The error codes are retained even after *Error* changes to FALSE, but *ErrorID* is set to 16#0000 and *ErrorIDEx* is set to 16#0000 0000 when *Enable* changes to TRUE.
- For function blocks that calculate the control amount for motion control, temperature control, etc., Enabled is FALSE when the value of CalcRslt (Calculation Result) is incorrect. In such a case, do not use CalcRslt. In addition, after the function block ends normally or after an error occurs, the value of CalcRslt is retained until Enable changes to TRUE. The control amount will be calculated based on the retained CalcRslt value, if it is the same instance of the function block that changed Enable to TRUE. If it is a different instance of the function block, the control amount will be calculated based on the initial value.


Timing Charts

This section provides timing charts for a normal end and errors.

Sysmac Library User's Manual for Dimension Measurement Library (W574)

• Errors

Precautions

This section provides precautions for the use of this function block.

Nesting

You can nest calls to this function block for up to four levels. For details on nesting, refer to the software user's manual.

Instruction Options

You cannot use the upward differentiation option for this function block.

Re-execution of Function Blocks

Execute-type function blocks cannot be re-executed by the same instance. If you do so, the output value will be the initial value. For details on re-execution, refer to the motion control user's manual.

Individual Specifications of Function Blocks

Function block name	Name	Page
CalcPointMeasurement	Point Measurement Calculation (Maxi- mum Value, Minimum Value, Flatness and Mean Value)	P.32
PointMeasure_Deviation	Deviation Calculation	P.48
PointMeasure_Torsion	Torsion Calculation	P.63
PointMeasure_Curve	Curve Calculation	P.72
PointMeasure_Thickness	Thickness Calculation	P.80
ZW_ZeroResetControl	ZW Zero Reset Control	P.87
ZW_CmdControl	ZW Command Control	P.93
LineMeasure_Cartesian	Line Measurement with Cartesian Coor- dinate System (Surface Search/Tracer Control)	P.109
LineMeasure_CreateShape2D_Master	Master 2D Shape Data Creation	P.153
LineMeasure_CreateShape2D	2D Shape Data Creation	P.172
Shape2D_Height	2D Shape Height Measurement	P.183
Shape2D_Edge	2D Shape Edge Position Measurement	P.199
Shape2D_InflectionPoint	2D Shape Inflection Point Measurement	P.209
Shape2D_Angle	2D Shape Angle Measurement	P.218
Shape2D_Area	2D Shape Sectional Area Measurement	P.226
Shape2D_Compare	2D Shape Comparison Measurement	P.235

CalcPointMeasurement

The CalcPointMeasurement function block utilizes the measurement data obtained from 1 to 16 measurement sensors, to perform the calculation of maximum value, minimum value, flatness, and mean value.

Function block name	Name	FB/ FUN	Graphic expression	ST expression
ment su Ca (M Va mu Fla an	Point Mea- urement Calculation Maximum Yalue, Mini- num Value, Tatness nd Mean Yalue)	ΞB	CalcPointMeasurement_instance	CalcPointMeasurement_Instance (Enable, Selector, Input, Threshold, Hold, Suspend, Enabled, CalcRsItMax, CalcRsItMax, CalcRsItFlatness, CalcRsItFlatness, CalcRsItMean, ChkRsItMax, ChkRsItMax, ChkRsItFlatness, ChkRsItFlatness, ChkRsItFlatness, ChkRsItFlatness, ChkRsItFlatness, ChkRsItFlatness, ChkRsItFlatness, ChkRsItMean, Busy, Error, ErrorID, ErrorID, ErrorID,

Function Block and Function Information

Item	Description
Library file name	OmronLib_DIM_Measurement_V1_0.slr
Namespace	OmronLib\DIM_Measurement
Function block and function number	00091
Publish/Do not publish source code	Not published.
Function block and function version	1.00

Compatible Models

ltem	Product name	Model numbers	Version
Device	Sensor Communications Unit	E3NW-ECT	Rev 1.03 or later
	Distributed Sensor Unit	E3NW-DS	-
	Smart Laser Amplifier	E3NC-LA0	-
	Smart Fiber Amplifier	E3NC-SA0	-
	Smart Fiber Amplifier	E3NX-FA0	-
	Contact-Type Smart Amplifier	E3NC-TA0	-
	Confocal Fiber Displacement	ZW-7000	-
	Sensor Controller		
	Confocal Fiber Displacement	ZW-DDD	-
	Sensor Head		

Variables

Input Variables

Variable	Name	Description	Data type	Valid range	Default
Enable	Execution	TRUE: Execute	BOOL	Depends on data	FALSE
		FALSE: Do not execute		type.	
Selector ^{*1}	Sensor Head Selection	TRUE: The sensor input value with the array element number set to TRUE is the target of calculation.	ARRAY[01 5] OF BOOL	Depends on data type.	FALSE
		FALSE: The sensor input value with the array element number set to FALSE is not the target of calculation.			
		Specify one or more sen- sors.			
Input	Input Value	The input value obtained from a measurement sensor. The measurement values of the sensors are input for each array element. For the	ARRAY[01 5] OF DINT	Depends on data type.	0
		unit, refer to the manual of the respective sensors.			
Threshold ^{*1}	Threshold	Whether the threshold is exceeded is judged. Details on the data type: Refer to <i>Members of Struc-</i>	Omron- Lib\DIM_Me asure- ment\sThres holdParams	_	_
		<i>ture sThresholdParams</i> on page 36.	noiur arams		
Hold ^{*1}	Output Value Hold	 In the case of TRUE: Holds the maximum value of <i>CalcRsltMax</i>. 	BOOL	Depends on data type.	FALSE
		• Holds the minimum value of <i>CalcRsltMin</i> .			
		Outputs the difference between maximum and minimum values as flat- ness.			
Suspend	Suspension	Set to TRUE when inputting measurement data on which you want to disable the cal- culation during execution.	BOOL	Depends on data type.	FALSE

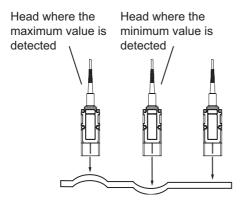
*1. If the set values are used for calculation at the task period when FALSE changed to TRUE on *Enable* (Execution) of this function block, the values which changed while *Enable* was TRUE are not reflected in the calculation.

Output Variables

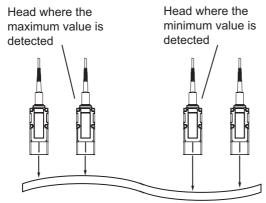
Variables	Name	Description	Data type	Valid range	Default
Enabled	Calculation in Progress	TRUE: Calculation in prog- ress FALSE: Calculation stopped	BOOL	Depends on data type.	—
CalcRsltMax	Maximum Value Calcula- tion Result	Stores the maximum value calculated, using the detec- tion values of sensors speci- fied in Sensor head selection.	DINT	Depends on data type.	_
CalcRsltMin	Minimum value Calcula- tion Result	Stores the minimum value calculated, using the detec- tion values of sensors speci- fied in Sensor head selection.	DINT	Depends on data type.	_
CalcRsltFlat- ness	Flatness Cal- culation Result	Stores the flatness calcu- lated, using the detection values of sensors specified in Sensor head selection.	DINT	Depends on data type.	_
CalcRsltMean	Mean Value Calculation Result	Stores the mean value cal- culated, using the detection values of sensors specified in Sensor head selection.	DINT	Depends on data type.	_
ChkRsltMax	Maximum Value Judge- ment Result	 Turns to TRUE if the maximum value calculation result meets all the following criteria: Not less than the threshold (Low). Not more than the threshold (High). 	BOOL	Depends on data type.	—
ChkRsltMin	Minimum Value Judge- ment Result	 Turns to TRUE if the minimum value calculation result meets all the following criteria: Not less than the threshold (Low). Not more than the threshold (High). 	BOOL	Depends on data type.	—
ChkRsltFlatness	Flatness Judgement Result	 Turns to TRUE if the flatness calculation result meets all the following criteria: Not less than the threshold (Low). Not more than the threshold (High). 	BOOL	Depends on data type.	-
ChkRsltMean	Mean Value Judgement Result	 Turns to TRUE if the mean value calculation result meets all the following criteria: Not less than the threshold (Low). Not more than the threshold (High). 	BOOL	Depends on data type.	_

Variables	Name	Description	Data type	Valid range	Default
Busy	Execution in	Turns to TRUE while the	BOOL	Depends on data	—
	progress	processing is in execution;		type.	
		turns to FALSE while the			
		processing is not in execu-			
		tion.			
Error	Error	Outputs TRUE if an error	BOOL	Depends on data	—
		occurs.		type.	
ErrorID	Error Code	Outputs the error code if an	WORD	*1	—
		error occurs.			
ErrorIDEx	Expansion	Outputs the extended error	DWORD	*1	—
	Error Code	code if an error occurs.			

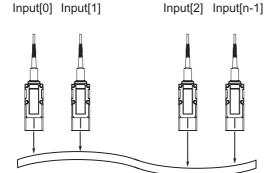
*1. Refer to the *Troubleshooting* on page 42.


Members of Structure sThresholdParams

Member	Name	Data type	Valid range	Description
Max_High	Maximum Value Threshold (High)	DINT	Depends on data type.	The judgement output turns to TRUE when the calculation
Max_Low	Maximum Value Threshold (Low)	DINT	Depends on data type.	results are in between the threshold (High) and the
Min_High	Minimum Value Threshold (High)	DINT	Depends on data type.	threshold (Low), both of which are specified here.
Min_Low	Minimum Value Threshold (Low)	DINT	Depends on data type.	Specify the thresholds always as: Threshold (High) ≥
Flatness_High	Flatness Threshold (High)	DINT	Depends on data type.	Threshold (Low).
Flatness_Low	Flatness Threshold (Low)	DINT	Depends on data type.	
Mean_High	Mean Value Threshold (High)	DINT	Depends on data type.	
Mean_Low	Mean Value Threshold (Low)	DINT	Depends on data type.	


Function

The CalcPointMeasurement function block utilizes the measurement data obtained from any one of the following 1 to 16 measurement sensors, to perform the calculation of maximum value, minimum value, flatness, and mean value.


- Sensor amplifier connected to the Sensor Communications Unit (E3NW-ECT)
- Confocal Fiber Type Displacement Sensor (ZW-7000)

Flatness = (Maximum value – Minimum value)

Mean value = (Measurement value of X1 + Measurement value of X2 +... Measurement value of Xn)/ n

(a) Set up the measurement values of sensors in each array element of *Input* (input value) to take in the measurement values of 16 sensors into this function block. The following is an example where device variables are set so as to store the measurement values of sensors in the array elements of Input.

Input[0] := E001_Measurement_Value;

Input[1] := E002_Measurement_Value;

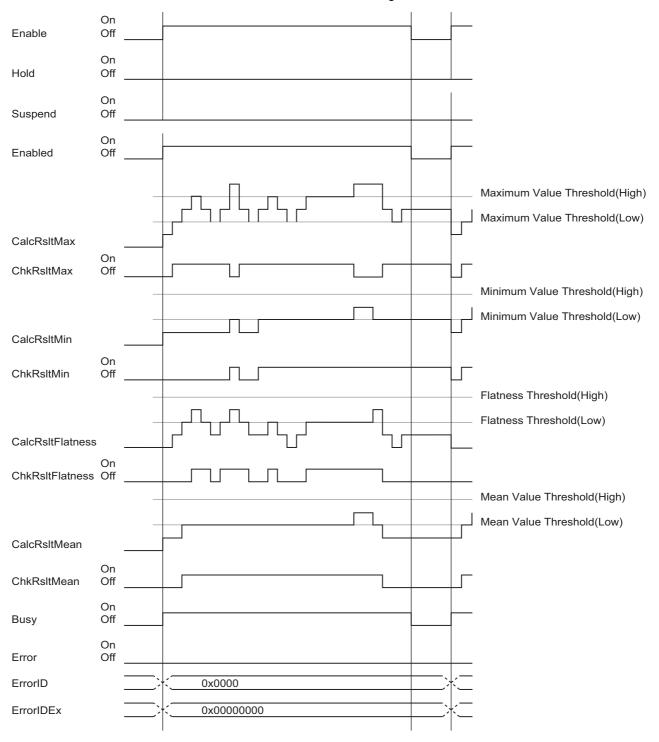
Input[2] := E003_Measurement_Value;

Input[15] := E0016_Measurement_Value;

- (b) When Enable (Execution) is set to TRUE:
 - From the inputs with the array element number set to TRUE in *Selector* (Sensor Head Selection), the maximum value is set for *CalcRsltMax*.
 - From the inputs with the array element number set to TRUE in *Selector* (Sensor Head Selection), the minimum value is set for *CalcRsltMin*.
 - From the inputs with the array element number set to TRUE in *Selector* (Sensor Head Selection), the maximum and minimum values are extracted and their difference (i.e. the minimum value substracted from the maximum value) is set for *CalcRsltFlatness* as the flatness.
 - From the inputs with the array element number set to TRUE in *Selector*, their mean value is set for *CalcRsItMean*.

While *Enable* is TRUE, the calculation continues. As *Enable* turns to FALSE, the calculation is terminated, but *CalcRsltMax*, *CalcRsltMin*, *CalcRsltFlatness*, and *CalcRsltMean* hold their values, which will be reset next time *Enable* changes to TRUE.

- (c) When the value of CalcRsltMax is not less than the threshold (Low) and not more than the threshold (High), ChkRsltMax turns to TRUE. Even if Enable turns to FALSE, the value of ChkRsltMax is held and will be reset next time Enable changes to TRUE. CalcRsltMin, CalcRsltFlatness, and CalcRsltMean also show the similar behavior.
- (d) When Hold (Output Value Hold) is set to TRUE:
 - The maximum value of *CalcRsltMax* is held.
 - The minimum value of *CalcRsltMin* is held.
 - The difference between the above-mentioned maximum and minimum values is output to *CalcRsltFlatness* as the flatness.
- (e) Setting Suspend (Suspension) to TRUE allows the calculation to be suspended while the execution is in progress. This function is useful to remove the calculation results in the task periods where process data communications fail and the measurement data is not updated correctly. During suspension, Enabled (Calculation in Progress) turns to FALSE, where the number of data points used for mean value calculation is not updated. As you set Suspend to FALSE, calculation resumes.
- (f) If an error occurs, *Error* turns to TRUE and the processing of function blocks is interrupted. In addition, the error code is output to *ErrorID* and *ErrorIDEx*.


For details on the error codes, refer to *Troubleshooting* on page 42.

Timing Charts

The timing charts are shown below.

• Timing Chart in a Normal State (HOLD = FALSE)

At the same time when Enable (Execution) changes to TRUE, *Busy* (Execution in Progress) turns to TRUE. If the calculation results *CalcRsItMax* to *CalcRsItMean* do not exceed the thresholds, the judgement results from *ChkRsItMax* to *ChkRsItMean* turn to TRUE. As you set *Enable* to FALSE, *Busy* and *Enabled* turn to FALSE. The judgement results from *ChkRsItMax* to *ChkRsItMean* hold their values, which will be reset next time *Enable* changes to TRUE.

• Timing Chart in a Normal State (HOLD = TRUE)

Execution with *HOLD* set to TRUE results in the maximum value of *CalcRsltMax* and the minimum value of *CalcRsltMin* being held while *Enable* is TRUE. The flatness is output as: Maximum value of *CalcRsltMax* – Minimum value of *CalcRsltMin*.

Enable						
Hold						
Suspend					 	
Enabled						
		 		 		Maximum Value Threshold(High)
CalcRsltMax	ſ			 		Maximum Value Threshold(Low)
				 	 	Minimum Value Threshold(High)
				 	 	Minimum Value Threshold(Low)
CalcRsltMin						
ChkRsltMin						
		·····		 	 	Flatness Threshold(High)
CalcRsItFlatness	•			 	 	Flatness Threshold(Low)
ChkRsltFlatness						
				 	 	Mean Value Threshold(High)
				 7	 ╷╻┍╼┚╴╸╸	Mean Value Threshold(Low)
CalcRsltMean]		L		
ChkRsltMean				1		
Busy						
Error						
ErrorID	>	(\sim	
ErrorIDEx		C0x000000	000	 	k 	

• Timing Chart in a Normal State (Suspend = TRUE)

With *Suspend* set to TRUE, the calculation processing is suspended while *Enable* is TRUE. While Suspend is TRUE, *Enabled* turns to FALSE, where *CalcRsltMax* to *CalcRsltMean* and *ChkRsltMax* to *ChkRsltMean* hold the old values before *Suspend* turned to TRUE.

Enable					
Hold					
Suspend		Γ			
Enabled					
CalcRsltMax ChkRsltMax			 	······	Maximum Value Threshold(High) Maximum Value Threshold(Low)
			 		Minimum Value Threshold(High)
CalcRsltMin					Minimum Value Threshold(Low)
ChkRsltMin			 	 	Flatness Threshold(High)
CalcRsItFlatness ChkRsItFlatness			 		Flatness Threshold(Low)
			 		Mean Value Threshold(High)
CalcRsltMean ChkRsltMean			 		Mean Value Threshold(Low)
Busy					
Error					
ErrorID	;	C0x0000		$\langle $	
ErrorIDEx		C0x0000000		, 	

• Timing Chart When an Error Occurs

If an error occurs while this function block is in execution, *Error* (Error) turns to TRUE and the values are output to *ErrorID* (Error Code) and *ErrorIDEx* (Expansion Error Code). As you set *Enable* to FALSE, Error turns to FALSE as well, but *ErrorID* and *ErrorIDEx* hold their values until the next execution.

Enable				
Busy			 	
Error				1 1 1 1
ErrorID	<u>0x0000000</u>	ErrorID	<u> </u>	0x00000000
ErrorIDEx	0x0000000	ErrorIDEx	>	<u>0x00000000</u>

Precautions for Use

- For input values to this function block, consistently use either sensors connected to the E3NW or sensors of the ZW-7000. The combined use results in a failure to perform the correct operation because the unit is different from each other.
- Before executing this function block, carefully read the manuals for devices to use and ensure the safety for use.
- For the ZW-7000 series, confirm that the following pre-conditions are met before executing this function block.
 - a) The ZW_CmdControl function block is unexecuted.
 - b) TASKSTAT_TX which is the status of the target task for measurement slave is TRUE.

Troubleshooting

Error code	Expansion error code	Description	Corrective action
0x3C9E	0x1	The upper threshold is smaller than the lower threshold.	Specify the thresholds so that the upper threshold will be larger than the lower threshold.
_	0x2	The number of selected sen- sor heads is less than the minimum requirement.	For head selection, specify one or more heads undertaking the calculation.

Sample Programming

Program Description

For one second after the measurement start command, this program uses the measurement values of 16 types of sensors connected via EtherCAT as inputs to perform calculation by CalcPointMeasurement function block.

Preconditions

- Create device variables for the measurement values of the displacement sensor with which you want to perform measurement and use external references to the variables in the program. Refer to the *Sysmac Studio Version 1 Operation Manual* (Cat. No. W504) for details on how to create device variables.
- If E9NC-TA sensors are used to input values, change the PDO mapping settings for the E3NW-ECT so that the sensor detection amount is 4 bytes.

Example: If E9NC-TA sensors are connected to an E3NW-ECT with unit number 01

 \rightarrow Change the setting of 273rd transmit PDO Mapping (No_01 Detection Level IN 1) from *Input* to *Not* selected.

 \rightarrow Change the setting of 423rd transmit PDO Mapping (No_01 Detection Level (4 bytes) from *Not* selected to *Input*.

- If ZW-7000 sensors are used to input values, set the measurement item for each sensor to the same item.
- Set each sensor to zero beforehand.

Name	Meaning	Data type	Default	Description
StartMeasurement	Start Point	BOOL	FALSE	Starts point measurement
	Measurement			calculation when the variable
	Calculation			changes to TRUE.
WorkDetection	Workpiece in	BOOL	FALSE	TRUE:
	Position Status			The workpiece for measurement
				is set in position.
				FALSE:
				The workpiece for measurement
				is not set in position.
CalcPointMeasurement_S	Sensor Head	ARRAY[015]	FALSE	Selects the input value of the
elector[]	Selection	OF BOOL		sensor with the array element
				number that changed this variable
				to TRUE.
				Assign this variable to the
				Selector input variable of
				CalcPointMeasurement.
CalcPointMeasurement_in	Measurement	ARRAY[015]		Assigns the OUT1 data in the
put[]	Sensor Input	OF DINT		output area I/O port of the sensor
	Value			heads 1 to 16 in order of the array
				element number.
				Assign this variable to the <i>Input</i>
				input variable of
				CalcPointMeasurement.

Main Variables

Name	Meaning	Data type	Default	Description
CalcPointMeasurement_T hreshold	Threshold Setting	Omron- Lib\DIM_Mea sure- ment\sThresh oldParams		Sets the threshold range. Assign this variable to the <i>Threshold</i> input variable of CalcPointMeasurement.
CalcPointMeasurement_H old	Output Value Hold	BOOL	FALSE	 TRUE: Holds the maximum value in <i>CalcRsltMax.</i> Holds the minimum value in <i>CalcRsltMin.</i> Assign this variable to the <i>Hold</i> input variable of CalcPointMeasurement.
_EC_InDataInvalid	Input Data Disabled	BOOL		A system-defined variable for EtherCAT communications. TRUE when the process data communications executed in the primary periodic task is not normal and the input value is not valid. Assign this variable to the <i>Suspend</i> input variable of CalcPointMeasurement.
CalcPointMeasurement_C alcRsltMax	Maximum Value Calculation Result	DINT		Assign this variable to the <i>CalcRsltMax</i> output variable of CalcPointMeasurement.
CalcPointMeasurement_C alcRsItMin	Minimum Value Calculation Result	DINT		Assign this variable to the <i>CalcRsltMin</i> output variable of CalcPointMeasurement.
CalcPointMeasurement_C alcRsItFlatness	Flatness Calculation Result	DINT		Assign this variable to the <i>CalcRsltFlatness</i> output variable of CalcPointMeasurement.
CalcPointMeasurement_C alcRsltMean	Mean Value Calculation Result	DINT		Assign this variable to the <i>CalcRsltMean</i> output variable of CalcPointMeasurement.
CalcPointMeasurement_C hkRsltMax	Maximum Value Judgment Result	BOOL		Assign this variable to the <i>ChkRsltMax</i> output variable of CalcPointMeasurement.
CalcPointMeasurement_C hkRsltMin	Minimum Value Judgment Result	BOOL		Assign this variable to the <i>ChkRsltMin</i> output variable of CalcPointMeasurement.
CalcPointMeasurement_C hkRsItFlatness	Flatness Judgment Result	BOOL		Assign this variable to the <i>ChkRsltFlatness</i> output variable of CalcPointMeasurement.
CalcPointMeasurement_C hkRsltMean	Mean Value Judgment Result	BOOL		Assign this variable to the <i>ChkRsltMean</i> output variable of CalcPointMeasurement.

Ladder Diagram

	1 //Specify the threshold (High and Low) values.
	2 CalcPointMeasurement_Threshold.Max_High:=DINT#1500000;
	3 CalcPointMeasurement_Threshold.Max_Low:=DINT#0;
	4 CalcPointMeasurement_Threshold.Min_High:=DINT#0;
	5 CalcPointMeasurement_Threshold.Min_Low:=DINT#-1500000;
	6 CalcPointMeasurement_Threshold.Flatness_High:=DINT#3000000;
	7 CalcPointMeasurement_Threshold.Flatness_Low:=DINT#0;
	8 CalcPointMeasurement_Threshold.Mean_High:=DINT#1500000;
	9 CalcPointMeasurement_Threshold.Mean_Low:=DINT#-1500000;
<	
	TP_Instance WorkDetection TP CalcPointMeasureme
rtMeasurement	WorkDetection TP CalcPointMeasureme

CalcPointMeasureme	-		
		ment value of each sensor in order of the arra	
		Measurement_Input[0]:=E001_Output_Data_1	
		Measurement_Input[1]:=E002_Output_Data_1	
		Measurement_Input[2]:=E003_Output_Data_1	
		Measurement_Input[3]:=E004_Output_Data_1	
		Measurement_Input[4]:=E005_Output_Data_1	
		Measurement_Input[5]:=E006_Output_Data_1	
		Measurement_Input[6]:=E007_Output_Data_1	
		Measurement_Input[7]:=E008_Output_Data_1	
		Measurement_Input[8]:=E009_Output_Data_1	
		Measurement_Input[9]:=E010_Output_Data_1	
		Measurement_Input[10]:=E011_Output_Data	
		Measurement_Input[11]:=E012_Output_Data Measurement Input[12]:=E013 Output Data	
		Measurement_input[12]:=E015_Output_Data Measurement_Input[13]:=E014_Output_Data	
		Measurement Input[14]:=E014_Output_Data Measurement Input[14]:=E015 Output Data	
		Measurement_Input[15]:=E016_Output_Data Measurement Input[15]:=E016_Output Data	
		measurement_input[15].=E010_Output_Data_	
	<		2
		CalcPointMeasureme…	CalcPointMeasureme…
		\\OmronLib\DIM_Measurement\CalcPointMeasurement Enable Enable	
			\smile
	CalcPointMeasureme	Selector CalcRsitMax	
	CalcPointMeasureme	Input CalcRsItMin	
	CalcPointMeasureme	Threshold CalcRsItFlatness	—CalcPointMeasureme…
	CalcPointMeasureme	Hold CalcRsitMean	
	_EC_InDataInvalid—	Suspend ChkRsitMax	
		ChkRsltMin	
		ChkRsItFlatness	
		ChkRsitMean	
		Busy	
		Error	
		ErrorID	
		ErrorIDEx	

Code of Inline ST (Zeroth Line of Ladder Diagram):

```
// Specify the threshold (High and Low) values.
CalcPointMeasurement_Threshold.Max_High:=DINT#1500000;
CalcPointMeasurement_Threshold.Max_Low:=DINT#0;
CalcPointMeasurement_Threshold.Min_High:=DINT#0;
CalcPointMeasurement_Threshold.Min_Low:=DINT#-1500000;
CalcPointMeasurement_Threshold.Flatness_High:=DINT#3000000;
CalcPointMeasurement_Threshold.Flatness_Low:=DINT#0;
CalcPointMeasurement_Threshold.Mean_High:=DINT#1500000;
CalcPointMeasurement_Threshold.Mean_High:=DINT#1500000;
```

Code of Inline ST (Second Line of Ladder Diagram):

```
// Input the measurement value of each sensor in order of the array element number.
```

```
CalcPointMeasurement_Input[0]:=E001_Output_Data_1;
CalcPointMeasurement Input[1]:=E002 Output Data 1;
CalcPointMeasurement_Input[2]:=E003_Output_Data_1;
CalcPointMeasurement_Input[3]:=E004_Output_Data_1;
CalcPointMeasurement Input[4]:=E005 Output Data 1;
CalcPointMeasurement Input [5] := E006 Output Data 1;
CalcPointMeasurement Input[6]:=E007 Output Data 1;
CalcPointMeasurement Input[7]:=E008 Output Data 1;
CalcPointMeasurement_Input[8]:=E009_Output_Data_1;
CalcPointMeasurement_Input[9]:=E010_Output_Data_1;
CalcPointMeasurement_Input[10]:=E011_Output_Data_1;
CalcPointMeasurement_Input[11]:=E012_Output_Data_1;
CalcPointMeasurement_Input[12]:=E013_Output_Data_1;
CalcPointMeasurement_Input[13]:=E014_Output_Data_1;
CalcPointMeasurement_Input[14]:=E015_Output_Data_1;
CalcPointMeasurement_Input[15]:=E016_Output_Data_1;
```

ST

```
// 1. Perform point measurement calculation (the maximum and minimum values, flat-
ness, and mean value) for one second under condition where the workpiece is set in
position.
R TRIG instance(Clk:=StartMeasurement, Q=>Start Result);
IF (Start_Result=TRUE) THEN
   // Specify the threshold (High and Low) values.
  CalcPointMeasurement_Threshold.Max_High:=DINT#1500000;
  CalcPointMeasurement_Threshold.Max_Low:=DINT#0;
  CalcPointMeasurement_Threshold.Min_High:=DINT#0;
  CalcPointMeasurement_Threshold.Min_Low:=DINT#-1500000;
  CalcPointMeasurement_Threshold.Flatness_High:=DINT#3000000;
  CalcPointMeasurement Threshold.Flatness Low:=DINT#0;
  CalcPointMeasurement Threshold.Mean High:=DINT#1500000;
  CalcPointMeasurement_Threshold.Mean_Low:=DINT#-1500000;
END IF;
IF (StartMeasurement=TRUE) AND (WorkDetection=TRUE) THEN
  TP Instance(In:=TRUE, PT:=T#1s, Q=>CalcPointMeasurement Enable);
ELSE
  TP_Instance(In:=FALSE, Q=>CalcPointMeasurement_Enable);
END_IF;
IF (CalcPointMeasurement_Enable=TRUE) THEN
   // Input the measurement value of each sensor in order of the array element num-
ber.
  CalcPointMeasurement_Input[0]:=E001_Output_Data_1;
  CalcPointMeasurement_Input[1]:=E002_Output_Data_1;
  CalcPointMeasurement_Input[2]:=E003_Output_Data_1;
   CalcPointMeasurement_Input[3]:=E004_Output_Data_1;
   CalcPointMeasurement_Input[4]:=E005_Output_Data_1;
   CalcPointMeasurement_Input[5]:=E006_Output_Data_1;
```

```
CalcPointMeasurement Input[6]:=E007 Output Data 1;
   CalcPointMeasurement_Input[7]:=E008_Output_Data_1;
   CalcPointMeasurement Input[8]:=E009 Output Data 1;
  CalcPointMeasurement Input[9]:=E010 Output Data 1;
   CalcPointMeasurement_Input[10]:=E011_Output_Data_1;
   CalcPointMeasurement Input[11]:=E012 Output Data 1;
   CalcPointMeasurement Input[12]:=E013 Output Data 1;
   CalcPointMeasurement Input[13]:=E014 Output Data 1;
   CalcPointMeasurement Input[14]:=E015 Output Data 1;
  CalcPointMeasurement Input[15]:=E016 Output Data 1;
END IF;
// Point measurement calculation function block
CalcPointMeasurement_Instance
(
Enable:=CalcPointMeasurement Enable,
Selector:=CalcPointMeasurement Selector,
Input:=CalcPointMeasurement input,
Threshold:=CalcPointMeasurement Threshold,
Hold:=CalcPointMeasurement Hold,
Suspend:= EC InDataInvalid,
Enabled=>CalcPointMeasurement Enabled,
CalcRsltMax=>CalcPointMeasurement CalcRsltMax,
CalcRsltMin=>CalcPointMeasurement CalcRsltMin,
CalcRsltFlatness=>CalcPointMeasurement CalcRsltFlatness,
CalcRsltMean=>CalcPointMeasurement CalcRsltMean,
ChkRsltMax=>CalcPointMeasurement ChkRsltMax,
ChkRsltMin=>CalcPointMeasurement ChkRsltMin,
ChkRsltFlatness=>CalcPointMeasurement ChkRsltFlatness,
ChkRsltMean=>CalcPointMeasurement ChkRsltMean,
Busy=>CalcPointMeasurement Busy,
Error=>CalcPointMeasurement Error,
ErrorID=>CalcPointMeasurement ErrorID,
ErrorIDEx=>CalcPointMeasurement ErrorIDEx
);
```

PointMeasure_Deviation

The PointMeasure_Deviation function block outputs the difference of measurement values (*Input1* and *Input2*) obtained from two measurement sensors on the calculation result.

Function block name	Name	FB/ FUN	Graphic expression	ST expression
PointMeasure_	Deviation	FB		PointMeasure_Deviation_Instance (
Deviation	Calculation		PointMeasure_Deviation_instance \\OmronLib\DIM Measurement	Enable,
			\PointMeasure_Deviation	Input1,
			-Input1 CalcRsIt	Input2,
			-Input2 ChkRsIt	Offset,
			– Offset CalcRsltMax	Threshold_High,
			-Threshold High CalcRsltMin	Threshold_Low,
				Suspend,
			Threshold_Low CalcRsltMean	Enabled,
			-Suspend Busy-	CalcRslt,
			Error —	ChkRslt,
			ErrorID	CalcRsltMax,
			ErrorIDEx —	CalcRsltMin,
				CalcRsltMean,
				Busy,
				Error,
				ErrorID,
				ErrorIDEx);

Function Block and Function Information

Item	Description
Library file name	OmronLib_DIM_Measurement_V1_0.slr
Namespace	OmronLib\DIM_Measurement
Function block and function number	00092
Publish/Do not publish source code	Not published.
Function block and function version	1.00

Compatible Models

Item	Product name	Model numbers	Version
Device	Sensor Communications Unit	E3NW-ECT	Rev 1.03 or later
	Distributed Sensor Unit	E3NW-DS	-
	Smart Laser Amplifier	E3NC-LA0	-
	Smart Fiber Amplifier	E3NC-SA0	-
	Smart Fiber Amplifier	E3NX-FA0	-
	Contact-Type Smart Amplifier	E3NC-TA0	-
	Confocal Fiber Displacement	ZW-7000	-
	Sensor Controller		
	Confocal Fiber Displacement	ZW-000	-
	Sensor Head		

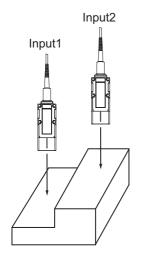
Variables

Input Variables

Variable	Name	Description	Data type	Valid range	Default
Enable	Execution	TRUE: Execute	BOOL	Depends on data	FALSE
		FALSE: Do not execute		type.	
Input1	Sensor Head 1	The input value of the sen-	DINT	Depends on data	0
	Input Value	sor head 1 is set.		type.	
Input2	Sensor Head 2	The input value of the sen-	DINT	Depends on data	0
	Input Value	sor head 2 is set.		type.	
Offset	Offset	The set value is added upon	DINT	Depends on data	0
		the calculation of CalcRslt		type.	
		(Calculation Result).			
Thresh-	Threshold	Outputs the judgement of	DINT	Depends on data	0
old_High ^{*1}	(High)	whether the threshold is		type.	
		exceeded.			
Thresh-	Threshold	Specify the thresholds	DINT		0
old Low ^{*1}	(Low)	always as: Threshold (High)			
		≥ Threshold (Low).			
Suspend	Suspension	Set to TRUE when inputting	BOOL	Depends on data	FALSE
		measurement data on which		type.	
		you want to disable the cal-			
		culation during execution.			

*1. If the set values are used for calculation at the task period when FALSE changed to TRUE on *Enable* (Execution) of this function block, the values which changed while *Enable* was TRUE are not reflected in the calculation.

Output Variables


Variable	Name	Description	Data type	Valid range	Default
Enabled	Calculation in Progress	TRUE: Calculation in prog- ress FALSE: Calculation stopped	BOOL	Depends on data type.	_
CalcRslt	Calculation Result	Stores the difference of sen- sor detection values to the calculation results.	DINT	Depends on data type.	
ChkRslt	Judgement Output	 Turns to TRUE if the calculation results meet all the following criteria: Not less than the threshold (Low). Not more than the threshold (High). 	BOOL	Depends on data type.	_
CalcRsltMax	Calculation Result Maxi- mum Value	Outputs the maximum value of <i>CalcRslt</i> under calculation.	DINT	Depends on data type.	_
CalcRsltMin	Calculation Result Mini- mum Value	Outputs the minimum value of <i>CalcRslt</i> under calcula-tion.	DINT	Depends on data type.	_
CalcRsltMean	Calculation Result Mean Value	Outputs the mean value of <i>CalcRslt</i> under calculation.	DINT	Depends on data type.	—
Busy	Execution in Progress	Turns to TRUE while the processing is in execution; turns to FALSE while the processing is not in execu- tion.	BOOL	Depends on data type.	_
Error	Error	Outputs TRUE if an error occurs.	BOOL	Depends on data type.	—
ErrorID	Error Code	Outputs the error code if an error occurs.	WORD	*1	—
ErrorIDEx	Expansion Error Code	Outputs the extended error code if an error occurs.	DWORD	*1	—

*1. Refer to the *Troubleshooting* on page 54.

Function

The PointMeasure_Deviation function block outputs the difference of measurement values (*Input1* and *Input2*) obtained from two measurement sensors, either type of the following sensors, on the calculation result.

- · Sensor amplifier connected to the Sensor Communications Unit (E3NW-ECT)
- Confocal Fiber Displacement Sensor (ZW-7000)

(a) As you set *Enable* (Execution) to TRUE, the deviation is calculated from *Input1* and *Input2* to be set for *CalcRslt* (Calculation Result). The arithmetic expression is as follows:

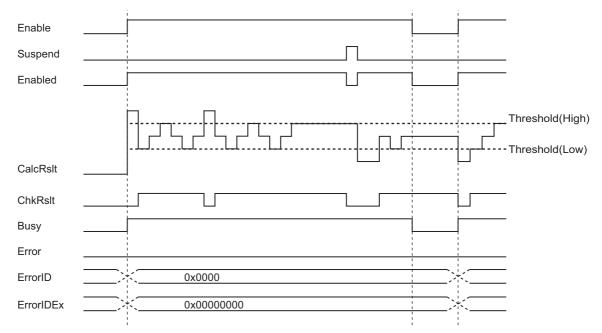
(Input2 - Input1) + Offset

When the value of *CalcRsIt* is not less than the threshold (Low) and not more than the threshold (High), *ChkRsIt* (Judgement Output) turns to TRUE. While *Enable* is TRUE, the calculation continues for each task period. As *Enable* turns to FALSE, the calculation is terminated, but *CalcRsIt* and *ChkRsIt* hold their values, which will be reset next time *Enable* changes to TRUE.

- (b) Under calculation, CalcRsltMax (Calculation Result Maximum Value), CalcRsltMin (Calculation Result Minimum Value), and CalcRsltMean (Calculation Result Mean Value) are output. While Enable is TRUE, the calculation continues. As Enable turns to FALSE, the calculation is terminated, but CalcRsltMax, CalcRsltMin, and CalcRsltMean hold their values, which will be reset next time Enable changes to TRUE.
- (c) The mean value is calculated from values that are input while *Enable* is TRUE. However, if the maximum number of data points (number of calls of a function block while *Enable* is TRUE) is 65535 and then this maximum number is exceeded, the mean value is not updated.
- (d) Setting Suspend (Suspension) to TRUE allows the calculation to be suspended while the execution is in progress. This function is useful to remove the calculation results in the task periods where process data communications fail and the measurement data is not updated correctly. During suspension, Enabled (Calculation in Progress) turns to FALSE, where the number of data points used for mean value calculation is not updated. As you set Suspend to FALSE, calculation resumes.
- (e) If an error occurs, *Error* turns to TRUE, where the processing of function blocks is interrupted. In addition, the error code is output to *ErrorID* and *ErrorIDEx*.
 For details on the error codes, refer to *Troubleshooting* on page 54.

Timing Charts

The timing charts are shown below.


• In a Normal State

At the same time when Enable (Execution) changes to TRUE, *Busy* (Execution in Progress) and *Enabled* (Calculation result valid) turn to TRUE. If the calculation result exceeds the threshold, *ChkRslt* (Judgement Output) turns to FALSE. As you set *Enable* to FALSE, *Enabled* and *Busy* turn to FALSE, but *ChkRslt* (Judgment Output) holds its value, which will be reset next time *Enable* changes to TRUE.

Enable						
Suspend					 	
Enabled						
			ŢŢ		· · · · · · · · · · · · · · · · · · ·	Threshold(High) Threshold(Low)
CalcRslt						
ChkRslt			1			
Busy						
Error						
ErrorID	>	0x0000		>	<	
ErrorIDEx		0x0000000		>	×	

• In a Normal State (Suspend = TRUE)

With *Suspend* set to TRUE, the calculation processing is suspended while *Enable* (Execution) is TRUE. While *Suspend* is TRUE, *Enabled* turns to FALSE.

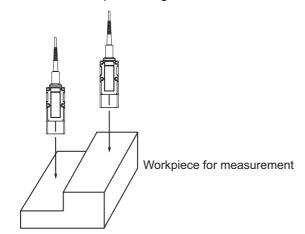
When an Error Occurs

If an error occurs while this function block is in execution, *Error* turns to TRUE and the error code is output to *ErrorID*" and *ErrorIDEx*. As you set *Enable* to FALSE, *Error* turns to FALSE as well, but *ErrorID* and *ErrorIDEx* hold their values until the next execution.

Enable				
			 1 1	ł
Enabled				
Buoy				
Busy				
Error				I I
ErrorID	0x0000000	ErrorID	>	0x00000000
ErrorIDEx	0x0000000	ErrorIDEx	>	(<u>0x00000000</u>
			!	

Precautions for Use

- For input to this function block, consistently use either sensors connected to the E3NW or sensors of the ZW-7000. The combined use results in a failure to perform the correct operation because the unit is different from each other.
- Before executing this function block, carefully read the manuals for devices to use and ensure the safety for use.
- For the ZW-7000 series, confirm that the following pre-conditions are met before executing this function block.
 - a) The ZW_CmdControl function block is unexecuted.
 - b) TASKSTAT_TX which is the status of the target task for measurement slave is TRUE.


Troubleshooting

Error code	Expansion error code	Description	Corrective action
0x3C9F	0x1	The threshold (High) is smaller than the threshold (Low).	Specify the thresholds so that the threshold (High) will be larger than the threshold (Low).

Sample Programming

Program Description

This program uses two ZW-7000 displacement sensors to perform deviation calculation. The table below shows the processing flow.

No.	Outline	Description
1.	Bank change and zero reset	Under condition where the master workpiece for measurement with a deviation of 1 mm is set, change the ZW-7000 to the specified bank number and executes a zero reset.
2.	Deviation measurement	Under condition where the workpiece for measurement is set, measure its deviation for one second.

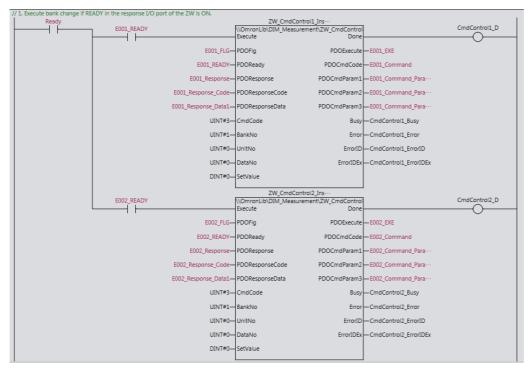
Preconditions

- Set the measurement item for each sensor to height.
- Select a combination of the workpiece and sensors that provides measurement values in the measurement range of the sensors.

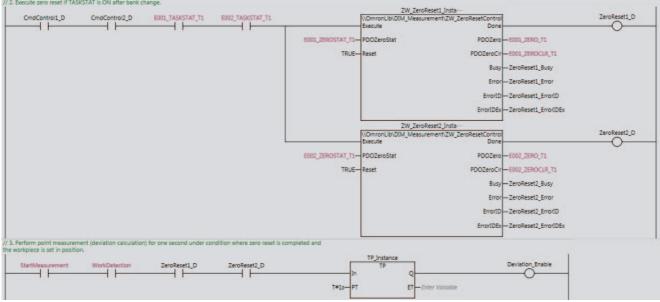
Main Variables

Name	Meaning	Data type	Default	Description
Ready	Start Bank Change	BOOL	FALSE	Starts bank change when the variable changes to TRUE.
E001_FLG	Command Done in Response area I/O port on sensor head 1	BOOL		Command Done in the response area I/O port of the displacement sensor on the sensor head 1. Assign this variable to the <i>PDOFIg</i> input variable of ZW_CmdControl.

Name	Meaning	Data type	Default	Description
E001_READY	Signal Input	BOOL		Signal Input Ready Status in the
	Ready Status in			response area I/O port of the
	Response area			displacement sensor on the
	I/O port on			sensor head 1. Assign this
	sensor head 1			variable to the PDOReady input
				variable of ZW_CmdControl.
E001_Response	Command Echo	BOOL		Command Echo Back in the
	Back in			response area I/O port of the
	Response area			displacement sensor on the
	I/O port on			sensor head 1. Assign this
	sensor head 1			variable to the PDOResponse
				input variable of ZW_CmdControl.
E001_Response_Code	Response Code	DWORD		Response Code in the response
	in Response			area I/O port of the displacement
	area I/O port on			sensor on the sensor head 1.
	sensor head 1			Assign this variable to the
				PDOResponseCode input
				variable of ZW_CmdControl.
E001_Response_Data1	Response Data	DINT		Response Data in the response
	in Response			area I/O port of the displacement
	area I/O port on			sensor on the sensor head 1.
	sensor head 1			Assign this variable to the
				PDOResponseData input variable
	-	200		of ZW_CmdControl.
E001_EXE	Execute	BOOL	FALSE	Execute Command in the
	Command in			command area I/O port of the
	Command area			displacement sensor on the
	I/O port on sensor head 1			sensor head 1. Assign this variable to the <i>PDOExecute</i>
	sensor neau r			output variable of
				ZW CmdControl.
E001_Command	Command Code	DWORD	16#0	Command Code in the command
E001_Command	in Command	DWORD	10#0	area I/O port of the displacement
	area I/O port on			sensor on the sensor head 1.
	sensor head 1			Assign this variable to the
				PDOCmdCode output variable of
				ZW_CmdControl.
E001_Command_Paramet	Command	UINT	UINT#0	Command Parameter 1 in the
er1	Parameter 1 in			command area I/O port of the
	Command area			displacement sensor on the
	I/O port on			sensor head 1. Assign this
	sensor head 1			variable to the
				PDOCmdParam1 output variable
				of ZW_CmdControl.
E001_Command_Paramet	Command	UINT	UINT#0	Command Parameter 2 in the
er2	Parameter 2 in			command area I/O port of the
	Command area			displacement sensor on the
	I/O port on			sensor head 1. Assign this
	sensor head 1			variable to the
				PDOCmdParam2 output variable
				of ZW_CmdControl.


Name	Meaning	Data type	Default	Description
E001_Command_Paramet	Command	DINT	DINT#0	Command Parameter 3 in the
er3	Parameter 3 in			command area I/O port of the
	Command area			displacement sensor on the
	I/O port on			sensor head 1. Assign this
	sensor head 1			variable to the PDOCmdParam3
				output variable of
				ZW_CmdControl.
E001_TASKSTAT_T1	TASKSTAT_T1	BOOL		TASKSTAT_T1 Bit in the
	Bit in Response			response area I/O port of the
	area I/O port on			displacement sensor on the
	sensor head 1			sensor head 1.
E001_ZEROSTAT_T1	Task 1 Zero	BOOL		Task 1 Zero Reset Status in the
	Reset Status in			response area I/O port of the
	Response area			displacement sensor on the
	I/O port on			sensor head 1. Assign this
	sensor head 1			variable to the PDOZeroStat input
				variable of
				ZW_ZeroResetControl.
E001_ZERO_T1	Execute Zero	BOOL	FALSE	Execute Zero Reset for Task 1 in
	Reset for Task 1			the command area I/O port of the
	in Command			displacement sensor on the
	area I/O port on			sensor head 1. Assign this
	sensor head 1			variable to the PDOZero output
				variable of
				ZW_ZeroResetControl.
E001_ZEROCLR_T1	Clear Zero Reset	BOOL	FALSE	Clear Zero Reset for Task 1 in the
	for Task 1 in		_	command area I/O port of the
	Command area			displacement sensor on the
	I/O port on			sensor head 1. Assign this
	sensor head 1			variable to the PDOZeroClr
				output variable of
				ZW_ZeroResetControl.
E002_FLG	Command Done	BOOL		Command Done in the response
	in Response			area I/O port of the displacement
	area I/O port on			sensor on the sensor head 2.
	sensor head 2			Assign this variable to the
				<i>PDOFIg</i> input variable of
				ZW CmdControl.
E002 READY	Signal Input	BOOL		Signal Input Ready Status in the
2002_1121121	Ready Status in	2002		response area I/O port of the
	Response area			displacement sensor on the
	I/O port on		1	sensor head 2. Assign this
	sensor head 2			variable to the <i>PDOReady</i> input
				variable of ZW_CmdControl.
E002_Response	Command Echo	BOOL		Command Echo Back in the
	Back in			response area I/O port of the
	Response area		1	displacement sensor on the
	I/O port on		1	sensor head 2. Assign this
	sensor head 2		1	variable to the PDOResponse
				input variable of ZW_CmdControl.
E002 Bosponso Codo	Posponoo Code			
E002_Response_Code	Response Code	DWORD		Response Code in the response
	in Response		1	area I/O port of the displacement
	area I/O port on		1	sensor on the sensor head 2.
	sensor head 2			Assign this variable to the
			1	PDOResponseCode input
				variable of ZW_CmdControl.

Name	Meaning	Data type	Default	Description
E002_Response_Data1	Response Data	DINT		Response Data in the response
	in Response			area I/O port of the displacement
	area I/O port on			sensor on the sensor head 2.
	sensor head 2			Assign this variable to the
				PDOResponseData input variable
		DOOL	541.05	of ZW_CmdControl.
E002_EXE	Execute Command in	BOOL	FALSE	Execute Command in the
	Command area			command area I/O port of the displacement sensor on the
	I/O port on			sensor head 2. Assign this
	sensor head 2			variable to the PDOExecute
				output variable of
				ZW CmdControl.
E002_Command	Command Code	DWORD	16#0	Command Code in the command
_	in Command			area I/O port of the displacement
	area I/O port on			sensor on the sensor head 2.
	sensor head 2			Assign this variable to the
				PDOCmdCode output variable of
				ZW_CmdControl.
E002_Command_Paramet	Command	UINT	UINT#0	Command Parameter 1 in the
er1	Parameter 1 in			command area I/O port of the
	Command area			displacement sensor on the
	I/O port on sensor head 2			sensor head 2. Assign this variable to the <i>PDOCmdParam1</i>
	Sensor neau z			output variable of
				ZW CmdControl.
E002_Command_Paramet	Command	UINT	UINT#0	Command Parameter 2 in the
er2	Parameter 2 in			command area I/O port of the
	Command area			displacement sensor on the
	I/O port on			sensor head 2. Assign this
	sensor head 2			variable to the PDOCmdParam2
				output variable of
				ZW_CmdControl.
E002_Command_Paramet	Command	DINT	DINT#0	Command Parameter 3 in the
er3	Parameter 3 in			command area I/O port of the
	Command area			displacement sensor on the
	I/O port on			sensor head 2. Assign this
	sensor head 2			variable to the <i>PDOCmdParam3</i> output variable of
				ZW CmdControl.
E002 TASKSTAT T1	TASKSTAT_T1	BOOL	 	TASKSTAT_T1 Bit in the
	Bit in Response			response area I/O port of the
	area I/O port on			displacement sensor on the
	sensor head 2			sensor head 2.
E002_ZEROSTAT_T1	Task 1 Zero	BOOL		Task 1 Zero Reset Status in the
	Reset Status in			response area I/O port of the
	Response area			displacement sensor on the
	I/O port on			sensor head 2. Assign this
	sensor head 2			variable to the PDOZeroStat input
				variable of
				ZW_ZeroResetControl.


Name	Meaning	Data type	Default	Description
E002_ZERO_T1	Execute Zero	BOOL	FALSE	Execute Zero Reset for Task 1 in
	Reset for Task 1 in Command area I/O port on sensor head 2			the command area I/O port of the displacement sensor on the sensor head 2. Assign this variable to the <i>PDOZero</i> output variable of ZW ZeroResetControl.
E002_ZEROCLR_T1	Clear Zero Reset for Task 1 in Command area I/O port on sensor head 2	BOOL	FALSE	Clear Zero Reset for Task 1 in the command area I/O port of the displacement sensor on the sensor head 2. Assign this variable to the <i>PDOZeroClr</i> output variable of ZW_ZeroResetControl.
StartMeasurement	Start Deviation Calculation	BOOL	FALSE	Starts deviation calculation when the variable changes to TRUE.
WorkDetection	Workpiece in Position Status	BOOL	FALSE	TRUE: The workpiece for measurement is set in position. FALSE: The workpiece for measurement is not set in position.
E001_Output_Data_1	OUT1 Data in Output area I/O port on sensor head 1	DINT		OUT1 Data in the output area I/O port of the sensor head 1. Assign this variable to the <i>Input1</i> input variable of PointMeasure_Deviation.
E002_Output_Data_1	OUT1 Data in Output area I/O port on sensor head 2	DINT		OUT1 Data in the output area I/O port of the sensor head 2. Assign this variable to the <i>Input2</i> input variable of PointMeasure_Deviation.
Deviation_Offset	Set Offset	DINT	DINT#0	Sets the input value for <i>Offset</i> . Assign this variable to the <i>Offset</i> input variable of PointMeasure_Deviation.
Deviation_Threshold_High	Set Threshold (High)	DINT	DINT#0	Sets the threshold (High). Assign this variable to the <i>Threshold_High</i> input variable of PointMeasure_Deviation.
Deviation_Threshold_Low	Set Threshold (Low)	DINT	DINT#0	Sets the threshold (Low). Assign this variable to the <i>Threshold_Low</i> input variable of PointMeasure_Deviation.
_EC_InDataInvalid	Input Data Disabled	BOOL		A system-defined variable for EtherCAT communications. TRUE when the process data communications executed in the primary periodic task is not normal and the input value is not valid. Assign this variable to the <i>Suspend</i> input variable of PointMeasure_Deviation.
Deviation_CalcRsIt	Calculation Result	DINT		Assign this variable to the <i>CalcRslt</i> output variable of PointMeasure_Deviation.

Name	Meaning	Data type	Default	Description
Deviation_ChkRslt	Judgment	BOOL		Assign this variable to the
	Output			ChkRslt output variable of
				PointMeasure_Deviation.
Deviation_CalcRsltMax	Calculation	DINT		Assign this variable to the
	Result Maximum			CalcRsltMax output variable of
	Value			PointMeasure_Deviation.
Deviation_CalcRsltMin	Calculation	DINT		Assign this variable to the
	Result Minimum			CalcRsltMin output variable of
	Value			PointMeasure_Deviation.
Deviation_CalcRsltMean	Calculation	DINT		Assign this variable to the
	Result Mean			CalcRsltMean output variable of
	Value			PointMeasure_Deviation.

Ladder Diagram

// 2. Execute zero reset if TASKSTAT is ON after bank change.


```
PointMeasure_Deviati…
\\OmronLib\DIM_Measurement\PointMeasure_Deviation
Enabled
Deviation_Enable
                                                                                                                                         Deviation_Enabled
                        E001 Output Data 1-Input1
                                                                                               CalcRsIt - Deviation CalcRsIt
                                                                                               ChkRslt - Deviation_ChkRslt
                        E002 Output Data 1-Input2
                                                                                          CalcRsItMax — Deviation_CalcRsItMax
                             Deviation_Offset-Offset
                                                                                           CalcRsItMin Deviation_CalcRsItMin
                           iation_Threshold_---- Threshold_High
                                                                                         CalcRsItMean __ Deviation_CalcRsItMean
                       Deviation_Threshold_---- Threshold_Low
                           _EC_InDataInvalid— Suspend
                                                                                                 Busy Deviation_Busy
                                                                                                  Error - Deviation_Error
                                                                                               ErrorID ____ Deviation_ErrorID
                                                                                             ErrorIDEx _____ Deviation_ErrorIDEx
```

ST

```
// 1. Execute bank change if READY in the response I/O port of the ZW is ON.
IF (Ready=TRUE) THEN
   IF (E001_READY=TRUE) THEN
      CmdControl1_Execute:=TRUE;
   ELSE
      CmdControl1_Execute:=FALSE;
   END_IF;
   IF (E002 READY=TRUE) THEN
      CmdControl2_Execute:=TRUE;
   ELSE
      CmdControl2_Execute:=FALSE;
   END_IF;
ELSE
   CmdControl1_Execute:=FALSE;
   CmdControl2_Execute:=FALSE;
END IF;
// ZW Command Control function block for slave 1
ZW CmdControl1 Instance
(
Execute:=CmdControl1_Execute,
PDOFlg:=E001 FLG,
PDOReady:=E001_READY,
PDOResponse:=E001_Response,
PDOResponseCode:=E001_Response_Code,
PDOResponseData:=E001_Response_Data1,
CmdCode:=3,
BankNo:=UINT#1,
UnitNo:=UINT#0,
DataNo:=UINT#0,
SetValue:=DINT#0,
Done=>CmdControl1 D,
PDOExecute=>E001_EXE,
PDOCmdCode=>E001 Command,
PDOCmdParam1=>E001_Command_Parameter1,
PDOCmdParam2=>E001_Command_Parameter2,
PDOCmdParam3=>E001_Command_Parameter3,
Busy=>CmdControl1_Busy,
Error=>CmdControl1_Error,
ErrorID=>CmdControl1_ErrorID,
ErrorIDEx=>CmdControl1_ErrorIDEx
);
// ZW Command Control function block for slave 2
ZW_CmdControl2_Instance
(
Execute:=CmdControl2 Execute,
PDOFlg:=E002_FLG,
PDOReady:=E002_READY,
PDOResponse:=E002_Response,
```

```
PDOResponseCode:=E002 Response Code,
PDOResponseData:=E002_Response_Data1,
CmdCode:=3,
BankNo:=UINT#1,
UnitNo:=UINT#0,
DataNo:=UINT#0,
SetValue:=DINT#0,
Done=>CmdControl2 D,
PDOExecute=>E002 EXE,
PDOCmdCode=>E002 Command,
PDOCmdParam1=>E002 Command Parameter1,
PDOCmdParam2=>E002_Command_Parameter2,
PDOCmdParam3=>E002 Command Parameter3,
Busy=>CmdControl2_Busy,
Error=>CmdControl2_Error,
ErrorID=>CmdControl2 ErrorID,
ErrorIDEx=>CmdControl2 ErrorIDEx
);
// 2. Execute zero reset if TASKSTAT is ON after bank change.
IF (CmdControl1 D=TRUE) AND
   (CmdControl2 D=TRUE) AND
   (E001_TASKSTAT_T1=TRUE) AND
   (E002 TASKSTAT T1=TRUE) THEN
   ZeroReset1 Execute:=TRUE;
   ZeroReset2_Execute:=TRUE;
ELSE
   ZeroReset1 Execute:=FALSE;
   ZeroReset2 Execute:=FALSE;
END IF;
// Zero Reset Control function block for slave 1
ZW ZeroReset1 Instance
(
Execute:=ZeroReset1 Execute,
PDOZeroStat:=E001_ZEROSTAT_T1,
Reset:=TRUE,
Done=>ZeroReset1 D,
PDOZero=>E001_ZERO_T1,
PDOZeroClr=>E001 ZEROCLR T1,
Busy=>ZeroReset1_Busy,
Error=>ZeroReset1_Error,
ErrorID=>ZeroReset1 ErrorID,
ErrorIDEx=>ZeroReset1 ErrorIDEx
);
// Zero Reset Control function block for slave 2
ZW_ZeroReset2_Instance
(
Execute:=ZeroReset2 Execute,
PDOZeroStat:=E002_ZEROSTAT_T1,
Reset:=TRUE,
Done=>ZeroReset2 D,
PDOZero=>E002 ZERO T1,
PDOZeroClr=>E002 ZEROCLR T1,
Busy=>ZeroReset2 Busy,
Error=>ZeroReset2 Error,
ErrorID=>ZeroReset2 ErrorID,
ErrorIDEx=>ZeroReset2 ErrorIDEx
);
// 3. Perform point measurement (deviation calculation) for one second under condi-
tion where zero reset is completed and the workpiece is set in position.
IF (StartMeasurement=TRUE) AND
    (WorkDetection=TRUE) AND
```

```
(ZeroReset1 D=TRUE) AND
   (ZeroReset2_D=TRUE) THEN
   TP Instance(In:=TRUE, PT:=T#1s, Q=>Deviation Enable);
ELSE
   TP_Instance(In:=FALSE, Q=>Deviation_Enable);
END IF;
// Deviation Calculation function block
PointMeasure Deviation Instance
(
Enable:=Deviation_Enable,
Input1:=E001_Output_Data_1,
Input2:=E002_Output_Data_1,
Offset:=Deviation_Offset,
Threshold_High:=Deviation_Threshold_High,
Threshold_Low:=Deviation_Threshold_Low,
Suspend:=_EC_InDataInvalid,
Enabled=>Deviation Enabled,
CalcRslt=>Deviation CalcRslt,
ChkRslt=>Deviation ChkRslt,
CalcRsltMax=>Deviation CalcRsltMax,
CalcRsltMin=>Deviation CalcRsltMin,
CalcRsltMean=>Deviation_CalcRsltMean,
Busy=>Deviation_Busy,
Error=>Deviation_Error,
ErrorID=>Deviation_ErrorID,
ErrorIDEx=>Deviation_ErrorIDEx
);
```

PointMeasure_Torsion

The PointMeasure_Torsion function block calculates the degree of torsion from the measurement values (*Input1, Input2, Input3*, and *Input4*) obtained from four measurement sensors outputting it on the calculation result.

Function block name	Name	FB/ FUN	Graphic ex	xpression	ST expression
PointMeasure_Tor-	Torsion Cal-	FB			PointMeasure_Torsion_Instance (
sion	culation			orsion_instance	Enable,
			\PointMeas	ure_Torsion	Input1,
			-Enable	Enabled	Input2,
			-Input1	CalcRsIt	Input3,
			-Input2	ChkRslt—	Input4,
			Inputz	Onicitati	Threshold_High,
			-Input3	CalcRsltMax-	Threshold_Low,
			-Input4	CalcRsltMin—	Suspend,
			-Threshold High	CalcRsItMean	Enabled,
					CalcRsIt,
			-Threshold_Low	Busy-	ChkRslt,
			-Suspend	Error	CalcRsItMax,
				ErrorID	CalcRsltMin,
					CalcRsltMean,
				ErrorIDEx-	Busy,
			L		Error,
					ErrorID,
					ErrorIDEx);

Function Block and Function Information

Item	Description		
Library file name	OmronLib_DIM_Measurement_V1_0.slr		
Namespace	OmronLib\DIM_Measurement		
Function block and function number	00093		
Publish/Do not publish source code	Not published.		
Function block and function version	1.00		

Compatible Models

Item	Product name	Model numbers	Version
Device	Sensor Communications Unit	E3NW-ECT	Rev 1.03 or later
	Distributed Sensor Unit	E3NW-DS	-
	Smart Laser Amplifier	E3NC-LA0	-
	Smart Fiber Amplifier	E3NC-SA0	-
	Smart Fiber Amplifier	E3NX-FA0	-
	Contact-Type Smart Amplifier	E3NC-TA0	-
	Confocal Fiber Displacement	ZW-7000	-
	Sensor Controller		
	Confocal Fiber Displacement	ZW-DDD	-
	Sensor Head		

Variables

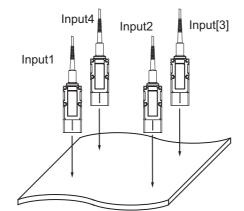
Input Variables

Variable	Name	Description	Data type	Valid range	Default
Enable	Execution	TRUE: Execute	BOOL	Depends on	FALSE
		FALSE: Do not execute		data type.	
Input1	Sensor Head 1 Input	The input value of the sen-	DINT	Depends on	0
	Value	sor head 1 is set.		data type.	
Input2	Sensor Head 2 Input	The input value of the sen-	DINT	Depends on	0
	Value	sor head 2 is set.		data type.	
Input3	Sensor Head 3 Input	The input value of the sen-	DINT	Depends on	0
	Value	sor head 3 is set.		data type.	
Input4	Sensor Head 4 Input	The input value of the sen-	DINT	Depends on	0
	Value	sor head 4 is set.		data type.	
Thresh-	Threshold (High)	Outputs the judgement of	DINT	Depends on	0
old_High ^{*1}		whether the threshold is exceeded.		data type.	
Thresh-	Threshold (Low)	Specify the thresholds	DINT	-	0
old Low ^{*1}		always as: Threshold			
0.0_20.0		$(High) \ge Threshold (Low).$			
Suspend	Suspension	Set to TRUE when input-	BOOL	Depends on	FALSE
		ting measurement data on		data type.	
		which you want to disable			
		the calculation during exe-			
		cution.			

*1. If the set values are used for calculation at the task period when FALSE changed to TRUE on *Enable* (Execution) of this function block, the values which changed while *Enable* was TRUE are not reflected in the calculation.

Output Variables

Variable	Name	Description	Data type	Valid range	Default
Enabled	Calculation in Progress	TRUE: Calculation in prog- ress FALSE: Calculation stopped	BOOL	Depends on data type.	-
CalcRsIt	Calculation Result	Stores the result of torsion calculation based on the measurement values of sensors.	DINT	Depends on data type.	-
ChkRslt	Judgement Output	 Turns to TRUE if the calculation results meet all the following criteria: Not less than the threshold (Low). Not more than the threshold (High). 	BOOL	Depends on data type.	_
CalcRsltMax	Calculation Result Maxi- mum Value	Outputs the maximum value of <i>CalcRslt</i> under calculation.	DINT	Depends on data type.	-
CalcRsltMin	Calculation Result Mini- mum Value	Outputs the minimum value of <i>CalcRslt</i> under calculation.	DINT	Depends on data type.	-
CalcRslt- Mean	Calculation Result Mean Value	Outputs the mean value of <i>CalcRslt</i> under calculation.	DINT	Depends on data type.	-
Busy	Execution in Progress	Turns to TRUE while the processing is in execution; turns to FALSE while the processing is not in execu- tion.	BOOL	Depends on data type.	_
Error	Error	Outputs TRUE if an error occurs.	BOOL	Depends on data type.	-
ErrorID	Error Code	Outputs the error code if an error occurs.	WORD	*1	—
ErrorIDEx	Expansion Error Code	Outputs the extended error code if an error occurs.	DWORD	*1	—


*1. Refer to the *Troubleshooting* on page 68.

Function

The PointMeasure_Torsion function block calculates the degree of torsion from the measurement values (*Input1, Input2, Input3*, and *Input4*) obtained from four measurement sensors, any type of the following sensors, outputting it on the calculation result.

- · Sensor amplifier connected to the Sensor Communications Unit (E3NW-ECT)
- Confocal Fiber Displacement Sensor (ZW-7000)

Calculation result = (*Input1 - Input2*) - (*Input4 - Input3*)

- (a) As you set *Enable* (Execution) to TRUE, the torsion (arithmetic expression: (Input1 Input2) (Input4 Input3)) is calculated from *Input1, Input2, Input3*, and *Input4* to be set for *CalcRsIt* (Calculation Result). When the value of *CalcRsIt* is not less than the threshold (Low) and not more than the threshold (High), *ChkRsIt* (Judgement Output) turns to TRUE. While *Enable* is TRUE, the calculation continues for each task period. As *Enable* turns to FALSE, the calculation is terminated, but *CalcRsIt* and *ChkRsIt* hold their values, which will be reset next time *Enable* changes to TRUE.
- (b) Under calculation, CalcRsltMax (Calculation Result Maximum Value), CalcRsltMin (Calculation Result Minimum Value), and CalcRsltMean (Calculation Result Mean Value) are output. While Enable is TRUE, the calculation continues. As Enable turns to FALSE, the calculation is terminated, but CalcRsltMax, CalcRsltMin, and CalcRsltMean hold their values, which will be reset next time Enable changes to TRUE.
- (c) The mean value is calculated from values that are input while *Enable* is TRUE. However, if the maximum number of data points (number of calls of a function block while *Enable* is TRUE) is 65535 and then this maximum number is exceeded, the mean value is not updated.
- (d) Setting Suspend (Suspension) to TRUE allows the calculation to be suspended while the execution is in progress. This function is useful to remove the calculation results in the task periods where process data communications fail and the measurement data is not updated correctly. During suspension, Enabled (Calculation in Progress) turns to FALSE, where the number of data points used for mean value calculation is not updated. As you set Suspend to FALSE, calculation resumes.
- (e) If an error occurs, *Error* turns to TRUE, where the processing of function blocks is interrupted. In addition, the error code is output to *ErrorID* and *ErrorIDEx*.

For details on the error codes, refer to Troubleshooting on page 68.

Timing Charts

Refer to the *Timing Charts* on page 52 for PointMeasure_Deviation.

Precautions for Use

- For input to this function block, consistently use either sensors connected to the E3NW or sensors of the ZW-7000. The combined use results in a failure to perform the correct operation because the unit is different from each other.
- Before executing this function block, carefully read the manuals for devices to use and ensure the safety for use.
- For the ZW-7000 series, confirm that the following pre-conditions are met before executing this function block.
 - a) The ZW_CmdControl function block is unexecuted.
 - b) TASKSTAT_TX which is the status of the target task for measurement slave is TRUE.

Troubleshooting

Error code	Expansion error Description		Corrective action
0x3CA0	0x1	The threshold (High) is	Specify the thresholds so that the threshold (High)
		smaller than the threshold	will be larger than the threshold (Low).
		(Low).	

Sample Programming

Program Description

For one second after the measurement start command, this program uses the measurement values of four types of sensors connected via EtherCAT as inputs to perform torsion calculation by PointMeasure Torsion.

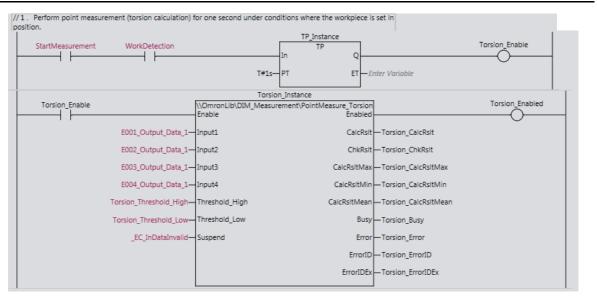
Preconditions

- Create device variables for the measurement values of the displacement sensor with which you want to perform measurement and use external references to the variables in the program. Refer to the *Sysmac Studio Version 1 Operation Manual* (Cat. No. W504) for details on how to create device variables.
- If E9NC-TA sensors are used to input values, change the PDO mapping settings for the E3NW-ECT so that the sensor detection amount is 4 bytes.

Example: If E9NC-TA sensors are connected to an E3NW-ECT with unit number 01

 \rightarrow Change the setting of 273rd transmit PDO Mapping (No_01 Detection Level IN 1) from *Input* to *Not* selected.

 \rightarrow Change the setting of 423rd transmit PDO Mapping (No_01 Detection Level (4 bytes) from *Not* selected to *Input*.


- If ZW-7000 sensors are used to input values, set the measurement item for each sensor to height.
- Set each sensor to zero beforehand.
- Select a combination of the workpiece and sensors that provides measurement values in the measurement range of the sensors.

Main Variables

Name	Meaning	Data type	Default	Description
StartMeasurement	Start Torsion	BOOL	FALSE	Starts torsion calculation when
Clarimedourement	Calculation	DOOL	TALOL	the variable changes to TRUE.
WorkDetection	Workpiece in	BOOL	FALSE	TRUE:
WorkDetection	Position Status	DOOL	TALOL	The workpiece for measurement
				is set in position.
				FALSE:
				The workpiece for measurement
				is not set in position.
E001_Output_Data_1	OUT1 Data in	DINT		OUT1 Data in the output area I/O
	Output area I/O			port of the sensor head 1. Assign
	port on sensor			this variable to the Input1 input
	head 1			variable of
				PointMeasure_Torsion.
E002_Output_Data_1	OUT1 Data in	DINT		OUT1 Data in the output area I/O
	Output area I/O			port of the sensor head 2. Assign
	port on sensor			this variable to the Input2 input
	head 2			variable of
				PointMeasure_Torsion.
E003_Output_Data_1	OUT1 Data in	DINT		OUT1 Data in the output area I/O
	Output area I/O			port of the sensor head 3. Assign
	port on sensor			this variable to the <i>Input3</i> input
	head 3			variable of
FOOA Output Data 4		DINIT		PointMeasure_Torsion.
E004_Output_Data_1	OUT1 Data in	DINT		OUT1 Data in the output area I/O
	Output area I/O port on sensor			port of the sensor head 4. Assign
	head 4			this variable to the <i>Input4</i> input variable of
	ficau 4			PointMeasure_Torsion.
Torsion_Threshold_High	Set Threshold	DINT	DINT#0	Sets the threshold (High).
lololon_miconold_mgn	(High)	Dirti	Biitino	Assign this variable to the
	(<i>Threshold_High</i> input variable of
				PointMeasure Torsion.
Torsion_Threshold_Low	Set Threshold	DINT	DINT#0	Sets the threshold (Low).
	(Low)			Assign this variable to the
				Threshold_Low input variable of
				PointMeasure_Torsion.
_EC_InDataInvalid	Input Data	BOOL		A system-defined variable for
	Disabled			EtherCAT communications.
				TRUE when the process data
				communications executed in the
				primary periodic task is not
				normal and the input value is not
				valid. Assign this variable to the
				Suspend input variable of
Transien Octobell	O alay 1911			PointMeasure_Torsion.
Torsion _CalcRsIt	Calculation	DINT		Assign this variable to the
	Result			CalcRslt output variable of PointMeasure_Torsion.
Torsion _ChkRslt	Judgment	BOOL		Assign this variable to the
	Output	DOOL		ChkRslt output variable of
				PointMeasure_Torsion.
Torsion _CalcRsltMax	Calculation	DINT		Assign this variable to the
	Result Maximum			CalcRsItMax output variable of
	Value			PointMeasure_Torsion.

Name	Meaning	Data type	Default	Description
Torsion _CalcRsItMin	Calculation	DINT		Assign this variable to the
	Result Minimum			CalcRsltMin output variable of
	Value			PointMeasure_Torsion.
Torsion _CalcRsItMean	Calculation	DINT		Assign this variable to the
	Result Mean			CalcRsltMean output variable of
	Value			PointMeasure_Torsion.

Ladder Diagram

ST

```
// 1. Perform point measurement (torsion calculation) for one second under condition
where the workpiece is set in position.
IF (StartMeasurement=TRUE) AND (WorkDetection=TRUE) THEN
  TP Instance(In:=TRUE, PT:=T#1s, Q=>Torsion Enable);
ELSE
  TP Instance(In:=FALSE, Q=>Torsion Enable);
END IF;
// Torsion Calculation function block
PointMeasure_Torsion_Instance
(
Enable:=Torsion_Enable,
Input1:=E001_Output_Data_1,
Input2:=E002_Output_Data_1,
Input3:=E003_Output_Data_1,
Input4:=E004 Output Data 1,
Threshold High:=Torsion Threshold High,
Threshold_Low:=Torsion_Threshold_Low,
Suspend:= EC InDataInvalid,
Enabled=>Torsion_Enabled,
CalcRslt=>Torsion_CalcRslt,
ChkRslt=>Torsion_ChkRslt,
CalcRsltMax=>Torsion_CalcRsltMax,
CalcRsltMin=>Torsion_CalcRsltMin,
CalcRsltMean=>Torsion CalcRsltMean,
Busy=>Torsion Busy,
Error=>Torsion Error,
ErrorID=>Torsion ErrorID,
ErrorIDEx=>Torsion ErrorIDEx
);
```

PointMeasure_Curve

The PointMeasure_Curve function block calculates the degree of curve from the measurement values (*Input1, Input2*, and *Input3*) obtained from three measurement sensors outputting it on the calculation result.

Function block name	Name	FB/ FUN	Graphic expression	ST expression
PointMea-	Curve Cal-	FB		PointMeasure_Curve_Instance (
sure_Curve	culation		PointMeasure_Curve_instance \\OmronLib\DIM Measurement	Enable,
			\PointMeasure_ Curve	Input1,
			Enable Enabled	Input2,
			-Input1 CalcRsIt-	Input3,
			Input2 ChkRsIt	Threshold_High,
				Threshold_Low,
			Input3 CalcRsItMax	Suspend,
			Threshold_High CalcRsltMin	Enabled,
			Threshold Low CalcRsltMean	CalcRsIt,
				ChkRslt,
			-Suspend Busy-	CalcRsltMax,
			Error	CalcRsltMin,
				CalcRsltMean,
			ErrorID	Busy,
			ErrorIDEx-	Error,
				ErrorID,
				ErrorIDEx);

Function Block and Function Information

Item	Description
Library file name	OmronLib_DIM_Measurement_V1_0.slr
Namespace	OmronLib\DIM_Measurement
Function block and function number	00094
Publish/Do not publish source code	Not published.
Function block and function version	1.00

Compatible Models

ltem	Product name	Model numbers	Version
Device	Sensor Communications Unit	E3NW-ECT	Rev 1.03 or later
	Distributed Sensor Unit	E3NW-DS	-
	Smart Laser Amplifier	E3NC-LA0	-
	Smart Fiber Amplifier	E3NC-SA0	-
	Smart Fiber Amplifier	E3NX-FA0	-
	Contact-Type Smart Amplifier	E3NC-TA0	-
	Confocal Fiber Displacement Sensor Controller	ZW-7000	-
	Confocal Fiber Displacement Sensor Head	ZW-000	-

Variables

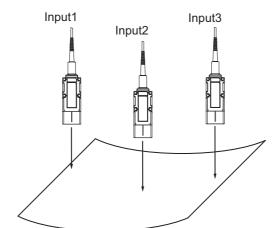
Input Variables

Variable	Name	Description	Data type	Valid range	Default
Enable	Execution	TRUE: Execute	BOOL	Depends on	FALSE
		FALSE: Do not execute		data type.	
Input1	Sensor Head 1 Input	The input value of the sen-	DINT	Depends on	0
	Value	sor head 1 is set.		data type.	
Input2	Sensor Head 2 Input	The input value of the sen-	DINT	Depends on	0
	Value	sor head 2 is set.		data type.	
Input3	Sensor Head 3 Input	The input value of the sen-	DINT	Depends on	0
	Value	sor head 3 is set.		data type.	
Thresh-	Threshold (High)	Judges the value from the	DINT	Depends on	0
old_High ^{*1}		calculation result is in or		data type.	
		out of the threshold range.			
Thresh-	Threshold (Low)	-	DINT		0
old_Low ^{*1}					
Suspend	Suspension	Set to TRUE when input-	BOOL	Depends on	FALSE
		ting measurement data on		data type.	
		which you want to disable			
		the calculation during exe-			
		cution.			

*1. If the set values are used for calculation at the task period when FALSE changed to TRUE on *Enable* (Execution) of this function block, the values which changed while *Enable* was TRUE are not reflected in the calculation.

Output Variables

Variable	Name	Description	Data type	Valid range	Default
Enabled	Calculation in Progress	TRUE: Calculation in prog- ress	BOOL	Depends on data type.	-
		FALSE: Calculation stopped			
CalcRslt	Calculation Result	Stores the result of curve calculation based on the measurement values of sensors.	DINT	Depends on data type.	-
ChkRslt	Judgement Output	The judgement output turns to TRUE when the calculation results are not less than the threshold (Low) and not more than the threshold (High)	BOOL	Depends on data type.	-
CalcRsltMax	Calculation Result Maxi- mum Value	Outputs the maximum value of <i>CalcRslt</i> under calculation.	DINT	Depends on data type.	-
CalcRsltMin	Calculation Result Mini- mum Value	Outputs the minimum value of <i>CalcRslt</i> under calculation.	DINT	Depends on data type.	-
CalcRslt- Mean	Calculation Result Mean Value	Outputs the mean value of <i>CalcRslt</i> under calculation.	DINT	Depends on data type.	—
Busy	Execution in Progress	Turns to TRUE while the processing is in execution; turns to FALSE while the processing is not in execu- tion.	BOOL	Depends on data type.	_
Error	Error	Outputs TRUE if an error occurs.	BOOL	Depends on data type.	-
ErrorID	Error Code	Outputs the error code if an error occurs.	WORD	*1	-
ErrorIDEx	Expansion Error Code	Outputs the extended error code if an error occurs.	DWORD	*1	-


*1. Refer to the *Troubleshooting* on page 76.

Function

The PointMeasure_Curve function block calculates the degree of curve from the measurement values (*Input1, Input2*, and *Input3*) obtained from three measurement sensors, any type of the following sensors, outputting it on the calculation result.

- · Sensor amplifier connected to the Sensor Communications Unit (E3NW-ECT)
- Confocal Fiber Displacement Sensor (ZW-7000)

Calculation result = (Input1 + Input3) / 2 - Input2

(a) As you set *Enable* (Execution) to TRUE, the degree of curve is calculated from *Input1*, *Input2*, and *Input3* to be set for *CalcRslt* (Calculation Result). The arithmetic expression for the degree of curve is as follows:

```
(Input1 + Input3) / 2 - Input2
```

When the value of *CalcRsIt* is not less than the threshold (Low) and not more than the threshold (High), *ChkRsIt* (Judgement Output) turns to TRUE. While *Enable* is TRUE, the calculation continues for each task period. As *Enable* turns to FALSE, the calculation is terminated, but *CalcRsIt* and *ChkRsIt* hold their values, which will be reset next time *Enable* changes to TRUE.

- (b) Under calculation, CalcRsltMax (Calculation Result Maximum Value), CalcRsltMin (Calculation Result Minimum Value), and CalcRsltMean (Calculation Result Mean Value) are output. While Enable is TRUE, the calculation continues. As Enable turns to FALSE, the calculation is terminated, but CalcRsltMax, CalcRsltMin, and CalcRsltMean hold their values, which will be reset next time Enable changes to TRUE.
- (c) The mean value is calculated from values that are input while *Enable* is TRUE. However, that the maximum number of data points (number of calls of a function block while *Enable* is TRUE) is 65535 and then this maximum number is exceeded, the mean value is not updated.
- (d) Setting Suspend (Suspension) to TRUE allows the calculation to be suspended while the execution is in progress. This function is useful to remove the calculation results in the task periods where process data communications fail and the measurement data is not updated correctly. During suspension, Enabled (Calculation in Progress) turns to FALSE, where the number of data points used for mean value calculation is not updated. As you set Suspend to FALSE, calculation resumes.
- (e) If an error occurs, *Error* turns to TRUE, where the processing of function blocks is interrupted. In addition, the error code is output to *ErrorID* and *ErrorIDEx*.

For details on the error codes, refer to *Troubleshooting* on page 76.

Timing Charts

Refer to the *Timing Charts* on page 52 for PointMeasure_Deviation.

Precautions for Use

- For input to this function block, consistently use either sensors connected to the E3NW or sensors of the ZW-7000. The combined use results in a failure to perform the correct operation because the unit is different from each other.
- Before executing this function block, carefully read the manuals for devices to use and ensure the safety for use.
- For the ZW-7000 series, confirm that the following pre-conditions are met before executing this function block.
 - a) The ZW_CmdControl function block is unexecuted.
 - b) TASKSTAT_TX which is the status of the target task for measurement slave is TRUE.

Troubleshooting

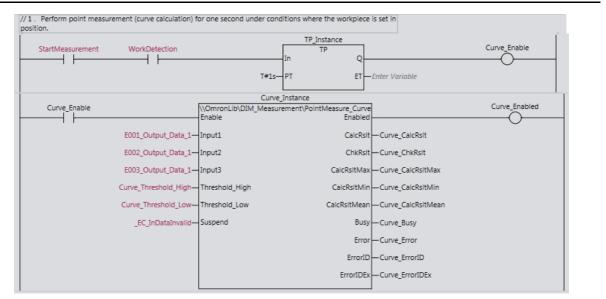
Error code	Expansion error code	Description	Corrective action
0x3CA1	0x1	The threshold (High) is smaller than the threshold	Specify the thresholds so that the threshold (High) will be larger than the threshold (Low).
		(Low).	

Sample Programming

Program Description

For one second after the measurement start command, this program uses the measurement values of three types of sensors connected via EtherCAT as inputs to perform curve calculation by PointMeasure_Curve.

Preconditions


Refer to Preconditions on page 68 for the PointMeasure_Torsion function block.

Main Variables

Name	Meaning	Data type	Default	Description
StartMeasurement	Start Curve	BOOL	FALSE	Starts curve calculation when the
otartimododromont	Calculation	DOOL	IT LOL	variable changes to TRUE.
WorkDetection	Workpiece in	BOOL	FALSE	
	Position Status			The workpiece for measurement
				is set in position.
				FALSE:
				The workpiece for measurement
				is not set in position.
E001_Output_Data_1	OUT1 Data in	DINT		OUT1 Data in the output area I/O
	Output area I/O			port of the sensor head 1. Assign
	port on sensor			this variable to the Input1 input
	head 1			variable of PointMeasure_Curve.
E002_Output_Data_1	OUT1 Data in	DINT		OUT1 Data in the output area I/O
	Output area I/O			port of the sensor head 2. Assign
	port on sensor			this variable to the Input2 input
	head 2			variable of PointMeasure_Curve.
E003_Output_Data_1	OUT1 Data in	DINT		OUT1 Data in the output area I/O
	Output area I/O			port of the sensor head 3. Assign
	port on sensor			this variable to the <i>Input3</i> input
	head 3		DUIT #0	variable of PointMeasure_Curve.
Curve_Threshold_High	Set Threshold	DINT	DINT#0	Sets the threshold (High).
	(High)			Assign this variable to the
				<i>Threshold_High</i> input variable of PointMeasure_Curve.
Curve Threshold Low	Set Threshold	DINT	DINT#0	Sets the threshold (Low).
Curve_Inteshold_Low	(Low)	DINT	DIN I #0	Assign this variable to the
	(LOW)			Threshold_Low input variable of
				PointMeasure_Curve.
EC InDataInvalid	Input Data	BOOL		A system-defined variable for
	Disabled	DOOL		EtherCAT communications.
	2.00.000			TRUE when the process data
				communications executed in the
				primary periodic task is not
				normal and the input value is not
				valid. Assign this variable to the
				Suspend input variable of
				PointMeasure_Curve.
Curve _CalcRslt	Calculation	DINT		Assign this variable to the Cal-
	Result			cRslt output variable of PointMea-
				sure_Curve.

Name	Meaning	Data type	Default	Description
Curve_ChkRslt	Judgment	BOOL		Assign this variable to the
	Output			ChkRslt output variable of Point-
				Measure_Curve.
Curve _CalcRsltMax	Calculation	DINT		Assign this variable to the Cal-
	Result Maximum			cRsltMax output variable of Point-
	Value			Measure_Curve.
Curve _CalcRsItMin	Calculation	DINT		Assign this variable to the
	Result Minimum			CalcRsltMin output variable of
	Value			PointMeasure_Curve.
Curve _CalcRsltMean	Calculation	DINT		Assign this variable to the
	Result Mean			CalcRsltMean output variable of
	Value			PointMeasure_Curve.

Ladder Diagram

ST

```
// 1. Perform point measurement (curve calculation) for one second under condition
where the workpiece is set in position.
IF (StartMeasurement=TRUE) AND (WorkDetection=TRUE) THEN
  TP Instance(In:=TRUE, PT:=T#1s, Q=>Curve Enable);
ELSE
  TP Instance(In:=FALSE, Q=>Curve Enable);
END IF;
// Curve Calculation function block
PointMeasure_Curve_Instance
(
Enable:=Curve_Enable,
Input1:=E001_Output_Data_1,
Input2:=E002_Output_Data_1,
Input3:=E003_Output_Data_1,
Threshold High:=Curve Threshold High,
Threshold_Low:=Curve_Threshold_Low,
Suspend:=_EC_InDataInvalid,
Enabled=>Curve Enabled,
CalcRslt=>Curve_CalcRslt,
ChkRslt=>Curve_ChkRslt,
CalcRsltMax=>Curve CalcRsltMax,
CalcRsltMin=>Curve_CalcRsltMin,
CalcRsltMean=>Curve_CalcRsltMean,
Busy=>Curve_Busy,
Error=>Curve Error,
ErrorID=>Curve ErrorID,
ErrorIDEx=>Curve ErrorIDEx
);
```

PointMeasure_Thickness

The PointMeasure_Thickness function block calculates the thickness from the measurement values (*Input1* and *Input2*) obtained from two measurement sensors outputting it on the calculation result.

Function block name	Name	FB/ FUN	Graphic expression	ST expression
PointMeasure_ Thickness	Thickness Calculation	FB	PointMeasure_Thickness_instance \\OmronLib\DIM_Measurement \PointMeasure_Thickness Enable Input1 CalcRslt Input2 ChkRslt	PointMeasure_Thickness _Instance (Enable, Input1, Input2, Offset, Threshold_High,
			Offset CalcRsItMax Threshold_High CalcRsItMin Threshold_Low CalcRsItMean Suspend Busy Error ErrorID ErrorID	Threshold_righ, Threshold_Low, Suspend, Enabled, CalcRslt, ChkRslt, CalcRsltMax, CalcRsltMin,
				CalcRsltMean, Busy, Error, ErrorID, ErrorIDEx);

Function Block and Function Information

Item	Description
Library file name	OmronLib_DIM_Measurement_V1_0.slr
Namespace	OmronLib\DIM_Measurement
Function block and function number	00095
Publish/Do not publish source code	Not published.
Function block and function version	1.00

Compatible Models

Item	Product name	Model numbers	Version
Device	Sensor Communications Unit	E3NW-ECT	Rev 1.03 or later
	Distributed Sensor Unit	E3NW-DS	-
	Smart Laser Amplifier	E3NC-LA0	-
	Smart Fiber Amplifier	E3NC-SA0	-
	Smart Fiber Amplifier	E3NX-FA0	-
	Contact-Type Smart Amplifier	E3NC-TA0	-
	Confocal Fiber Displacement	ZW-7000	-
	Sensor Controller		
	Confocal Fiber Displacement	ZW-DDD	-
	Sensor Head		

Variables

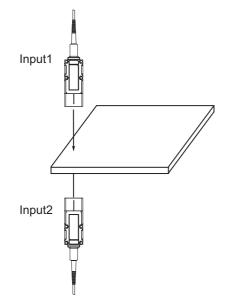
Input Variables

Variable	Name	Description	Data type	Valid range	Default
Enable	Execution	TRUE: Execute	BOOL	Depends on	FALSE
		FALSE: Do not execute		data type.	
Input1	Sensor Head 1 Input	The input value of the sen-	DINT	Depends on	0
	Value	sor head 1 is set.		data type.	
Input2	Sensor Head 2 linput	The input value of the sen-	DINT	Depends on	0
	Value	sor head 2 is set.		data type.	
Offset	Offset	The set value is added	DINT	Depends on	0
		upon the calculation of Cal-		data type.	
		cRslt (Calculation Result).			
Thresh-	Threshold (High)	Judges the value from the	DINT	Depends on	0
old_High ^{*1}		calculation result is in or		data type.	
		out of the threshold range.			
Thresh-	Threshold (Low)		DINT		0
old_Low ^{*1}					
Suspend	Suspension	Set to TRUE when input-	BOOL	Depends on	FALSE
		ting measurement data on		data type.	
		which you want to disable			
		the calculation during exe-			
		cution.			

*1. If the set values are used for calculation at the task period when FALSE changed to TRUE on *Enable* (Execution) of this function block, the values which changed while *Enable* was TRUE are not reflected in the calculation.

Output Variables

Variable	Name	Description	Data type	Valid range	Default
Enabled	Calculation in Progress	TRUE: Calculation in prog- ress FALSE: Calculation stopped	BOOL	Depends on data type.	-
CalcRslt	Calculation Result	Stores the result of thick- ness calculation based on the measurement values of sensors.	DINT	Depends on data type.	-
ChkRsIt	Judgement Output	The judgement output turns to TRUE when the calculation results are not less than the threshold (Low) and not more than the threshold (High).	BOOL	Depends on data type.	-
CalcRsltMax	Calculation Result Maxi- mum Value	Outputs the maximum value of <i>CalcRslt</i> under calculation.	DINT	Depends on data type.	-
CalcRsltMin	Calculation Result Mini- mum Value	Outputs the minimum value of <i>CalcRslt</i> under calculation.	DINT	Depends on data type.	-
CalcRslt- Mean	Calculation Result Mean Value	Outputs the mean value of <i>CalcRslt</i> under calculation.	DINT	Depends on data type.	-
Busy	Execution in Progress	Turns to TRUE while the processing is in execution; turns to FALSE while the processing is not in execu- tion.	BOOL	Depends on data type.	_
Error	Error	Outputs TRUE if an error occurs.	BOOL	Depends on data type.	—
ErrorID	Error Code	Outputs the error code if an error occurs.	WORD	*1	—
ErrorIDEx	Expansion Error Code	Outputs the extended error code if an error occurs.	DWORD	*1	—


*1. Refer to the *Troubleshooting* on page 84.

Function

The PointMeasure_Thickness function block calculates the thickness from the measurement values (*Input1* and *Input2*) obtained from two measurement sensors, either type of the following sensors, outputting it on the calculation result.

- Sensor amplifier connected to the Sensor Communications Unit (E3NW-ECT)
- Confocal Fiber Displacement Sensor (ZW-7000)

Calculation result = (Input1 + Input2) + Offset

(a) As you set *Enable* (Execution) to TRUE, the thickness is calculated from *Input1* and *Input2* to be set for *CalcRslt* (Calculation Result). The arithmetic expression for the thickness is as follows:
 Input1 + Input2 + Offset

When the value of *CalcRslt* is not less than the threshold (Low) and not more than the threshold (High), *ChkRslt* (Judgement Output) turns to TRUE. While *Enable* is TRUE, the calculation continues for each task period. As *Enable* turns to FALSE, the calculation is terminated, but *CalcRslt* and *ChkRslt* hold their values, which will be reset next time *Enable* changes to TRUE.

- (b) Under calculation, CalcRsltMax (maximum valur of CalcRslt), CalcRsltMin (Calculation Result Minimum Value), and CalcRsltMean (Calculation Result Mean Value) are output. While Enable is TRUE, the calculation continues. As Enable turns to FALSE, the calculation is terminated, but CalcRsltMax, CalcRsltMin, and CalcRsltMean hold their values, which will be reset next time Enable changes to TRUE.
- (c) The mean value is calculated from values that are input while *Enable* is TRUE. However, that the maximum number of data points (number of calls of a function block while *Enable* is TRUE) is 65535 and then this maximum number is exceeded, the mean value is not updated.
- (d) Setting Suspend (Suspension) to TRUE allows the calculation to be suspended while the execution is in progress. This function is useful to remove the calculation results in the task periods where process data communications fail and the measurement data is not updated correctly. During suspension, Enabled (Calculation in Progress) turns to FALSE, where the number of data points used for mean value calculation is not updated. As you set Suspend to FALSE, calculation resumes.
- (e) If an error occurs, *Error* turns to TRUE, where the processing of function blocks is interrupted. In addition, the error code is output to *ErrorID* and *ErrorIDEx*.
 For details on the error codes, refer to *Troubleshooting* on page 84.

For details on the error codes, refer to *Troubleshooting* on page 84.

Timing Charts

Refer to the *Timing Charts* on page 52 for PointMeasure_Deviation.

Precautions for Use

- For input to this function block, consistently use either sensors connected to the E3NW or sensors of the ZW-7000. The combined use results in a failure to perform the correct operation because the unit is different from each other.
- Before executing this function block, carefully read the manuals for devices to use and ensure the safety for use.
- For the ZW-7000 series, confirm that the following pre-conditions are met before executing this function block.
 - a) The ZW_CmdControl function block is unexecuted.
 - b) TASKSTAT_TX which is the status of the target task for measurement slave is TRUE.

Troubleshooting

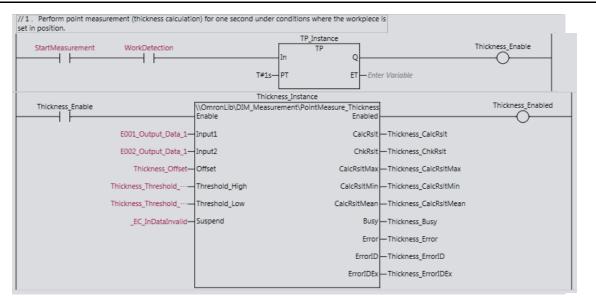
Error code	Expansion error code	Description	Corrective action
0x3CA2	0x1	The threshold (High) is smaller than the threshold (Low).	Specify the thresholds so that the threshold (High) will be larger than the threshold (Low).

Sample Programming

Program Description

For one second after the measurement start command, this program uses the measurement values of two types of sensors connected via EtherCAT as inputs to perform thickness calculation by PointMeasure_Thickness.

Preconditions


- · Set the measurement item for each sensor to height.
- Select a combination of the workpiece and sensors that provides measurement values in the measurement range of the sensors.
- Perform the zero reset of each sensor by setting the master workpiece for measurement or the like mentioned in the example for PointMeasure_Deviation.

Main Variables

Name	Meaning	Data type	Default	Description
StartMeasurement	Start Thickness	BOOL	FALSE	Starts thickness calculation when
	Calculation			the variable changes to TRUE.
WorkDetection	Workpiece in	BOOL	FALSE	TRUE:
	Position Status			The workpiece for measurement
				is set in position.
				FALSE:
				The workpiece for measurement
				is not set in position.
E001_Output_Data_1	OUT1 Data in	DINT		OUT1 Data in the output area I/O
	Output area I/O			port of the sensor head 1. Assign
	port on sensor			this variable to the Input1 input
	head 1			variable of
				PointMeasure_Thickness.

Name	Meaning	Data type	Default	Description
E002_Output_Data_1	OUT1 Data in Output area I/O port on sensor head 2	DINT		OUT1 Data in the output area I/O port of the sensor head 2. Assign this variable to the <i>Input2</i> input variable of PointMeasure_Thickness.
Thickness _Offset	Set Offset	DINT	DINT#0	Sets the input value for <i>Offset</i> . Assign this variable to the <i>Offset</i> input variable of Thickness_Deviation.
Thickness_Threshold_Hig h	Set Threshold (High)	DINT	DINT#0	Sets the threshold (High). Assign this variable to the <i>Threshold_High</i> input variable of PointMeasure_Thickness.
Thickness_Threshold_Low	Set Threshold (Low)	DINT	DINT#0	Sets the threshold (Low). Assign this variable to the <i>Threshold_Low</i> input variable of PointMeasure_Thickness.
_EC_InDataInvalid	Input Data Disabled	BOOL		A system-defined variable for EtherCAT communications. TRUE when the process data communications executed in the primary periodic task is not normal and the input value is not valid. Assign this variable to the <i>Suspend</i> input variable of PointMeasure_Thickness.
Thickness_CalcRslt	Calculation Result	DINT		Assign this variable to the <i>CalcRslt</i> output variable of PointMeasure_Thickness.
Curve_ChkRslt	Judgment Output	BOOL		Assign this variable to the <i>ChkRslt</i> output variable of PointMeasure_Thickness.
Thickness _CalcRsltMax	Calculation Result Maximum Value	DINT		Assign this variable to the <i>CalcRsltMax</i> output variable of PointMeasure_Thickness.
Thickness_CalcRsltMin	Calculation Result Minimum Value	DINT		Assign this variable to the <i>CalcRsltMin</i> output variable of PointMeasure_Thickness.
Thickness_CalcRsltMean	Calculation Result Mean Value	DINT		Assign this variable to the <i>CalcRsltMean</i> output variable of PointMeasure_Thickness.

Ladder Diagram

ST

// 1. Perform point measurement (thickness calculation) for one second under condition where the workpiece is set in position.

```
IF (StartMeasurement=TRUE) AND (WorkDetection=TRUE) THEN
   TP_Instance(In:=TRUE, PT:=T#1s, Q=>Thickness_Enable);
ELSE
   TP_Instance(In:=FALSE, Q=>Thickness_Enable);
END_IF;
```

```
// Thickness Calculation function block
PointMeasure_Thickness_Instance
(
Enable:=Thickness_Enable,
Input1:=E001_Output_Data_1,
Input2:=E002_Output_Data_1,
Offset:=Thickness Offset,
```

```
Threshold_High:=Thickness_Threshold_High,
Threshold_Low:=Thickness_Threshold_Low,
Suspend:=_EC_InDataInvalid,
Enabled=>Thickness_Enabled,
CalcRslt=>Thickness_CalcRslt,
ChkRslt=>Thickness_CalcRslt,
CalcRsltMax=>Thickness_CalcRsltMax,
CalcRsltMin=>Thickness_CalcRsltMin,
CalcRsltMean=>Thickness_CalcRsltMean,
Busy=>Thickness_Busy,
Error=>Thickness_Error,
```

```
ErrorID=>Thickness_ErrorID,
```

```
ErrorIDEx=>Thickness_ErrorIDEx
```

```
);
```

ZW_ZeroResetControl

Through EtherCAT communications, the ZW_ZeroResetControl function block performs the Zero Reset and Clear Zero Reset functions for the specified task of the ZW-7000 series Confocal Fiber Displacement Sensor. The Zero Reset function allows registering the measured value as the reference value at any timing while the sensor is in the Run mode.

Function block name	Name	FB/ FUN	Graphics	ST expression
ZW_ZeroReset- Control	ZW Zero Reset Con- trol	FB	ZW_ZeroResetControl_Instance \\OmronLib\DIM_Measurement \ZW_ZeroResetControl_Instance Execute Done - - PDOZeroStat PDOZeroClr - Reset PDOZeroClr - Busy - Error - ErrorID - ErrorID - ErrorIDEx -	ZW_ZeroRestControl_Instance (Execute, PDOZeroStat, Reset, Done, PDOZero, PDOZero, PDOZeroCIr, Busy, Error, ErrorID,
				ErrorIDEx);

Function Block and Function Information

Item	Description
Library file name	OmronLib_DIM_Measurement_V1_0.slr
Namespace	OmronLib\DIM_Measurement
Function block and function number	00096
Publish/Do not publish source code	Not published.
Function block and function version	1.00

Compatible Models

Item	Name	Model numbers	Version
Device	Confocal Fiber Displacement Sensor Controller	ZW-7000□	-
	Confocal Fiber Displacement Sensor Head	ZW-000	-

Hereinafter, the combination of the confocal fiber displacement sensor controllers and confocal fiber displacement sensor heads are called "displacement sensor".

Variables

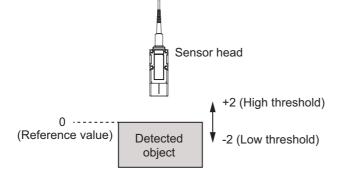
Input Variables

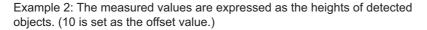
Variable	Name	Description	Data type	Valid range	Default
Execute	Execute	The function block is exe- cuted when this variable changes to TRUE. Re-exe- cuting the function block is prohibited. ^{*1}	BOOL	Depends on data type.	FALSE
PDOZeroStat	Zero Reset Status (Response area I/O Port)	TRUE when a Zero Reset is performed for the specified task of the displacement sensor and the sensor is in the Zero Reset state. FALSE when a Zero Reset is not performed for the specified task of the dis- placement sensor.	BOOL	Depends on data type.	FALSE
Reset ^{*2}	Execute Zero Reset	TRUE: The function block executes the Zero Reset. FALSE: The function block executes the Clear Zero Reset.	BOOL	Depends on data type.	FALSE

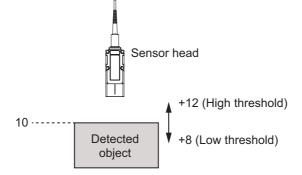
*1. Re-executing the function block means the following; when the *Execute* input variable changes to TRUE during the function block execution, the processing during execution is aborted, and the processing sequence is redone from the start.

*2. The set value of a task period when *Execute* changes to TRUE is used for operation. The value is not refreshed even if it is changed while *Execute* is TRUE.

Output Variables


Variable	Name	Description	Data type	Valid range	Default
Done	Done	Changes to TRUE when the	BOOL	Depends on data	FALSE
		function block is completed.		type.	
PDOZero	Execute Zero	Changes to TRUE when a	BOOL	Depends on data	FALSE
	Reset (Control	Zero Reset command is sent		type.	
	area I/O Port)	for the specified task of the			
		displacement sensor.			
PDOZeroClr	Clear Zero	Changes to TRUE when a	BOOL	Depends on data	FALSE
	Reset (Control	Clear Zero Reset command		type.	
	area I/O Port)	is sent for the specified task			
		of the displacement sensor.			
Busy	Busy	TRUE while the function	BOOL	Depends on data	FALSE
		block is executed.		type.	
Error	Error	TRUE while there is an	BOOL	Depends on data	FALSE
		error.		type.	
ErrorID	Error Code	Outputs the error code when	WORD	*1	16#0
		an error occurs.			
ErrorIDEx	Expansion	Outputs the expansion error	DWORD	*1	-
	Error Code	code when an error occurs.			


*1. Refer to the *Troubleshooting* on page 92.


Function

Through EtherCAT communications, the ZW_ZeroResetControl function block performs the Zero Reset and Clear Zero Reset functions for the specified task of the ZW-7000 series Confocal Fiber Displacement Sensor. The Zero Reset function allows registering the measured value as the reference value at any timing while the sensor is in the Run mode. The Zero Reset is executed prior to measuring in the following examples.

Example1: The height of a detected object is registered as the reference value. The measured values are expressed as deviation (tolerance).

The Clear Zero Reset clears the reference value set by the Zero Reset. The Clear Zero Reset is used for checking and adjusting the absolute distance between the sensor head and a workpiece.

For details of the Zero Reset and the Clear Zero Reset, refer to the ZW-7000 Confocal Fiber Type Displacement Sensor User's Manual (Cat. No. Z362).

To specify a slave and task for which the Zero Reset/the Clear Zero Reset is executed, you must set the slave's device variables (the command area I/O port and response area I/O port) for the function block's input and output variables.

(a) This function block performs the Zero Reset or Clear Zero Reset function for task 1, 2, 3 or 4 of the specified slave (displacement sensor) on the EtherCAT network. The following table shows allocation of the area I/O ports to the corresponding input/output variables. The function block sends a command to the displacement sensor by writing a value to the command area I/O port.

Input variable	PDOZeroStat
The corresponding response area I/O port	ZEROSTAT1_TX ^{*1}

*1. X is 1 to 4. Select the task number you carry out.

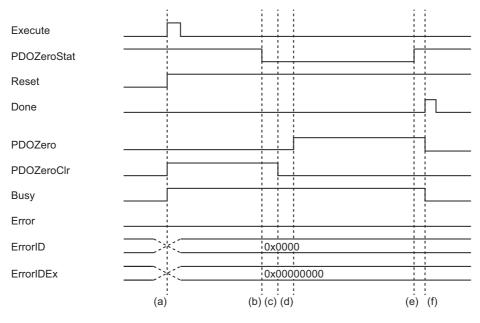
Output variable	PDOZero	PDOZeroClr
The corresponding the control area I/O port	ZERO1_TX ^{*1}	ZEROCLR1_TX ^{*1}

*1. X is 1 to 4. Select the task number you carry out.

(b) When the *Reset* input variable is TRUE, a Zero Reset is performed.

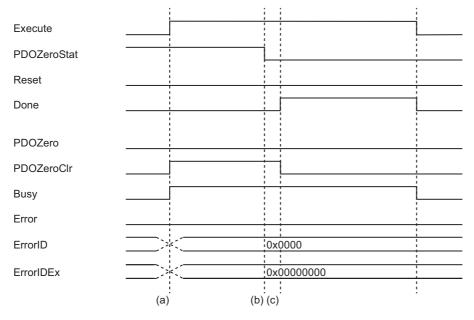
Timing Charts

The timing charts are shown below.

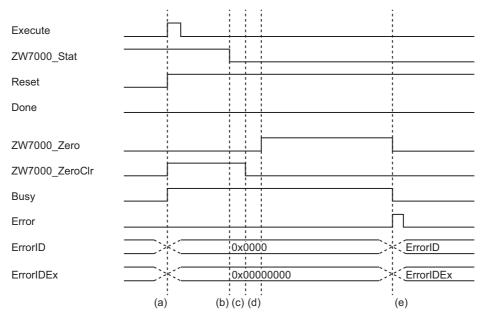

Normal End (The Zero Reset Is Executed.)

(a) When *Execute* changes to TRUE, concurrently the function block changes *Busy* to TRUE. When *PDOZeroStat* is FALSE, go to (d).

When PDOZeroStat is TRUE, the function block changes PDOZeroClr to TRUE. Go to (b).


- (b) PDOZeroStat changes to FALSE.
- (c) The function block turns *PDOZeroClr* to FALSE.
- (d) The function block turns PDOZero to TRUE.
- (e) PDOZeroStat changes to TRUE.
- (f) The function block turns Busy and PDOZero to FALSE. Done changes to TRUE.

Even after the function block has been completed, Done is retained while Execute is being TRUE.


• Normal End (The Zero Reset Is Executed.)

- (a) The function block is executed when *Execute* changes to TRUE.
 When *PDOZeroStat* is TRUE, *Busy* and *PDOZeroClr* change to TRUE. Go to (b).
 When *PDOZeroStat* is FALSE, go to (c).
- (b) PDOZeroStat changes to FALSE.
- (c) The function block turns *Busy* and *PDOZeroClr* to FALSE. *Done* changes to TRUE.

• Error End (The Zero Reset Is Executed.)

Although the following (a) to (d) are the same with Normal End of the Zero Reset, the following case is an example that *PDOZeroStat* does not change to TRUE, and the timeout error occurs at (e). Once the timeout error occurs, *Busy* changes to FALSE. *Error* changes to TRUE. The values are output to *ErrorID* (Error Code) and *ErrorIDEx* (Expansion Error Code). Even after the command has been done, *Error* is retained while *Execute* is being TRUE. When *Execute* changes to FALSE, *Error* changes to FALSE accordingly. However, *ErrorID* and *ErrorIDEx* retain the values until the next function block is executed.

Precautions for Correct Use

- Always set the device variables of the same slave and same task in the input and output variables for the area I/O ports. If the device variables of different slaves and tasks are set, control may not be performed properly.
- During the function block execution, do not allow a device outside the function block to write to the control area I/O port that is set for the output variables. Otherwise, operation may not be performed properly.
- Before executing this function block, thoroughly read the manuals of the devices that are used, and ensure safety.
- Confirm that the following pre-conditions are met before executing this function block.
 - a) The ZW_CmdControl function block is unexecuted.
 - b) TASKSTAT_TX which is the status of the target task for measurement slave is TRUE.

Troubleshooting

Error code	Expansion error code	Description	Corrective action
3CA3	0x1	Timeout error	Check whether there is an EtherCAT communication error or displacement sensor error. If so, correct the error and then execute the function block.

Sample Programming

Refer to Sample Programming on page 54 for the PointMeasureDeviation function block.

ZW_CmdControl

The ZW_CmdControl function block controls the commands for the ZW-7000 series Confocal Fiber Displacement Sensor that communicates with the NJ/NX/NY-Series Controller via EtherCAT. Use this function block to set or adjust the measurement conditions before using the displacement sensor, or to save the set and adjusted data in the displacement sensor.

Function block name	Name	FB/ FUN	Grapl	hics	ST expression
ZW_CmdControl	ZW Com-	FB			ZW_CmdControl_Instance (
	mand Con-		ZW_CmdCont		Execute
	trol		\ZW_Cmd		PDOFlg,
			-Execute	Done-	PDOReady,
			- PDOFlg	PDOExecute	PDOResponse,
			- PDOReady	PDOCmdCode	PDOResponseCode,
			– PDOResponse	PDOCmdParam1	PDOResponseData,
					CmdCode,
			-PDOResponseCode	PDOCmdParam2	BankNo,
			-PDOResponseData	PDOCmdParam3	UnitNo,
			-CmdCode	Busy-	DataNo,
			-BankNo	Error	SetValue,
			UnitNo	ErrorID	Done,
			– DataNo	ErrorIDEx	PDOExecute,
				LITOIDEX	PDOCmdCode,
			-SetValue		PDOCmdParam1,
					PDOCmdParam2,
					PDOCmdParam3,
					Busy,
					Error,
					ErrorID
					ErrorIDEx);

Function Block and Function Information

Item	Description
Library file name	OmronLib_DIM_Measurement_V1_0.slr
Namespace	OmronLib\DIM_Measurement
Function block and function number	00097
Publish/Do not publish source code	Not published.
Function block and function version	1.00

Compatible Models

Item	Name	Model numbers	Version
Device	Confocal Fiber Displacement Sensor Controller	ZW-7000□	-
	Confocal Fiber Displacement Sensor Head	ZW-000	-

Hereinafter, the combination of the confocal fiber displacement sensor controllers (ZW-7000 \square) and confocal fiber displacement sensor heads (ZW- $\square\square\square\square$) are called "displacement sensor".

Variables

Input Variables

Variable	Name	Description	Data type	Valid range	Default
Execute	Execute	The function block is exe- cuted when this variable changes to TRUE. Re-exe- cuting the function block is prohibited. ^{*1}	BOOL	Depends on data type.	FALSE
PDOFlg	Control Com- mand Com- pleted (Responce Area I/O Port)	Changes to TRUE when control command execution in the displacement sensor is completed.	BOOL	Depends on data type.	FALSE
PDOReady	Ready (Responce Area I/O Port)	Changes to TRUE when the displacement sensor is ready to execute the control command or measurement synchronization.	BOOL	Depends on data type.	FALSE
PDOResponse	Command Code (Responce Area I/O Port)	The code of the executed command is returned.	DWORD	Depends on data type.	16#0
PDOResponse- Code	Response Code (Responce Area I/O Port)	Stores the response code of the executed command.	DWORD	Depends on data type.	16#0
PDOResponse- Data	Response Data (Responce Area I/O Port)	Stores the response data of the executed command.	DINT	Depends on data type.	0
CmdCode ^{*2}	Select Com- mand	Select the command to exe- cute. 0: Save data 1: Calibrate sensor head 2: Restart 3: Set current bank 4: Acquire processing unit data 5: Set processing unit data 6: Acquire system data 7: Set system data	UINT	0 to 7	0
BankNo ^{*2}	Bank Number	Specify the bank number to set the current bank.	UINT	Refer to (a) of the <i>Function</i> .	1
UnitNo ^{*2}	Unit Number	Specify the unit number to acquire/set processing unit data.	UINT	Refer to (a) of the <i>Function</i> .	0
DataNo ^{*2}	Data Number	Specify the data number to acquire/set processing unit data or system data.	UINT	Refer to (a) of the <i>Function</i> .	0

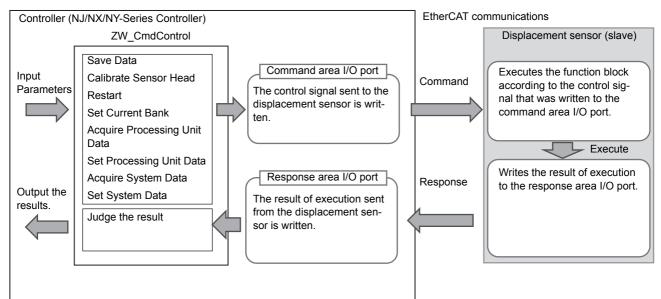
Variable	Name	Description	Data type	Valid range	Default
SetValue ^{*2}	Setup Data	Specify the data that is set when the Set processing unit data or Set system data command is executed.	DINT	Refer to (a) of the <i>Function</i> .	0

*1. Re-executing the function block means the following; when the *Execute* input variable changes to TRUE during the function block execution, the processing during execution is aborted, and the processing sequence is redone from the start.

Output Variables

Variable	Name	Description	Data type	Valid range	Default
Done	Done	Changes to TRUE when	BOOL	Depends on data	FALSE
		function block execution is		type.	
		completed.			
PDOExecute	Execute Com-	The value set for EXE (con-	BOOL	Depends on data	FALSE
	mand (Com-	trol command execution) of		type.	
	mand Area I/O	the command area I/O port			
	Port)	of the displacement sensor			
		is output.			
PDOCmdCode	Command	The value set for Command	DWORD	Depends on data	16#0
	Code (Com-	(command code) of the com-		type.	
	mand Area I/O	mand area I/O port of the			
	Port)	displacement sensor is out-			
		put.			
PDOCmdPar-	Command	The value set for Command	UINT	Depends on data	UINT#0
am1	Parameter 1	Parameter 1 of the com-		type.	
	(Command	mand area I/O port of the			
	Area I/O Port)	displacement sensor is out-			
		put.			
PDOCmdPar-	Command	The value set for Command	UINT	Depends on data	UINT#0
am2	Parameter 2	Parameter 2 of the com-		type.	
	(Command	mand area I/O port of the			
	Area I/O Port)	displacement sensor is out-			
		put.			
PDOCmdPar-	Command	The value set for Command	DINT	Depends on data	DINT#0
am3	Parameter 3	Parameter 3 of the com-		type.	
	(Command	mand area I/O port of the			
	Area I/O Port)	displacement sensor is out-			
		put.			
Busy	Busy	Changes to TRUE while the	BOOL	Depends on data	FALSE
		function block is being exe-		type.	
		cuted.			
Error	Error	TRUE while there is an	BOOL	Depends on data	FALSE
		error.		type.	
ErrorID	Error Code	Outputs the error code when	WORD	*1	16#0
		an error occurs.			
ErrorIDEx	Expansion	Outputs the expansion error	WORD	*1	16#0
	Error Code	code when an error occurs.			

*1. Refer to the *Troubleshooting* on page 102.


^{*2.} The set value of a task period when *Execute* changes to TRUE is used for operation. The value is not refreshed even if it is changed while *Execute* is TRUE.

Function

The ZW_CmdControl function block controls the commands for the ZW-7000 series Confocal Fiber Displacement Sensor that communicates with the NJ/NX/NY-Series Controller via EtherCAT. Use this function block to set or adjust the measurement conditions before using the displacement sensor, or to save the set and adjusted data in the displacement sensor.

This function block controls commands (listed in the *ZW-7000 Confocal Fiber Type Displacement Sensor User's Manual* (Cat. No. Z362)) to the specified slave on the EtherCAT network. To specify the slave to control, you must set the slave's device variables (the command area I/O port and response area I/O port) for the function block's input/output variables.

When a command is set in the input parameter and the function block is executed, a control signal is output. The function block sends a command to the displacement sensor by writing the control signal to the command area I/O port. The function block also determines the result of command execution of the slave from the value written to the response area I/O port. The function block outputs the judgment result.

(a) This function block outputs the signals of commands (listed in the ZW-7000 Confocal Fiber Type Displacement Sensor User's Manual (Cat. No. Z362)) that can be used on the EtherCAT network. As shown in the following table, when the function block is executed with the values set in the Cmd-Code, BankNo, UnitNo, DataNo, and SetValue input variables, it outputs the values that are written to the command area I/O port of the displacement sensor. A command is sent to the displacement sensor when these values are written to the command area I/O port. For proper operation of the function block, you must allocate the command area I/O ports to the corresponding output variables.

	Input variable					The command area I/O ports (lower) correspon to the output variables (upper)			esponding	
Command						PDOEx- ecute	PDOCmd	PDOCm- dParam1	PDOCm- dParam2	PDOCm- dParam3
	Cmd- Code	BankNo	UnitNo	DataNo	Set- Value	EXE	Com- mand	Com- mand Parame- ter1	Com- mand Parame- ter1	Com- mand Parame- ter1
Save Data	0		-	-	_	The function block is exe- cuted when FALSE changes to TRUE.	0x001030 11	_	_	
Calibrate Sensor Head	1		-	-	—	1	0x0010 E000	—	—	—
Restart	2		-	-	—	1	0x0010 F010	_	_	_
Set Cur- rent Bank	3	Bank number	-	-	-	<u>↑</u>	0x003080 00	Bank number -1	_	_
Acquire Process- ing Unit Data	4	-	Unit number	Data number	—	↑	0x004010 00	Unit num- ber	Data number	_
Set Pro- cessing Unit Data	5	-	Unit number	Data number	Setup data	1	0x005010 00	Unit num- ber	Data number	Setup data
Acquire System Data	6	-	-	Data number	—	1	0x004040 00	Data number	-	-
Set Sys- tem Data	7	-	-	Data number	Setup data	↑	0x005040 00	Data number	-	Setup data

Refer to the items in the Processing Item Data List and the System Data List of the user's manual on the individual displacement sensor, for the values, meanings and setting ranges of the bank number, unit number, data number, and setup data in the above table.

(b) After sending a command to the displacement sensor, the function block determines the result of command execution. The function block outputs the judgment result on whether command execution ended normally in the displacement sensor, and outputs the error code and expansion error code if an error end occurred. For proper operation of the function block, you must allocate the response area I/O ports in the following table to the corresponding output variables.

Response Area I/O Port	FLG	READY	Response	Response Code	Response Data
Corresponding input variables	PDOFlg	PDOReady	PDOResponse	PDOResponseC- ode	PDOResponse- Data

Timing Charts

The timing charts are shown below.

Timing Chart in a Normal State (Except When the Select Command Is Restarted.)

- (a) When Execute changes to TRUE, concurrently Busy changes to TRUE. The updated values with the input variables will be output to PDOCmd, PDOCmdParam1, PDOCmdParam2, and PDOCmd-Param3. PDOExecute turns TRUE from FALSE. The command is sent to the displacement sensor.
- (b) Once the displacement sensor receives the command, PDOReady changes to FALSE.
- (c) Once the displacement sensor has completed the processing, *PDOFIg* changes to TRUE. Based on the values of *PDOResponse*, *PDOResponseCode*, and *PDOResponseData* at that time, the execution result with the displacement sensor is judged. Normal end is confirmed.
- (d) PDOExecute changes to FALSE.
- (e) After *PDOReady* changes to TRUE and *PDOFIg* changes to FALSE, *Done* changes to TRUE. *Busy* changes to FALSE.

Even after the function block has been done, *Done* is retained while *Execute* is being TRUE.

Execute				
PDOFIg				
PDOReady				
PDOResponse				
PDOResponseCode			;;;	
PDOResponseData				
T DONesponse Data				1 1
CmdCode to SetValue				
Done				<u> </u>
PDOCmd to PDOCmdParam3				
PDOExecute				1
Busy				
Error				
ErrorID		0x0000		
ErrorIDEx		0x0000000		
	(a)	(b)	(c)	(d) (e)

• Timing Chart in a Normal State (When the Select Command Is Restarted.)

(a) When *Execute* changes to TRUE, concurrently *Busy* changes to TRUE. The updated values with input variables are output to *PDOCmd*, *PDOCmdParam1*, *PDOCmdParam2*, and *PDOCmdParam3*.

PDOExecute turns TRUE from FALSE. The command is sent to the displacement sensor.

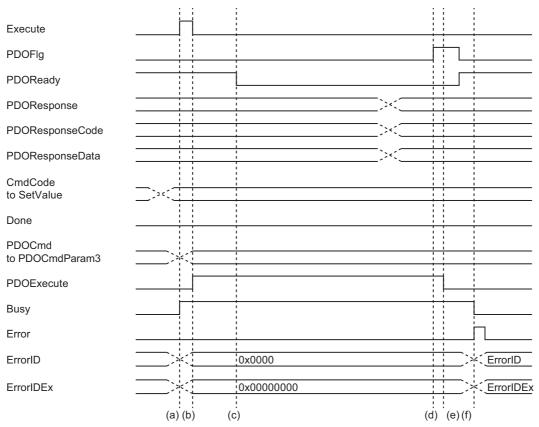
- (b) Once the displacement sensor receives the command, PDOReady changes to FALSE.
- (c) PDOExecute changes to FALSE, Done changes to TRUE, and Busy changes to FALSE.

	i		
Execute			
PDOFlg			
PDOReady			
PDOResponse			
PDOResponseCode			
PDOResponseData			
CmdCode)><		
Done			
PDOCmd to PDOCmdParam3			
PDOExecute			
Busy			
Error			
ErrorID		0x0000	
ErrorIDEx		0x0000000	
	(a)		(b) (c)

• Timing Chart When an Error Occurs (Startup Error)

If an out-of-range value is set to *CmdCode* when the function block is executed, a startup error occurs. *Error* changes to TRUE. The values are output to *ErrorID* (Error Code) and *ErrorIDEx* (Expansion Error Code). When *Execute* changes to FALSE, *Error* changes to FALSE accordingly. However, *ErrorID* and *ErrorIDEx* retain the values until the next function block is executed.

Execute	 		
CmdCode to SetValue		>	
Done		1 1 1 1 1	1 1 1 1 1 1
Busy		 	
Error		1 	1 1 1 1
ErrorID	ErrorID	>	
ErrorIDEx	ErrorIDEx	>	


Timing Chart When an Error Occurs (When an Error Is Judged Based on the Response of the Response Area I/O.)

Except when an out-of-range value is set to CmdCode, timing chart at error is as follows:

- (a) The same as normal end.
- (b) The same as normal end.
- (c) The same as normal end.
- (d) When the displacement sensor has completed the processing, PDOFIg changes to TRUE. Based on the values of PDOResponse, PDOResponseCode, and PDOResponseData at that time, the execution result in ZW7000 is judged and then the error end is confirmed.
- (e) PDOExecute changes to FALSE.
- (f) After PDOReady changes to TRUE and PDOFIg changes to FALSE, Busy changes to FALSE. Error changes to TRUE. The values are output to ErrorID (Error Code) and ErrorIDEx (Expansion Error Code).

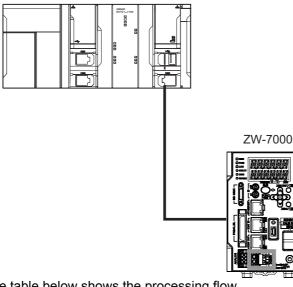
If error occurs when this function block is executed, *Error* changes to TRUE. The values are output to *ErrorID* (Error Code) and *ErrorIDEx* (Expansion Error Code). Even after this function block has been completed, *Error* retains output while *Execute* is being TRUE.

When *Execute* changes to FALSE, *Error* changes to FALSE accordingly. However, *ErrorID* and *ErrorI-DEx* retain the values until the next command is executed.

Precautions for Correct Use

- Always set the device variables of the same slave and same task in the input and output variables for the area I/O ports. If the device variables of different slaves and tasks are set, control may not be performed properly.
- During the function block execution, do not allow a device outside the function block to write to the control area I/O port that is set for the output variables. Otherwise, control may not be performed properly.
- Before executing this function block, thoroughly read the manuals of the devices that are used, and ensure safety.

Troubleshooting


Error code	Expansion error code	Description	Corrective action
0x3CA4	0x1	The value of CmdCode is	Set the correct value in CmdCode.
		out of range.	
	0x2	BankNo, UnitNo, Dat-	Check the set value of BankNo, UnitNo, DataNo, and
		aNo, or SetValue is out of	SetValue, and set the correct value.
		range.	
	0x3	Processing error	Check if there is an EtherCAT communication error
			or displacement sensor error. If there is an error, cor-
			rect it and then execute the function block.
	0x4	Mode error	After setting the Run mode, execute the command.
	0x5	Timeout error	Check if there is an EtherCAT communication error
			or displacement sensor error. If there is an error, cor-
			rect it and then execute the function block.
	0x6	Error response is	Check if there is an EtherCAT communication error
		received.	or displacement sensor error. If there is an error, cor-
			rect it and then execute the function block.
	0xB	The function block can-	Make sure that no command is being executed from
		not operate because the	the function block in another instance or for directly
		command is not ready for	setting PDOs. Then, execute the function block
		execution.	again.

Sample Programming

Program Description

In the following system in which a ZW-7000 and the NJ/NX/NY-series Controller are connected via EtherCAT, this program uses ZW_CmdControl to calibrate the sensor head, and set and save parameters in task 2 of bank 2.

NJ/NX/NY-series Controller

The table below shows the processing flow.

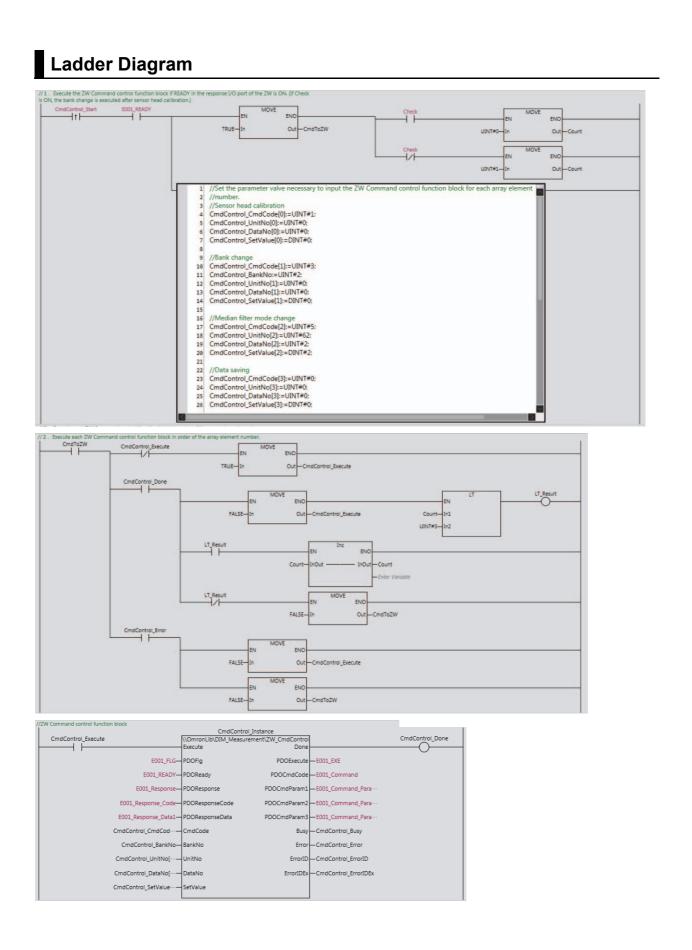
No.	Outline	Description
1.	Sensor head calibration	Calibrates the sensor head if not yet calibrated.
2.	Bank change	Changes the current bank to bank 2.
3.	Median filter mode change	Changes the median filter mode for task 2 to 9 times.
4.	Saving	Saves the parameters set for the displacement sensor controller.

Preconditions

- Set field bus parameters for the displacement sensor so that it can communicate via EtherCAT. For details, refer to the *ZW-7000 Confocal Fiber Type DisplacementSensor User's Manual for Communications Settings* (Cat. No. Z363).
- Create device variables for the command area I/O and response area I/O ports of the displacement sensor with which to communicate and use external references to the variables in the program. Refer to the *Sysmac Studio Version 1 Operation Manual* (Cat. No. W504) for details on how to create device variables.

Main Variables

Name	Meaning	Data type	Default	Description
E001_FLG	Command Done in Response area I/O port	BOOL		Command Done in the response area I/O port of the displacement sensor. Assign this variable to the <i>PDOFIg</i> input variable of ZW_CmdControl.


Name	Meaning	Data type	Default	Description
E001_READY	Signal Input	BOOL		Signal Input Ready Status in the
	Ready Status in			response area I/O port of the
	Response area			displacement sensor. Assign this
	I/O port			variable to the <i>PDOReady</i> input
				variable of ZW_CmdControl.
E001_Response	Command Echo	BOOL		Command Echo Back in the
	Back in Response area			response area I/O port of the displacement sensor. Assign this
	I/O port			variable to the PDOResponse
	"o port			input variable of ZW CmdControl.
E001_Response_Code	Response Code	DWORD		Response Code in the response
_ ' _	in Response			area I/O port of the displacement
	area I/O port			sensor. Assign this variable to the
				PDOResponseCode input
				variable of ZW_CmdControl.
E001_Response_Data1	Response Data	DINT		Response Data in the response
	in Response			area I/O port of the displacement
	area I/O port			sensor. Assign this variable to the
				<i>PDOResponseData</i> input variable of ZW CmdControl.
E001_EXE	Execute	BOOL	FALSE	Execute Command in the
	Command in	DOOL	TALOL	command area I/O port of the
	Command area			displacement sensor. Assign this
	I/O port			variable to the PDOExecute
				output variable of
				ZW_CmdControl.
E001_Command	Command Code	DWORD	16#0	Command Code in the command
	in Command			area I/O port of the displacement
	area I/O port			sensor. Assign this variable to the
				<i>PDOCmdCode</i> output variable of ZW_CmdControl.
E001_Command_Paramet	Command	UINT	UINT#0	Command Parameter 1 in the
er1	Parameter 1 in	OINT	011170	command area I/O port of the
	Command area			displacement sensor. Assign this
	I/O port			variable to the PDOCmdParam1
				output variable of
				ZW_CmdControl.
E001_Command_Paramet	Command	UINT	UINT#0	Command Parameter 2 in the
er2	Parameter 2 in			command area I/O port of the
	Command area			displacement sensor. Assign this variable to the <i>PDOCmdParam2</i>
	I/O port			output variable of
				ZW_CmdControl.
E001_Command_Paramet	Command	DINT	DINT#0	Command Parameter 3 in the
er3	Parameter 3 in		2	command area I/O port of the
	Command area			displacement sensor. Assign this
	I/O port			variable to the PDOCmdParam3
				output variable of
				ZW_CmdControl.
CmdControl_Start	Start ZW	BOOL	FALSE	Starts the ZW Command Control
	Command			for the displacement sensor when
Chaoli	Control	DOOL		the variable changes to TRUE.
Check	Calibrate Sensor	BOOL	FALSE	Calibrates the sensor after the start of the ZW Command Control
				when the variable is TRUE.
				When the valiable is TRUE.

Name	Meaning	Data type	Default	Description
CmdControl_CmdCode[]	Command Code	ARRAY[03] OF DWORD	16#0	Sets the following command code. Value of the array element number 0 to 3 : Command code that matches the processing flow number 1 to 4
CmdControl_BankNo	Bank Number	UINT	UINT#0	Sets the bank number for which to set parameters.
CmdControl_UnitNo[]	Unit Number	ARRAY[03] OF UINT	16#0	Sets the following unit number. Value of the array element number 0, 1, and 3 : 0 Value of the array element number 2 : 42+20*(2-1)=62 ^{*1}
CmdControl_DataNo[]	Data Number	ARRAY[03] OF UINT	16#0	Sets the following data number. Value of the array element number 0, 1, and 3 : 0 Value of the array element number 2 : 2 ^{*2}
CmdControl_SetValue[]	Set Value	ARRAY[03] OF DINT	16#0	Sets the following data number. Value of the array element number 0, 1, and 3 : 0 Value of the array element number 2 : 2 ^{*3}

*1. An example for calculating the unit number for the median of task 2 using the ZW-7000 . For details, refer to the displacement sensor user's manual.

*2. The data number for the median filter of the ZW-7000□. For details, refer to the displacement sensor user's manual.

*3. The value used when setting the median filter mode of the ZW-7000 to 9 times. For details, refer to the displacement sensor user's manual.

• Code of Inline ST:

// Set the parameter value necessary to input the ZW Command Control function block for each array element number.

// Sensor head calibration
CmdControl_CmdCode[0]:=UINT#1;
CmdControl_UnitNo[0]:=UINT#0;
CmdControl_DataNo[0]:=UINT#0;
CmdControl_SetValue[0]:=DINT#0;

```
// Bank change
CmdControl_CmdCode[1]:=UINT#3;
CmdControl_BankNo:=UINT#2;
CmdControl_UnitNo[1]:=UINT#0;
CmdControl_DataNo[1]:=UINT#0;
CmdControl_SetValue[1]:=DINT#0;
```

// Median filter mode change
CmdControl_CmdCode[2]:=UINT#5;
CmdControl_UnitNo[2]:=UINT#62;
CmdControl_DataNo[2]:=UINT#2;
CmdControl_SetValue[2]:=DINT#2;

```
// Data save processing
CmdControl_CmdCode[3]:=UINT#0;
CmdControl_UnitNo[3]:=UINT#0;
CmdControl_DataNo[3]:=UINT#0;
CmdControl_SetValue[3]:=DINT#0;
```

ST

```
// 1. Execute the ZW Command Control function block if READY in the response I/O port
of the ZW is ON. (If Check is ON, the bank change is executed after sensor head cal-
ibration.)
R TRIG instance(Clk:=CmdControl Start, Q=>Start Result);
IF (Start Result=TRUE) AND (E001 READY=TRUE) THEN
   IF (Check=TRUE) THEN
     Count:=UINT#0;
  ELSE
     Count:=UINT#1;
  END_IF;
   CmdToZW:=TRUE;
   // Set the parameter value necessary to input the ZW Command Control function
block for each array element number.
   // Sensor head calibration
   CmdControl CmdCode[0]:=UINT#1;
   CmdControl_UnitNo[0]:=UINT#0;
   CmdControl DataNo[0]:=UINT#0;
   CmdControl_SetValue[0]:=DINT#0;
   // Bank change
   CmdControl_CmdCode[1]:=UINT#3;
   CmdControl_BankNo:=UINT#2;
   CmdControl_UnitNo[1]:=UINT#0;
   CmdControl_DataNo[1]:=UINT#0;
   CmdControl_SetValue[1]:=DINT#0;
   // Median filter mode change
   CmdControl CmdCode[2]:=UINT#5;
   CmdControl UnitNo[2]:=UINT#62;
   CmdControl_DataNo[2]:=UINT#2;
   CmdControl_SetValue[2]:=DINT#2;
   // Data save processing
   CmdControl_CmdCode[3]:=UINT#0;
```

```
CmdControl UnitNo[3]:=UINT#0;
   CmdControl_DataNo[3]:=UINT#0;
   CmdControl SetValue[3]:=DINT#0;
END IF;
// 2. Execute each ZW Command Control function block in order of the array element
number.
IF (CmdToZW=TRUE) THEN
  IF NOT (CmdControl Execute) THEN
     CmdControl Execute:=TRUE;
   END IF;
   IF (CmdControl Done=TRUE) THEN
      CmdControl Execute:=FALSE;
      IF (Count<UINT#3) THEN
         Inc(Count);
      ELSE
         CmdToZW:=FALSE;
      END IF;
   ELSIF (CmdControl Error=TRUE) THEN
      CmdControl Execute:=FALSE;
      CmdToZW:=FALSE;
   END IF;
END_IF;
// ZW Command Control function block
ZW_CmdControl_Instance
(Execute:=CmdControl_Execute,
PDOFlg:=E001 FLG,
PDOReady:=E001 READY,
PDOResponse:=E001 Response,
PDOResponseCode:=E001 Response Code,
PDOResponseData:=E001 Response Data1,
CmdCode:=CmdControl CmdCode[Count],
BankNo:=CmdControl BankNo,
UnitNo:=CmdControl UnitNo[Count],
DataNo:=CmdControl_DataNo[Count],
SetValue:=CmdControl SetValue[Count],
Done=>CmdControl Done,
PDOExecute=>E001_EXE,
PDOCmdCode=>E001_Command,
PDOCmdParam1=>E001_Command_Parameter1,
{\tt PDOCmdParam2 => E001\_Command\_Parameter2,}
PDOCmdParam3=>E001_Command_Parameter3,
Busy=>CmdControl Busy,
Error=>CmdControl Error,
ErrorID=>CmdControl ErrorID,
ErrorIDEx=>CmdControl ErrorIDEx
);
```

LineMeasure_Cartesian

The LineMeasure_Cartesian function block measures the height of measurement surfaces while moving a single axis with a displacement sensor in X and Z directions.

From the measurement result, this function block creates the line measurement data (sLineMeasurementData).

You can select from the following two methods to control the single axis during measurement: Surface Search and Tracer Control.

Function block name	Name	FB/ FUN	Graphic expression	ST expression
LineMeasure_Car-	Line Mea-	FB		LineMeasure_Cartesian_instance(
tesian	surement		LineMeasure_Cartesian_instance \\OmronLib\DIM_Measurement\LineMeasure_Cartesian	X_Axis,
	with Carte- sian Coor-			Z_Axis,
	dinate		–Z_Axis – Z_Axis –	LineMeasurementData,
	System		LineMeasurementData — LineMeasurementData	Execute,
	(Surface		Execute Done	MeasureParams,
	Search/Tra cer Control)		-MeasureParams Measuring-	MeasuringValue,
			-MeasuringValue Busy-	ProjectionAmount,
			ProjectionAmount Active	LightReceivedAmount,
			LightReceivedAmount CommandAborted	Sensor_ENABLE,
			-Sensor_ENABLE Error	Sensor_STABILITY,
			-Sensor_STABILITY ErrorID	Sensor_TASKSTAT,
			-Sensor_TASKSTAT ErrorIDEx-	NumProcData,
			NumProcData	Abort,
			—Abort	Done,
				Measuring,
				Busy,
				Active,
				CommandAborted,
				Error,
				ErrorID,
				ErrorIDEx
);

Function Block and Function Information

ltem	Description
Library file name	OmronLib_DIM_Measurement_V1_0.slr
Namespace	OmronLib\DIM_Measurement
Function block and function number	00147
Publish/Do not publish source code	Not published.
Function block and function version	1.00

Compatible Models

Item	Product name	Model numbers	Version
Device	Confocal Fiber Displacement Sensor Controller	ZW-7000	-
	Confocal Fiber Displacement Sensor Head	ZW-000	-

Variables

Input Variables

Variable	Name	Description	Data type	Valid range	Default
Execute	Execute	Executes the function block when the value is changed to TRUE.	BOOL	TRUE or FALSE	FALSE
Measure Params ^{*1}	Measurement parameter	Set the measurement parameter.	sMeasureP- arams	_	_
MeasuringValue	Displacement Sensor Measurement Value	Assign the measurement value output from the dis- placement sensor. The unit is [nm].	DINT	Depends on data type.	0
Projection Amount	Displacement Sensor Amount of Emitted Light	Assign the amount of emit- ted light output from the dis- placement sensor.	UINT	Depends on data type.	0
LightReceived Amount	Displacement Sensor Amount of Light Received	Assign the amount of emit- ted light output from the dis- placement sensor.	UINT	Depends on data type.	0
Sensor_ ENABLE	Displacement Sensor ENABLE Out- put	Assign the ENABLE output from the displacement sen- sor.	BOOL	TRUE or FALSE	FALSE
Sensor _STABILITY	Displacement Sensor STABILITY Output	Assign the STABILITY out- put from the displacement sensor.	BOOL	TRUE or FALSE	FALSE
Sensor _TASKSTAT	Displacement Sensor TASKSTAT Output	Assign the TASKSTAT out- put from the displacement sensor.	BOOL	TRUE or FALSE	FALSE
NumProcData *1	Number of Processed Data Points	Specify the number of data points that are processed in a task period in the seg- mented processing.	UINT	Depends on data type.	100
Abort	Abort	Aborts the function block execution.	BOOL	TRUE or FALSE	FALSE

*1. When the function block is executed, the parameter is copied internally. Therefore, any parameter change made during execution is not reflected in processing.

To change the parameter, you need to re-execute the function block.

Output Variables

Variable	Name	Description	Data type	Valid range	Default
Done	Done	TRUE when the function	BOOL	TRUE or FALSE	—
		block execution is com-			
		pleted.			
Measuring	Measuring	TRUE when measurement	BOOL	TRUE or FALSE	—
		is in progress.			
		FALSE when data is outside			
		the measurement range or			
		when re-positioning is in			
		progress.			
Busy	Executing	Changes to TRUE when the	BOOL	TRUE or FALSE	—
		function block is acknowl-			
		edged.			
Active	Controlling	TRUE when control is in	BOOL	TRUE or FALSE	—
		progress.			
Command	Interruption	TRUE when the function	BOOL	TRUE or FALSE	—
Aborted	Completion	block execution is aborted.			
Error	Error	TRUE while there is an	BOOL	TRUE or FALSE	—
		error.			
ErrorID	Error Code	Outputs the error code when	WORD	*1	—
		an error occurs.			
ErrorIDEx	Expansion	Outputs the expansion error	DWORD	*1	—
	Error Code	code when an error occurs.			

*1. Refer to *Troubleshooting* on page 139.

In-Out Variables

Variable	Name	Description Data type		Valid range
X_Axis	X Axis	Specify the X axis.*1	_sAXIS_REF	—
Z_Axis	Z Axis	Specify the Z axis. ^{* 1}	_sAXIS_REF	—
LineMeasurement Data	Line measure- ment data	The line measurement data is recorded.	sLineMeasurementData	—

*1. Specify a user-defined Axis Variable that was created in the Axis Basic Settings of the Sysmac Studio (default: MC_Axis***) or a system-defined axis variable name (_MC_AX[*], _MC1_AX[*], or _MC2_AX[*]).

Members of Structure sMeasureParams

Member	Name	Data type	Valid range	Description
	Control Type	USINT	0, 1	0: Surface Search
CtrlType	Control Type	USINI	0, 1	
V. Droporo	V avia Branara	LREAL	Nogativo pumbor	1: Tracer Control
X_Prepare Position	X-axis Prepara- tion Position	LREAL	Negative number, positive number,	Set the measurement preparation position.
			or 0	The unit is [command unit].*1
X_TargetPosition	X-axis Target	LREAL	Negative number,	Set the measurement target position.
	Position		positive number, or 0	The unit is [command unit]. ^{* 1}
X_StartPosition	X-axis Measure-	LREAL	Negative number,	Set the measurement start position.
	ment Start Posi- tion		positive number, or 0	The unit is [command unit]. ^{* 1}
X_EndPosition	X-axis Measure-	LREAL	Negative number,	Set the measurement end position.
	ment End Position		positive number, or 0	The unit is [command unit]. ^{* 1}
X_Prepare	X-axis Prepara-	LREAL	Positive number	Set the velocity for the X-axis move-
Velocity	tion Velocity			ment to the preparation position.
				The unit is [command unit/s]. *1
X_Measuring	X-axis Measuring	LREAL	Positive number	Set the velocity for the X-axis mea-
Velocity	Velocity			suring movement.
				The unit is [command unit/s]. *1
X_Acceleration	X-axis Accelera-	LREAL	Positive number	Set the acceleration for the X-axis
	tion		or 0	movement.
				The unit is [command unit/s ²]. *1
X_Deceleration	X-axis Decelera-	LREAL	Positive number	Set the deceleration for the X-axis
_	tion		or 0	movement.
				The unit is [command unit/s ²]. *1
X_Jerk	X-axis Jerk	LREAL	Positive number	Set the jerk for the X-axis movement.
			or 0	The unit is [command unit/s ³]. *1
Z_Retract	Z-axis Retraction	LREAL	Negative number,	Set the position for the Z-axis retrac-
Positon	Position		positive number,	tion.
			or 0	The unit is [command unit]. ^{* 1}
Z_SearchEnd	Z-axis Search End	LREAL	Negative number,	Set the position at which the dis-
Position	Position		positive number,	placement sensor ends a search for
			or 0	a position that allows measurement.
				The search range is a range between
				the retraction position and search
				end position.
				If measurement is not enabled within
				the search range, another search
				starts.
				The unit is [command unit]. ^{* 1}
Z_Velocity	Z-axis Velocity	LREAL	Positive number	Set the velocity for the Z-axis move-
				ment.
				The unit is [command unit/s ²]. *1
Z_Acceleration	Z-axis Accelera-	LREAL	Positive number	Set the acceleration for the Z-axis
	tion		or 0	movement.
				The unit is [command unit/s ²]. *1

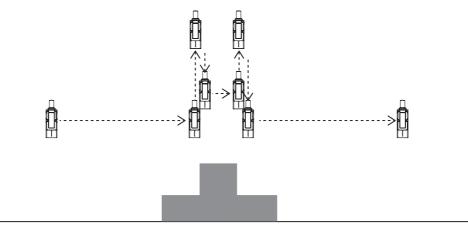
Member	Name	Data type	Valid range	Description
Z_Deceleration	Z-axis Decelera-	LREAL	Positive number	Set the deceleration for the Z-axis
	tion		or 0	movement.
				The unit is [command unit/s ²]. ^{*1}
Z_Jerk	Z-axis Jerk	LREAL	Positive number	Set the jerk for the Z-axis movement.
			or 0	The unit is [command unit/s ³]. *1
Resolution	Measurement	UINT	Positive number	Measurement is performed for each
	Resolution			specified distance.
				The unit is [µm].
InPosition	Measurement	UINT	Positive number	Set the in-position width for the target
	In-position		or 0	position at which the measurement
				value is recorded.
				The unit is [µm].
UseMotionCmd	Motion Control	USINT	0	Set how to control the motion of the
	Method for Tracer			single-axis during the Tracer Control.
	Control			0: Standard Tracer Control
				1 or larger: (Reserved)
CopyErrTolerate	Tolerable Number	USINT	0	Supported in a future upgrade
Num	of Measurement			
	Errors in Tracer			
	Control			

*1. Refer to Unit Conversion Settings in the motion control user's manual for information on command units.

Members of Structure sLineMeasurementData

Member	Name	Data type	Valid range	Description
DataCount	Number of	UINT	0 to 20,000	The number of measurement data
	Recorded Data			points recorded in XValue and ZValue.
Resolution	Resolution	UINT	Positive number	The X-direction resolution that is used during measurement is stored. The unit is [µm].
XValue	X Measurement Data	ARRAY[01 9999] OF LREAL	Depends on data type.	The measurement positions are recorded. The unit is mm.
ZValue	Z Measurement Data	ARRAY[01 9999] OF LREAL	Depends on data type.	The heights measured at the mea- surement positions are recorded. The unit is mm.
Projection Amount	Amount of Light Emitted Data	ARRAY[01 9999] OF UINT	Depends on data type.	The amount of light emitted at the measurement positions are recorded.
LightReceived Amount	Amount of Light Received Data	ARRAY[01 9999] OF UINT	Depends on data type.	The amount of light received at the measurement positions are recorded.

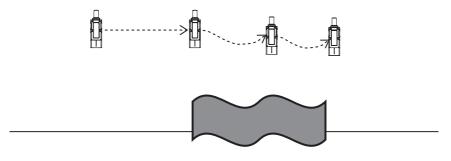
Function


The LineMeasure_Cartesian function block measures the height of measurement surfaces while moving a single axis with a displacement sensor in X and Z directions.

From the measurement result, this function block creates the line measurement data (sLineMeasurementData).

Shape measurement using the Surface Search (searching a measurement surface)

The height of the displacement sensor is fixed within the measurement range. The sensor scans and measures the target surfaces that come within the measurement range.


When the height of the measurement surface changes and it goes outside the measurement range of the displacement sensor, the height of the displacement sensor is readjusted and the measurement is continued. This method is suitable for measuring shapes whose height varies greatly and sharply.

Shape measurement using the Tracer Control

During measurement, the height of the displacement sensor is adjusted continuously to keep a constant distance between the sensor and measurement surface.

If the height of the measurement surface changes sharply and the measurement in the Tracer Control cannot be continued, the height is readjusted in the same way as the Surface Search so that the measurement in the Tracer Control can be resumed. This method is suitable for measuring shapes whose height varies gradually.

To obtain accurate line measurement data, always execute this function block in the primary periodic task.

- (a) You can select from the following two methods to control the single axis during measurement: Surface Search and Tracer Control.
- (b) The function block checks the input parameters when *Execute* changes to TRUE. If there is no error in the input parameters, either the Surface Search or Tracer Control is started. If there is an error in the input parameters, the measurement control is not performed, and the function block execution is aborted. For details on the error codes, refer to *Troubleshooting* on page 139.
- (c) For the unit of X-axis and Z-axis display, select "mm", "µm", "nm", or "inch".
- An error end occurs if "pulse" or "degree" is selected. The unit of axis display is not reflected in the measurement data. The unit for the measurement data is always "mm".
- (d) An error occurs if the X-axis travel velocity (travel distance per period in the primary periodic task) exceeds the resolution.
 Refer to *Surface Search* on page 127 for details.
- (e) When *CtrlType* (Control Type) is 0, measurement by the Surface Search method is performed. Refer to *Surface Search* on page 127 for function details on the Surface Search.
- (f) When *CtrlType* (Control Type) is 1, measurement by the Tracer Control method is performed. Refer to *Tracer Control* on page 129 for function details on the Tracer Control.
- (g) Even when the measurement direction (travel direction along the X axis) is negative (X_StartPosition > X_EndPosition), the line measurement data is output in ascending order of X value.

Sort in ascending order is performed for each unit of the processed data points specified in *NumProcData*.

So, to prevent a Task Period Exceeded error, specify a value for this variable according to the time of the task period to which this function block is assigned.

- (h) If *Abort* is changed to TRUE and motion control is in progress, the MC_Stop instruction is executed to stop axis operation.
- (i) If an error occurs, *Error* changes to TRUE and the function block execution is aborted. In addition, the error codes are output to *ErrorID* and *ErrorIDEx*.
 - For details on the error codes, refer to *Troubleshooting* on page 139.
- (j) If the function block execution is aborted or ended in an error, the line measurement data will not be created correctly.

Input Variables to Set Values Output from the Displacement Sensor

The following is a setting example of the input variables to which the values output from the displacement sensor are assigned.

Change the settings according to your setting conditions.

• MeasuringValue, ProjectionAmount, and LightReceivedAmount

On the ZW-7000 setting page of the Sysmac Studio, the following digital output is set for each bank.

▼ Digital Output						
Item	Content	Content				
OUT1	Task1		Task1			
OUT2	Light power	-	Task2			
OUT3	Peak amount of received light	-	Task3			
OUT4	Task4	-	Task4			
Clamp output	-2147.483648(0x80000000) mm	T	-2147.483648(0x8000000) mm			

Set the Task 1 output to Height. The Task 1 output value is the value of MeasuringValue.

▼ Measurement item						
Item	Content		Initial value			
Measurement item	Height	▼	Height			
Measurement surface	Peak	V	Peak			

When the digital output for the displacement sensor is set as above, assign the following device variables to *MeasuringValue*, *ProjectionAmount*, and *LightReceivedAmount*.

Output Data 1	Output Data 1	R	DINT	E001_Output_Data_1	→MeasuringValue
Output Data 2	Output Data 2	R	DINT	E001_Output_Data_2	→ProjectionAmount
Output Data 3	Output Data 3	R	DINT	E001_Output_Data_3	→LightReceivedAmount
Output Data 4	Output Data 4	R	DINT	E001_Output_Data_4	

• Sensor_ENABLE, Sensor_STABILITY, Sensor_TASKSTAT

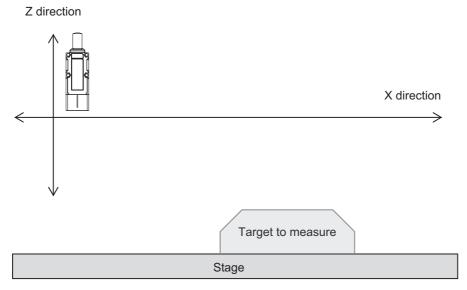
Assign the following device variables to the Sensor_ENABLE, Sensor_STABILITY, and Sensor_TASKSTAT input variables. *MeasuringValue* (Displacement Sensor Measurement Value) is obtained from the Task 1 output, so Sensor_TASKSTAT is also obtained from the TASKSTAT T1 bit.

▼ Sensor Head Status Signal2	Sensor Head Status Signal2	DWORD	E001_Sensor_Head_Status_Signal2
HOLDSTAT	Hold status	BOOL	E001_HOLDSTAT
RESETSTAT	Reset status	BOOL	E001_RESETSTAT
LIGHT	Light status	BOOL	E001_LIGHT
STABILITY	Stability status	BOOL	E001_STABILITY →Sensor_ENABLE
ENABLE	Enable status	BOOL	E001_ENABLE →Sensor_STABILITY
GATE	Data output completion	BOOL	E001_GATE
OR	Overall judgement output	BOOL	E001_OR
TASKSTAT_T1	TASKSTAT_T1 Bit	BOOL	E001_TASKSTAT_T1 →Sensor_TASKSTAT
TASKSTAT_T2	TASKSTAT_T2 Bit	BOOL	E001_TASKSTAT_T2
TASKSTAT_T3	TASKSTAT_T3 Bit	BOOL	E001_TASKSTAT_T3
TASKSTAT_T4	TASKSTAT_T4 Bit	BOOL	E001_TASKSTAT_T4

Process Flow from Creating Line Measurement Data to Creating 2D Shape Data

This section describes the process flow from creating the line measurement data to creating the 2D shape data using the LineMeasure_Cartesian, LineMeasure_CreateShape2D, and LineMeasure_CreateShape2DMaster function blocks.

Measurement Environment


Place the target to measure (workpiece) on the stage.

Configure a servo axis that can move in X and Z directions relative to the stage. Attach a displacement sensor to the axis. The distance between the attached sensor and workpiece must vary in X and Z directions.

Attach a displacement sensor so that the sensor measurement value will be the opposite direction to the world coordinate system. In the following example, the sensor measurement value changes to the negative direction if the sensor head moves to the positive direction. Also, the sensor measurement value changes to the positive direction if the sensor head moves to the negative direction.

Then, make the settings to enable the displacement sensor to perform measurement.

Refer to the manuals for the displacement sensor for how to make settings for the displacement sensor.

• Line Measurement Data and 2D Shape Data

The line measurement data is the information on positions of two axes (parallel to the sensor measurement direction and parallel to the scanning direction) that are measured during servo axis motion and information on the displacement sensor. The information is stored as a group of heights (Z direction) measured at scanning points (X direction). The line measurement data is used to create the 2D shape data, which are described in the following sections. Refer to *Line Measurement Data* on page 124.

2D shape data is the converted line measurement data after processing such as equal-interval arrangement of data points, filtering, and shape correction (slope, X and Z directions) are performed. 2D shape data is used for the feature amount calculations or graphic display on an OMRON NA-series programmable terminal. Refer to *2D Shape Data* on page 124.

Master Measurement and Target Measurement

• "Master measurement" refers to the measurement that is performed in the standard environment and with the standard samples.

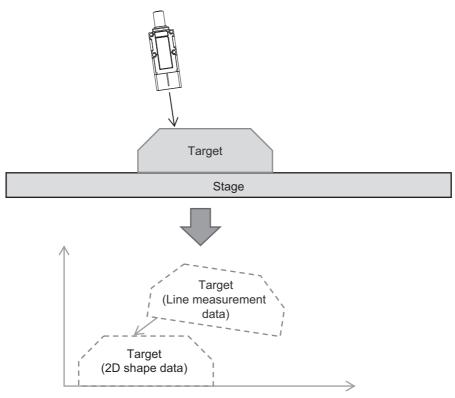
"Master 2D shape data" refers to the 2D shape data created from the line measurement data obtained through master measurement. The data such as the correction parameter used for creating the 2D shape data is also included in the master 2D shape data. Refer to *Master 2D Shape Data* on page 124.

"Target measurement" refers to normal measurement.

"Target 2D shape data" refers to the 2D shape data created from the line measurement data obtained through target measurement.

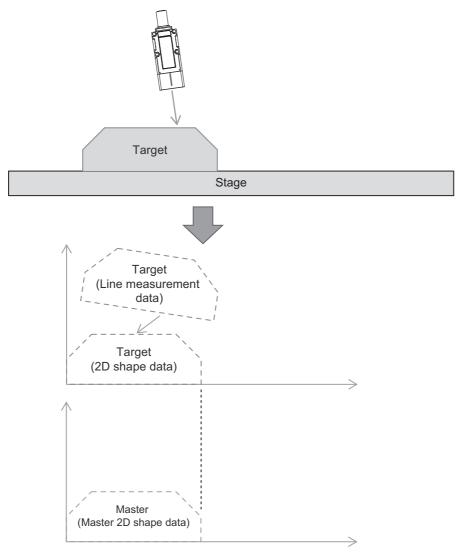
Target 2D Shape Data Creation Method

There are the following two methods to create the target 2D shape data:


The process in which the 2D shape data is created through target measurement only. The process in which the 2D shape data is created through target measurement based on the result of master measurement.

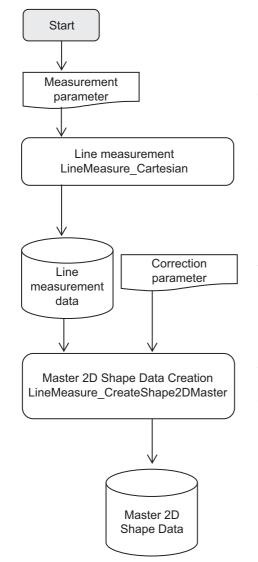
The first is used to measure shapes to create the target 2D shape data with the feature amount calculation function block.

The second can be used not only to measure shapes but also to compare the data with the master 2D shape data.


<When creating 2D shape data through target measurement only>

The target 2D shape data is created from the line measurement data that is obtained through target measurement and corrected according to the correction parameter that specifies the slope, height and position.

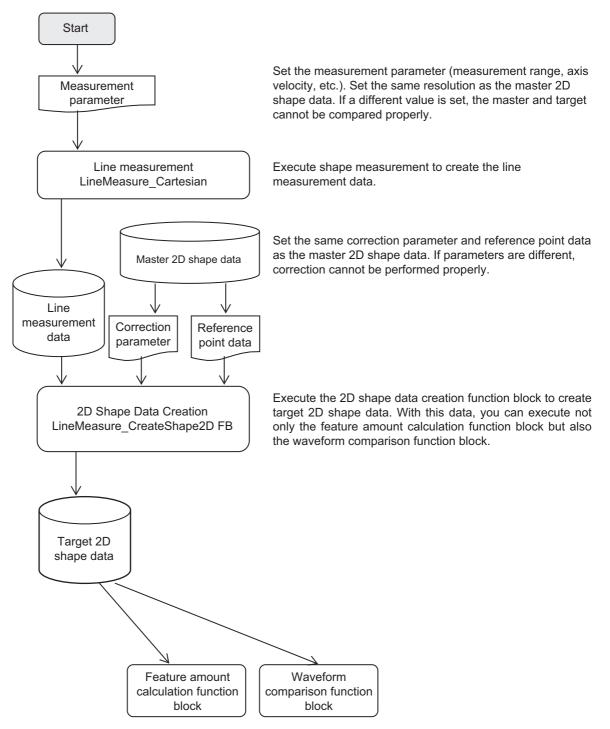



<When creating 2D shape data through target measurement based on the result of master measurement>

The target 2D shape data is created according to the slope and reference positions in X and Z directions of the master 2D shape data.

In the above example, the target is placed at different positions when target measurement and master measurement was performed. The correction function creates the target 2D shape data as if the target is measured at the same position as master measurement. Target 2D Shape Data Obtaining Process (When Master 2D Shape Data is Not Used)

Master 2D Shape Data Obtaining Process


Set the measurement parameter (measurement range, axis velocity, etc.).

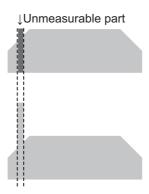
Execute the shape measurement of the master sample and create the line measurement data.

Set the correction parameter. For example, if the workpiece is tilted during measurement and you want to create a horizontal shape data, you can correct the shape data by setting the reference angle to 0° .

When the line measurement data and correction parameter are input and the master 2D shape data creation function block is executed, the master 2D shape data is created.

 Target 2D Shape Data Obtaining Process (When Master 2D Shape Data Is Used)

Line Measurement Data


The line measurement function block (LineMeasure_Cartesian) creates the line measurement data which consists of the position (X), height (Z), amount of emitted light, and amount of received light.

The position represents a position at which measurement is performed, and the height, amount of emitted light and received light are the measurement results that the displacement sensor outputs at the measurement position.

The measurement data is output in ascending order of positions (X (n) \leq X (n + 1)).

If height measurement is not possible, "∞" is set for ZValue.* 1

For example, when a part of the following sample cannot be measured, the unmeasurable part is recorded as a protrusion in the measurement data as shown in the following figure.

*1. Refer to Unmeasurable Shapes on page 141 for information on unmeasurable area.

2D Shape Data

The 2D shape data creation function block (LineMeasure_CreateShape2D) outputs the 2D shape data which consists of only heights (Z) at positions that are evenly spaced by the resolution.

The position for each height can be calculated as follows: position = (resolution × (array element number -1)).

Master 2D Shape Data

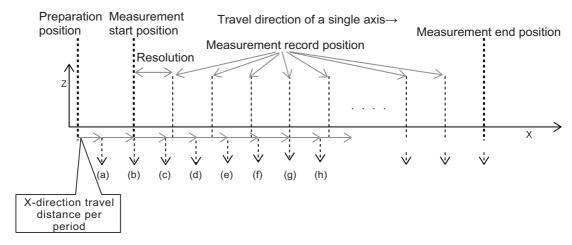
The master 2D shape data refers to a group of data that includes the correction parameter used to create the 2D shape data through master measurement, 2D shape data that is obtained, and reference points.

The resolution recorded in the master 2D shape data is used as the resolution for performing line measurement for a target.

The correction parameter recorded in the master 2D shape data is used as the correction parameter for creating the target 2D shape data.

Measurement Resolution and Measurement Record Position

The measurement data is recorded for each resolution interval between the measurement start position and measurement end position.


So, an error occurs if the measurement range divided by the resolution exceeds the array size of *XValue* and *ZValue* (20,000) in the line measurement data.

The positions determined by the measurement range divided by the resolution are called "measurement record positions".

When the value of Xposition reaches or exceeds a measurement record position, the position, height, amount of emitted light and amount of received light are recorded in the line measurement data.

The travel velocity along the X axis to a target position is always the same. Therefore, if the X-direction travel distance per period that is calculated from the travel velocity is smaller than the resolution, the record positions will be deviated.

The X-direction travel distance per period is calculated by the following formula: X-axis velocity (X_Velocity) × Task period to which this function block is assigned.

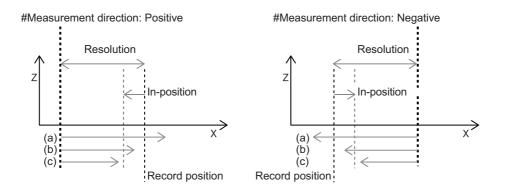
In the above example, the measurement data is as follows.

- (a) Data is not recorded becauses the measurement start position is not reached.
- (b) The X-axis servo actual position is recorded in XValue[1].
- (c) Data is not recorded because the measurement record position is not reached.
- (d) The X-axis servo actual position is recorded in XValue[2].

The sum of the displacement sensor measurement value and Z-axis servo position is recorded in *ZValue*[2].

- (e) The X-axis servo actual position is recorded in XValue[3]. The sum of the displacement sensor measurement value and Z-axis servo position is recorded in ZValue[3].
- (f) The X-axis servo actual position is recorded in XValue[4]. The sum of the displacement sensor measurement value and Z-axis servo position is recorded in ZValue[4].
- (g) Data is not recorded because the measurement record position is not reached.
- (h) The X-axis servo actual position is recorded in XValue[5]. The sum of the displacement sensor measurement value and Z-axis servo position is recorded in ZValue[5].

Deviation can be reduced when the value of the resolution is close to an integer multiple of the X-direction travel distance per period.


If the travel velocity is too high and the X-direction travel distance exceeds the resolution, an error occurs.

For example, if the resolution is set to 10 μ m and the task period to which this function block is assigned is 1 ms, the velocity for the X axis must be 10 mm/s or less.

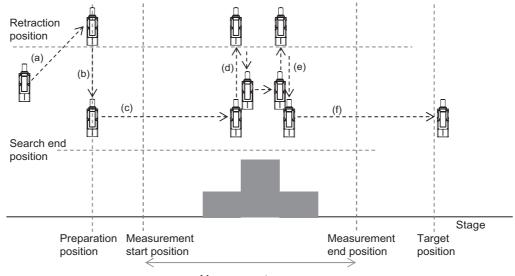
The acceleration, deceleration and jerk are not taken into account in the calculation.

By setting Measurement In-position, you can record data when the sensor reaches the amount of Measurement In-position before the measurement record position.

If the Measurement In-position is set to 1 or larger, the measurement data is recorded even when the X-axis position comes earlier than the record position.

In the above figures, the measurement data is recorded at (a) and (b).

The data is not recorded at (c).

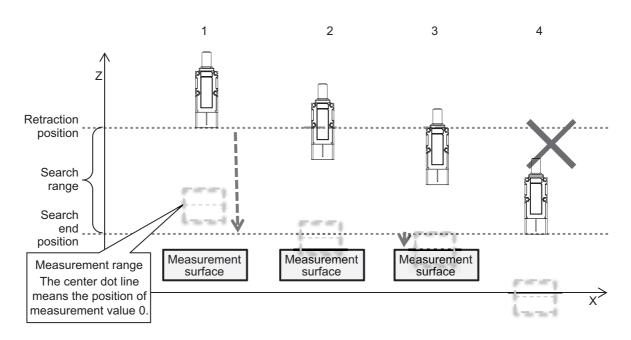

Use the Measurement In-position when you want to perform measurement even if the axis travel distance per period is smaller than the resolution, as shown in (b).

The value of Measurement In-position must be less than the resolution.

An error occurs if the value of Measurement In-position is equal to or larger than the resolution.

Surface Search

In the Surface Search, the shape of the surface is measured while the servo axis is moved. The axis is connected in such as way that the following positional relationship is formed between the displacement sensor and stage.


- Measurement range
- (a) The single axis moves in X direction to the preparation position (*X_PreparePosition*) and in Z direction to the retraction position (*Z_RetractPositon*).

The X preparation position and Z retraction position must be set to positions where the sensor does not touch the target object.

(b) The sensor performs "measurement positioning" at the preparation position. "Measurement positioning" refers to a movement of the single axis to a height where the displacement sensor recognizes the measurement value of the measurement surface as 0.

The following procedure is used to perform measurement positioning.

- 1 The single axis starts moving in Z direction to the search end position (*Z_SearchEndPosition*). The search end position must be set to a position where the sensor does not touch the target to measure.
- **2** When the displacement sensor is enabled to measure, i.e. the measurement surface entered an area in which the sensor can perform measurement, the single axis moves to a height where the measurement value is 0.
- **3** The single axis stops at a height where the measurement value is 0.
- 4 If the axis reaches the search end position and measurement is still disabled, an error end occurs.

(c) The single axis moves in X direction to the target position.

Shape measurement is performed while the X position is within the range between the measurement start position ($X_StartPosition$) and measurement end position ($X_EndPosition$). It is also possible to execute scanning in the negative direction (X start position > X end position, or

preparation position > target position).

The measurement range must be equal to or less than the X-axis travel range.

At each measurement position, the position, height, amount of emitted light and received light are recorded in the line measurement data.

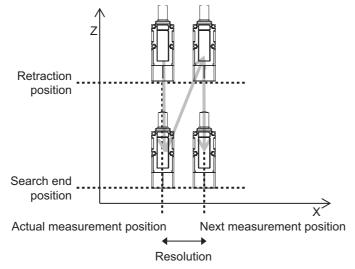
(d) When a state of measurement disabled is detected during measurement*, then measurement re-positioning is performed.

The operation of measurement re-positioning is the same as measurement positioning. In re-positioning, the measurement surface is searched and the single axis moves to a height where the displacement sensor recognizes the measurement value of the measurement surface as 0.

The following procedure is used to perform measurement re-positioning.

1 A deceleration stop is performed for X axis and Z axis.

X-axis Deceleration, X-axis Jerk, Z-axis Deceleration and Z-axis Jerk are used for the deceleration stop.

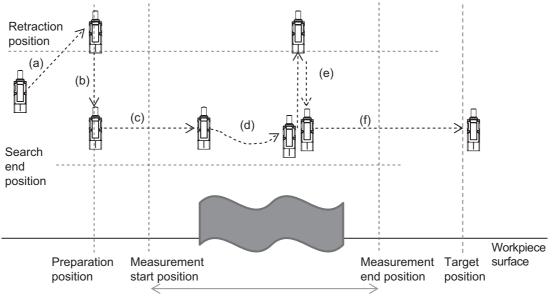

If X-axis Deceleration and Z-axis Deceleration are set to 0, the Maximum Deceleration axis parameter is used.

- **2** The axis moves to the present X-axis measurement and record position and Z-axis retraction position.
- **3** The axis starts moving to Z-axis Search End Position (*Z_SearchEndPosition*).
- **4** When the displacement sensor is enabled to measure, i.e. the measurement surface entered an area in which the sensor can perform measurement, the single axis moves to a height where the measurement value is 0.

When the axis finishes moving, it starts moving to the target position and measurement resumes.

5 If the axis reaches the search end position and measurement is still disabled, then the position, height, amount of emitted light and received light at present position are recorded in the line measurement data. For the height which cannot be measured, "∞" is set.

- **6** The value of Resolution is added to the measurement record position. The single axis moves to a new measurement and record position and performs re-positioning.
- 7 Measurement re-positioning is repeated until measurement re-positioning is successful or the measurement end position is exceeded.



* Refer to the displacement sensor user's manual for factors that cause measurement to fail.

- (e) When measurement is disabled again during measurement, then measurement re-positioning is performed.
- (f) The following operation is repeated until the axis reaches the measurement end position: measurement → measurement disabled → measurement re-positioning → measurement → ... When the target position is reached, the shape measurement is completed.

Tracer Control

In the Tracer Control, the shape of a surface is measured while the single axis, to which the displacement sensor is attached, is moved so that the displacement sensor always recognizes the measurement value (height) as 0.

Measurement range

The following procedure is used to perform measurement.

(a) The single axis moves in X direction to the preparation position (*X_PreparePosition*) and in Z direction to the retraction position (*Z_RetractPositon*).

The X preparation position and Z retraction position must be set to positions where the sensor does not touch the target object.

- (b) The sensor performs "measurement positioning" at the preparation position. This procedure is the same as the Surface Search.
- (c) The single axis moves in X direction to the target position.

Shape measurement is performed while the X position is within the range between the measurement start position ($X_StartPosition$) and measurement end position ($X_EndPosition$). It is also possible to execute scanning in the negative direction (X start position > X end position, or preparation position > target position).

The measurement range must be equal to or less than the X-axis travel range.

(d) While the single axis moves within the measurement range, the height of the axis is adjusted according to the height of the measurement surface.

If the measurement value is not 0, the Z position is changed by the amount of deviation from 0.

For example, if the measurement value is 1 mm, the Z position is raised by 1 mm. If the measurement value is -1 mm, the Z position is lowered by 1 mm.

(e) When a state of measurement disabled is detected during measurement, then measurement re-positioning is performed.

This procedure of measurement re-positioning is the same as the Surface Search.

Once measurement re-positioning is successful, measurement in the Tracer Control resumes.

(f) The following operation is repeated until the axis reaches the measurement end position: measurement → measurement disabled → measurement re-positioning → measurement → ... When the target position is reached, the shape measurement is completed.

Re-execution of Function Blocks

If a function block is re-executed when execution is in progress (Busy = TRUE), an error end occurs.

The measurement execution is terminated.

When you re-execute the function block, change *Abort* to TRUE to terminate the execution, and then change *Execute* to TRUE.

Multi-execution of Function Blocks

For details on multi-execution of function blocks, refer to the motion control user's manual.

Timing Charts

The timing charts are shown below.

• In a Normal State (Surface Search or Tracer Control)

When Execute changes to TRUE, Busy (Executing) changes to TRUE.

When the internal motion function block is executed, Active (Controlling) changes to TRUE.

Measuring is TRUE while the single axis is in the measurement range and shape measurement is performed.

Measuring is FALSE while a state of measurement disabled is detected and the single axis is re-positioned.

When the single axis reaches the target position and the measurement is completed, *Busy* and *Active* change to FALSE, and *Done* changes to TRUE.

Done holds its value while Execute remains TRUE.

X axis position		Indefinite	Preparation position	<	surement end	Target position	
Measurement positioning	TRUE FALSE						
Execute	TRUE FALSE						
Abort	TRUE FALSE						
Done	TRUE FALSE						
Measuring	TRUE FALSE						
Busy	TRUE FALSE						
Active	TRUE FALSE						
CommandAborted	TRUE						
Error							
ErrorID		>	< <u>0x0000</u>				
ErrorIDEx		\square	< <u>0x00000000</u>				

			_
X axis position		e Preparation Measurement start→Measurement end	→Target position
Measurement positioning	TRUE FALSE		
Fuenda	TRUE		
Execute	FALSE		
	TRUE		
Abort	FALSE		
	TRUE		Ē
Done	FALSE		
	TRUE		
Measuring	FALSE		
	TRUE		
Busy	FALSE		
Active	TRUE FALSE		
CommandAborted	TRUE FALSE		
Error	TRUE FALSE		
ErrorID			
ErrorIDEx		0x0000000	

• When the Function Block Is Aborted

If *Abort* changes to TRUE when execution is in progress, *Active* changes to FALSE and *CommandAborted* (Interruption Completion) changes to TRUE.

CommandAborted holds its value while Execute remains TRUE.

X axis position		Indefinite	Prepara positi	ation on	Measure Measu	ement start- irement end	→	The axis	stops	Pr	eparation position	\times	The axis stops
Measurement positioning	TRUE FALSE					_							
Execute	TRUE FALSE								_				
Abort	TRUE FALSE												
Done	TRUE FALSE												
Measuring	TRUE FALSE												
Busy	TRUE FALSE												
Active	TRUE FALSE												
CommandAborted	TRUE FALSE								1				
Error	TRUE FALSE												
ErrorID		\square	< 0x000	D					\square	<u>< 0</u> ,	×0000		
ErrorIDEx		\square	< <u>0x000</u>	00000						< 03	<000000	00	

If *Execute* changes to TRUE while *Abort* is TRUE, *CommandAborted* (Interruption Completion) changes to TRUE without performing the processing.

Execute	TRUE FALSE	
Abort	TRUE FALSE ———	
Done	TRUE FALSE ————	
Busy	TRUE FALSE ———	
Active	TRUE FALSE	
CommandAborted	TRUE FALSE ———	

• When an Error Occurs (Execution Check Error)

If an error is detected during the check performed when function block is executed, *Error* changes to TRUE.

The values are output to ErrorID (Error Code) and ErrorIDEx (Expansion Error Code).

Busy and Active remain FALSE.

Error holds its value while *Execute* remains TRUE.

ErrorID and *ErrorIDEx* hold their values until the function block is re-executed.

X axis position		Indefinite	Preparation
Measurement	TRUE FALSE		
Execute	TRUE FALSE		
Abort	TRUE FALSE		
Done	TRUE FALSE		
Measuring	TRUE FALSE		
Busy	TRUE FALSE		
Active	TRUE FALSE		
CommandAborte	TRUE ^d FALSE		
Error	TRUE FALSE		
ErrorID		ErrorID	0x0000
ErrorIDEx		ErrorIDEx	0x0000000

• When an Error Occurs (Execution Error)

If an error occurs during execution of this function block, *Busy* and *Active* change to FALSE and *Error* changes to TRUE.

The values are output to ErrorID (Error Code) and ErrorIDEx (Expansion Error Code).

Error holds its value while *Execute* remains TRUE.

ErrorID and *ErrorIDEx* hold their values until the function block is re-executed.

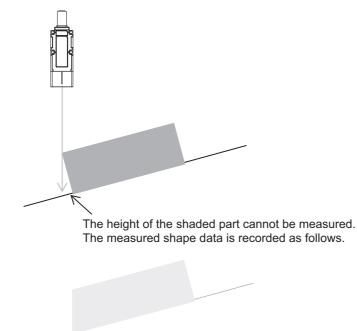
X axis position	Indefinite	Preparation	Measurement start→ Measurement end	The axis stops	Preparation position
Measurement positioning	TRUE FALSE				
Execute	TRUE FALSE	Γ			
Abort	TRUE FALSE				
Done	TRUE FALSE				
Measuring	TRUE FALSE ———	[[
Busy	TRUE FALSE ———				
Active	TRUE FALSE				
CommandAborted	TRUE FALSE				
Error	TRUE FALSE				
ErrorID		0x0000		ErrorID	0x0000
ErrorIDEx		0x00000000		ErrorIDEx	0x0000000

Precautions for Correct Use

- For the settings of a displacement sensor, do not use the filter (median filter, average filter, or low-pass filter) in the output condition settings for Task 1 that outputs the height in principle. If the filter is used, a correct measurement result may not be obtained, or operation may become unstable.
- For details on filtering the measurement data, refer to the descriptions in sections of LineMeasure_CreateShape2DMaster and LineMeasure_CreateShape2D.
- Always execute this function block in the primary periodic task. If you execute it in the periodic task, a correct measurement result may not be obtained.
- The 2D shape data creation function blocks (LineMeasure_Shape2DMaster and LineMeasure_Shape2D) use the line measurement data as the in-output variables. These function blocks must be executed only after this function block is completed normally.
- Before executing this function block, carefully read the manuals for devices to use and ensure the safety for use.

Troubleshooting

Error code	Expansion error code	Description	Corrective action
0x3CD6	0x0000 0001	An X-axis error occurred.	*1
	0x0000 0002	An Z-axis error occurred.	*1
	0x0000 0003	The function block was executed in the event task.	Execute this function block in the primary peri- odic task.
	0x0000 0004	The unit of X-axis display is set to "pulse" or "degree".	Select one of "mm", "µm", "nm", or "inch".
	0x0000 0005	The unit of Z-axis display is set to "pulse" or "degree".	Select one of "mm", "µm", "nm", or "inch".
	0x0000 0006	The undefined Control Type (<i>CtrlType</i>) was specified.	Specify a value which is within the valid range.
	0x0000 0007	The value specified for X-axis Preparation Position (<i>X_PreparePosition</i>) is out of the valid range.	Specify a value which is within the valid range.
	0x0000 0008	The value specified for X-axis Tar- get Position (<i>X_TargetPosition</i>) is out of the valid range.	Specify a value which is within the valid range.
	0x0000 0009	The value specified for X-axis Measurement Start Position (<i>X_StartPosition</i>) is out of the valid range.	Specify a value which is within the valid range.
	0x0000 000A	The value specified for X-axis Measurement End Position (<i>X_EndPosition</i>) is out of the valid range.	Specify a value which is within the valid range.
	0x0000 000B	The measurement range is outside the X-axis travel range.	Specify the values so that they meet the follow- ing condition.
			X-axis Preparation Position ≤ Measurement Start Position < Measurement End Position ≤ Target Position
			Or,
			X-axis Preparation Position ≥ Measurement Start Position > Measurement End Position ≥ Target Position
	0x0000 000C	The value specified for Z-axis Retraction Position (<i>Z_RetractPositon</i>) is out of the valid range.	Specify a value which is within the valid range.
	0x0000 000D	The value specified for Z-axis Search End Position (<i>Z_SearchEndPosition</i>) is out of the valid range.	Specify a value which is within the valid range.
	0x0000 000E	The value specified for Measure- ment Resolution (<i>Resolution</i>) is out of the valid range.	Specify a value which is within the valid range.
	0x0000 000F	The value specified for Measure- ment In-position is equal to or larger than Measurement Resolu- tion.	Specify a value which is smaller than Measure- ment Resolution.

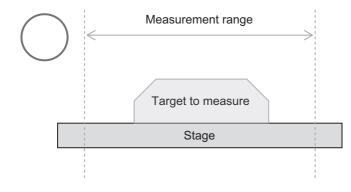

Error code	Expansion error code	Description	Corrective action
0x3CD6	0x0000 0010	The value specified for Motion Control Method for Tracer Control (<i>UseMotionCmd</i>) is out of the valid range.	Specify a value which is within the valid range.
	0x0000 0011	The X-axis velocity is too high rela- tive to the resolution.	Adjust the X-axis velocity, resolution, and task period in which the function block is executed.
	0x0000 0012	The number of measured and recorded points (measurement range divided by resolution) exceeded the capacity of the mea- surement data.	Correct the measurement range and resolution.
	0x0000 0013	Servo is not turned ON for X axis.	Turn ON the servo.
	0x0000 0014	Home is not defined for X axis.	Define home before executing the function block.
	0x0000 0015	Servo is not turned ON for Z axis.	Turn ON the servo.
	0x0000 0016	Home is not defined for Z axis.	Define home before executing the function block.
	0x0000 0017	Z-axis measurement position set- ting failed at the X-axis Preparation Position.	Adjust the measurement parameter (X-axis Preparation Position, Z-axis Temporary Posi- tion, and Threshold).
			Also, check that the measurement of the target is enabled.
	0x0000 0018	The function block was re-exe- cuted when execution is in prog- ress.	Change <i>Abort</i> to TRUE to terminate the execu- tion, and then re-execute the function block.

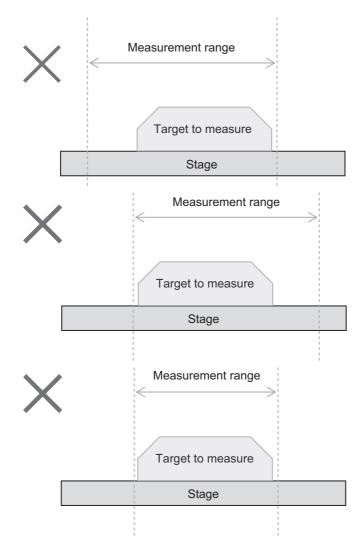
*1. Refer to the motion control user's manual.

Restriction

Unmeasurable Shapes

The displacement sensor is set straight above the target to measure. So, shapes such as shown below cannot be measured correctly.




Measurement Range and Space

When executing shape data correction or feature amount calculation using the shape data, you may need to use some parameters to specify spaces where there is no target to measure.

For this purpose, when you make settings for measurement, you need to set a measurement range which is wider than the target to measure, and leave spaces before and after the target.

Although it is possible to measure objects whether spaces are ensured or not, the accurate result of correction or feature amount calculation may not be obtained if spaces are too small. To prevent this, the spaces before and after the target to measure must be set to values more than 10 times the measurement resolution.

Deformation Caused by Slope Correction

Depending on the shape of the target or rotation angle, the shape of the measured target may not be retained after slope correction.

If slope correction is executed for targets such as shown below, the measured shape may be deformed.

Figure 1: The target's edge line (segment A) meets the horizontal line at almost a right angle. When the measurement data of this target is rotated clockwise for correction, segment A moves to a position which cannot be expressed in 2D shape data. As the result, the shape is deformed as shown in figure 2, in which segment A is expressed as a perpendicular line dropped from the top of segment A.

The original data of the segment is lost after it was rotated and changed in shape. So, even if the rotation is performed again in a reverse direction, the original shape cannot be restored.

If the rotation is performed counter-clockwise, the segment opposite to segment A is deformed in the same way.

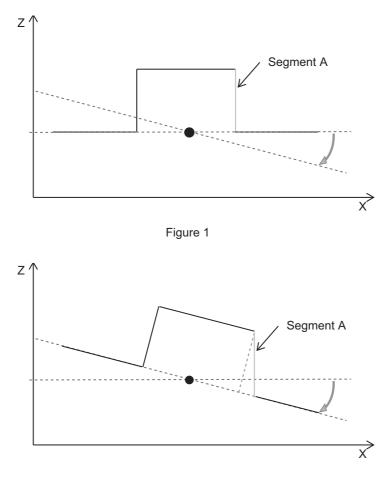
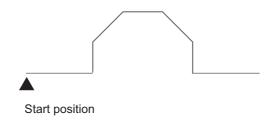


Figure 2

Data Loss Caused by Conversion to Shape Data

When the measurement data is converted to the shape data, a part of the data is lost without being converted to the shape data if the following conditions are met.

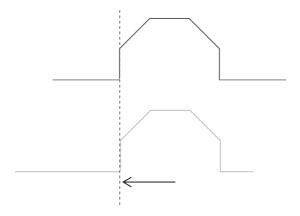

This occurs because the start position of the shape data is aligned with the start position of the master data when conversion to the shape data is performed.

This means, this problem does not occur when the master data correction is executed.

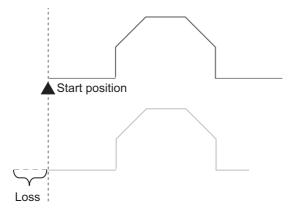
#Conditions of data loss#

- The position of the target to measure is deviated from the position where the master was measured.
- Position correction was executed.

Master shape data



Measurement data


If the position of the target to measure is deviated rightward from the master measurement position,

the measurement data is moved leftward when position correction is performed in order to align the data with the master.

After position correction is completed, the measurement data is aligned with the start position of the master data for conversion to the shape data. At that moment, the height data before the start position is lost, as it cannot be saved in the shape data.

Sample Programming

Program Description

This program performs master measurement and target measurement.

In master measurement, the program uses the LineMeasure_Cartesian function block to create the line measurement data. Then, the program executes the LineMeasure_CreateShape2D_Master function block with the line measurement data and correction parameter to create the master 2D shape data.

For target measurement, you can select from the following two types of methods.

Method to Create the Target 2D Shape Data without Using the Master 2D Shape Data

The target 2D shape data is created through the following procedure.

- 7 Execute the LineMeasure_Cartesian function block to create the line measurement data.
- 2 Execute the LineMeasure_CreateShape2D function block with the line measurement data and correction parameter to create the target 2D shape data.
- Method to Create the Target 2D Shape Data Using the Master 2D Shape Data

The target 2D shape data is created through the following procedure.

1 Create the master 2D shape data.

Execute the LineMeasure_Cartesian function block to create the line measurement data. Then, execute the LineMeasure_CreateShape2D_Master function block to create the master 2D shape data.

2 Create the line measurement data for creating the target 2D shape data. The resolution is the same as one for the master measurement.

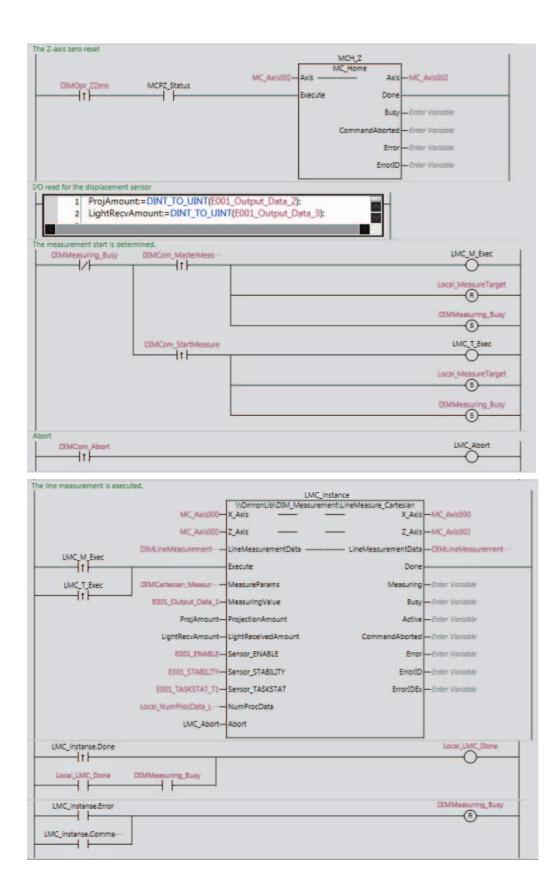
- 3 Create the target 2D shape data. Input the following three types of data and execute the LineMeasure_CreateSahpe2D function block.
 - The line measurement data that is obtained in step 2.
 - The correction parameter same as the master 2D shaped data
 - The reference point data that is obtained in step 1.

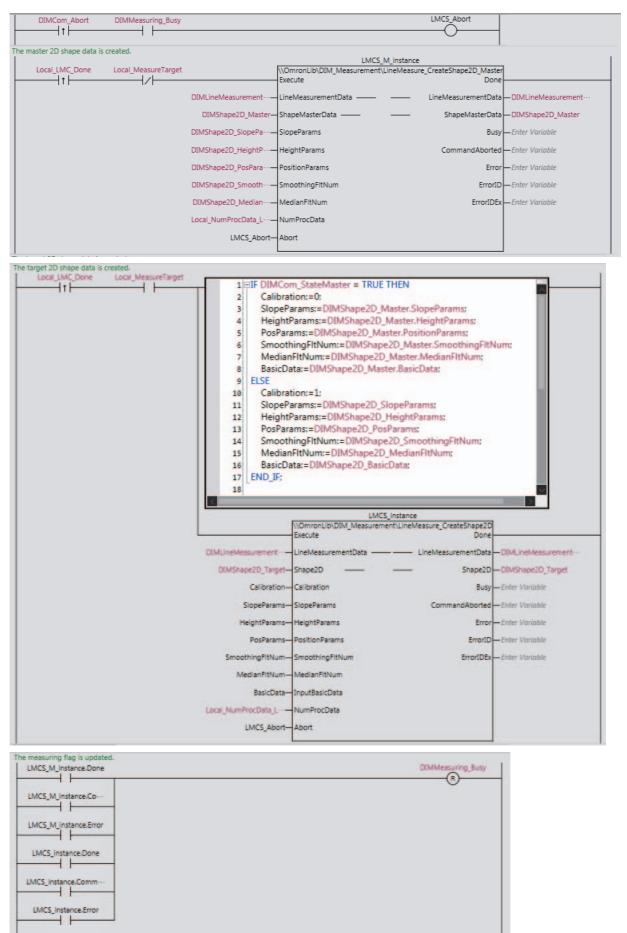
Preconditions

You must assign the user program that executes the LineMeasure_Cartesian function block in the primary periodic task.

Also, it may take time to process the LineMeaure_CreateShape2D and LineMeasure_Create-Shaped2D_master function blocks. Pay attention to the task assignment and setting period for each processing so that the processing time will not exceed the task period. The function blocks are assigned to the following tasks in this sample programming.

Function block	Assigned task
LineMeasure_Cartesian	Primary periodic task
LineMeasure_CreateShape2D	Periodic task
LineMeasure_CreateShape2D_Master	Periodic task


Main Variables


Name	Data type	Comment
DIMCartesian_MeasureParams	OmronLib\DIM_Measure-	Set the line measurement parameter.
	ment\sMeasureParams	
DIMMeasuring_Busy	BOOL	It is TRUE during a series of process
		execution from an execution of the line
		measurement until a creation of the
		2D shape data.
DIMCom_MasterMeasure	BOOL	Start trigger for the master measure- ment.
DIMCom_StartMeasure	BOOL	Start trigger for the target measure- ment.
Local_MeasureTarget	BOOL	Changes to TRUE when measuring
		the target and changes to FALSE
		when measuring the master.
Local_LMC_Done	BOOL	Changes to TRUE when the line mea-
		surement is completed and changes to
		FALSE when the 2D shape data cre-
		ation is finished.
		Make the exclusive control setting so
		that this variable can be changed only
		in the primary periodic task.
DIMLineMeasurementData	OmronLib\DIM_Measure-	Line measurement data
	ment\sLineMeasurementData	
DIMShape2D_Master	OmronLib\DIM_Measure-	Master 2D shape data
DIMChana2D Target	ment\sShapeMasterData	2D shans data
DIMShape2D_Target	OmronLib\DIM_Measure- ment\sShape2D	2D shape data
DIMCom_StateMaster	BOOL	When it is TRUE, the target measure-
		ment by using the master 2D shape
		data is performed.
LMC_instance	OmronLib\DIM_Measure-	Instance of the function block that cre-
	ment\LineMeasure_Cartesian	ates the line measurement data.
ProjAmount	UINT	Values that the light emitting amount of
		the ZW-7000 are converted to the LREAL data.
LightRecvAmount		
LIGHTRECVAHOUII	UINT	Values that the light receiving amount of the ZW7-7000 are converted to the
		LREAL data.
LMCS_M_instance	OmronLib\DIM Measure-	Instance of the function block that cre-
	ment\LineMeasure_Create-	ates the master 2D shape data.
	Shape2D_Master	
LMCS instance	OmronLib\DIM_Measure-	Instance of the function block that cre-
_	 ment\LineMeasure_Create-	ates the 2D shape data.
	Shape2D	

Ladder Diagram

The X-axis servo is locked or unlocked. DIMOpr_XLock	MCPX_POn
MCPX_POn DIMOpr_XUnlock	0
Enable Status	-MC_Axis000 MCPX_Status
Erro	Enter Variable —Enter Variable
DIMOpr_ZLock	MCPZ_POn
The Z-axis servo is locked or unlocked. MCP_Z MC_Power	 1
MCPZ_POn Enable Status	- MC_Axis002 MCPZ_Status
	— Enter Variable — Enter Variable
The X-axis zero reset DIMOpr_XZero MC_Axis000- The X-axis zero MC_Axis000-	MCH_X Axis Axis MC_Axis000 Execute Done
	Busy — Enter Variable CommandAborted — Enter Variable Error — Enter Variable
	ErrorID — Enter Variable

• User Program in the Primary Period Task

• User Program in the Periodic Task

ST

```
• User Program in the Primary Periodic Task

R_TRIG_LMC_XLock(DIMOpr_XLock, XLock);
```

```
R_TRIG_LMC_XUnlock(DIMOpr_XUnLock,XUnLock);
R_TRIG_LMC_ZLock(DIMOpr_ZLock,ZLock);
R_TRIG_LMC_ZUnlock(DIMOpr_ZUnLock,ZUnLock);
R_TRIG_LMC_XZero(DIMOpr_XZero,XZero);
R_TRIG_LMC_ZZero(DIMOpr_ZZero,ZZero);
R_TRIG_LMC_MasterMeasure(DIMCom_MasterMeasure,MasterMeasure);
R TRIG LMC StartMeasure(DIMCom StartMeasure, StartMeasure);
R_TRIG_DIMCom_Abort(DIMCom_Abort,LMC_Abort);
//The X-axis servo is locked or unlocked.
IF XLock OR ( MCPX_POn AND XUnLock ) THEN
   MCPX_POn:=TRUE;
END IF;
MCP_X
(
   Axis:=MC_Axis000,
   Enable:=MCPX POn,
   Status=>MCPX Status
);
//The Z-axis servo is locked or unlocked.
IF ZLock OR ( MCPZ_POn AND ZUnLock ) THEN
  MCPZ_POn:=TRUE;
END IF;
MCP_Z
(
  Axis:=MC_Axis002,
  Enable:=MCPZ POn,
   Status=>MCPZ Status
);
//The X-axis zero reset
MCH X
(
   Axis:=MC Axis000,
  Execute:=(XZero AND MCPX_Status)
);
//The Z-axis zero reset
MCH Z
(
   Axis:=MC Axis002,
   Execute:=(ZZero AND MCPZ Status)
);
//I/O read for the displacement sensor
ProjAmount:=DINT_TO_UINT(E001_Output_Data_2);
LightRecvAmount:=DINT_TO_UINT(E001_Output_Data_3);
//The measurement start is determined.
IF NOT (DIMMeasuring_Busy) AND MasterMeasure THEN
      LMC_M_Exec:=TRUE;
      Local_MeasureTarget:=FALSE;
      DIMMeasuring_Busy:=TRUE;
ELSIF NOT(DIMMeasuring_Busy) AND StartMeasure THEN
      LMC_T_Exec:=TRUE;
      Local_MeasureTarget:=TRUE;
```

```
DIMMeasuring Busy:=TRUE;
ELSE
      LMC M Exec:=FALSE;
      LMC T Exec:=FALSE;
END IF;
//The line measurement is executed.
LMC instance
(
X Axis:=MC Axis000,
Z Axis:=MC Axis002,
LineMeasurementData:=DIMLineMeasurementData,
Execute:=(LMC M Exec OR LMC T Exec),
MeasureParams:=DIMCartesian MeasureParams,
MeasuringValue:=E001_Output_Data_1,
ProjectionAmount:=ProjAmount,
LightReceivedAmount:=LightRecvAmount,
Sensor ENABLE:=E001 ENABLE,
Sensor STABILITY:=E001 STABILITY,
Sensor_TASKSTAT:=E001_TASKSTAT_T1,
NumProcData:=Local NumProcData LMCar,
Abort:=LMC Abort
);
IF LMC instance.Done
   OR (Local_LMC_Done AND DIMMeasuring_Busy) THEN
   Local_LMC_Done:=TRUE;
ELSE
   Local LMC Done:=FALSE;
END_IF;
IF LMC instance.Error OR LMC instance.CommandAborted THEN
  DIMMeasuring Busy:=FALSE;
END IF;
```

User Program in the Periodic Task

R TRIG LMC Done (Local LMC Done, LMC Done);

```
R TRIG LMC Done(DIMCom Abort,LMCS Abort);
IF LMCS Abort AND DIMMeasuring Busy THEN
   LMCS Abort:=TRUE;
END IF;
IF LMC Done AND NOT (Local MeasureTarget) THEN
   LMCS M Exec:=TRUE;
ELSE
  LMCS M Exec:=FALSE;
END IF;
//The master 2D shape data is created.
LMCS M instance
(
   Execute:=LMCS M Exec,
  LineMeasurementData:=DIMLineMeasurementData,
   ShapeMasterData:=DIMShape2D Master,
   SlopeParams:=DIMShape2D SlopeParams,
   HeightParams:=DIMShape2D HeightParams,
   PositionParams:=DIMShape2D_PosParams,
   SmoothingFltNum:=DIMShape2D SmoothingFltNum,
   MedianFltNum:=DIMShape2D MedianFltNum,
   NumProcData:=Local_NumProcData_LMCre,
   Abort:=LMCS Abort
);
```

```
//The target 2D shape data is created.
IF LMC Done AND Local MeasureTarget THEN
  LMCS Exec:=TRUE;
  IF DIMCom StateMaster = TRUE THEN
      Calibration:=0;
      SlopeParams:=DIMShape2D Master.SlopeParams;
      HeightParams:=DIMShape2D Master.HeightParams;
      PosParams:=DIMShape2D Master.PositionParams;
      SmoothingFltNum:=DIMShape2D Master.SmoothingFltNum;
      MedianFltNum:=DIMShape2D Master.MedianFltNum;
      BasicData:=DIMShape2D Master.BasicData;
  ELSE
      Calibration:=1;
      SlopeParams:=DIMShape2D_SlopeParams;
      HeightParams:=DIMShape2D HeightParams;
      PosParams:=DIMShape2D PosParams;
      SmoothingFltNum:=DIMShape2D SmoothingFltNum;
      MedianFltNum:=DIMShape2D MedianFltNum;
      BasicData:=DIMShape2D BasicData;
  END IF;
ELSE
  LMCS_Exec:=FALSE;
END IF;
LMCS_instance
(
  Execute:=LMCS Exec,
  LineMeasurementData:=DIMLineMeasurementData,
  Shape2D:=DIMShape2D Target,
  SlopeParams:=SlopeParams,
  HeightParams:=HeightParams,
  PositionParams:=PosParams,
  SmoothingFltNum:=SmoothingFltNum,
  MedianFltNum:=MedianFltNum,
  InputBasicData:=BasicData,
  NumProcData:=Local NumProcData LMCre,
  Abort:=LMCS_Abort
);
// The measuring flag is updated.
```

```
IF LMCS_M_instance.Done OR LMCS_M_instance.CommandAborted OR LMCS_M_instance.Error
    OR LMCS_instance.Done OR LMCS_instance.CommandAborted OR LMCS_instance.Error THEN
    DIMMeasuring_Busy:=FALSE;
END_IF.
```

END_IF;

LineMeasure_CreateShape2D_Master

The LineMeasure_CreateShape2D_Master function block creates the line measurement data and master 2D shape data from input parameters.

Function block name	Name	FB/ FUN	Graphic e	expression	ST expression
LineMeasure_Cre- ateShape2D_Mas- ter	Master 2D Shape Data Creation	FB	ImmonLibIDIM_MeasurementLin Execute LineMeasurementData	nape2D_Master_instance ieMeasure_CreateShape2D_Master Done — — LineMeasurementData — — ShapeMasterData — Busy — CommandAborted — ErrorID — ErrorID — ErrorIDEx —	LineMeasure_CreateShape2D_in- stance(Execute, LineMeasurementData, ShapeMasterData, SlopeParams, HeightParams, PositionParams, SmoothingFltNum, MedianFltNum, NumProcData, Abort, Done, Busy, CommandAborted, Error, ErrorID, ErrorIDEx
);

Function Block and Function Information

ltem	Description
Library file name	OmronLib_DIM_Measurement_V1_0.slr
Namespace	OmronLib\DIM_Measurement
Function block and function number	00148
Publish/Do not publish source code	Not published.
Function block and function version	1.00

Compatible Models

Refer to Compatible Models on page 110 in the LineMeasure_Cartesian.

Variable

Input Variables

Variable	Name	Description	Data type	Valid range	Default
Execute	Execute	Executes the function block	BOOL	TRUE or FALSE	FALSE
		when the value is changed to TRUE.			
SlopeParams ^{*1}	Slope Correc-	Set the slope correction	sSlopePa-	-	—
	tion Parameter	parameter.	rams		
HeightParams *1	Height Correc- tion Parameter	Set the height correction	sHeight- Params	-	—
Position	Position Cor-	parameter. Set the position correction	sPosition-		
Params ^{*1}	rection Param-	parameter.	Params		
i alams	eter				
SmoothingFlt	Number of	0: No smoothing is performed	USINT	0 to 8	0
Num ^{*1}	Smoothing	1: Travel averaging is per- formed twice			
		2: Travel averaging is per- formed 4 times			
		3: Travel averaging is per- formed 8 times			
		4: Travel averaging is per- formed 16 times			
		5: Travel averaging is per- formed 32 times			
		6: Travel averaging is per- formed 64 times			
		7: Travel averaging is per- formed 128 times			
		8: Travel averaging is per- formed 256 times			
MedianFltNum*1	Median Range	0: No median processing is performed	USINT	0 to 6	0
		1: Median Range is 3			
		2: Median Range is 5			
		3: Median Range is 7			
		4: Median Range is 9			
		5: Median Range is 15			
		6: Median Range is 31			
NumProcData *1	Number of Processed Data Points	Specify the number of data points that are processed in a task period in the segmented processing.	UINT	Depends on data type.	100
Abort	Abort	Aborts the function block exe- cution.	BOOL	TRUE or FALSE	FALSE

*1. When the function block is executed, the parameter is copied internally. Therefore, any parameter change made during execution is not reflected in processing.

To change the parameter, you need to re-execute the function block.

Variable	Name	Description	Data type	Valid range	Default
Done	Done	TRUE when the function block execution is completed.	BOOL	TRUE or FALSE	_
Busy	Executing	Changes to TRUE when the function block is acknowl- edged.	BOOL	TRUE or FALSE	—
Command Aborted	Interruption Completion	TRUE when the function block execution is aborted.	BOOL	TRUE or FALSE	_
Error	Error	TRUE while there is an error.	BOOL	TRUE or FALSE	—
ErrorID	Error Code	Outputs the error code when an error occurs.	WORD	*1	_
ErrorIDEx	Expansion Error Code	Outputs the expansion error code when an error occurs.	DWORD	*1	_

Output Variables

*1. Refer to Troubleshooting on page 169.

In-Out Variables

Variable	Name	Description	Data type	Valid range
LineMeasurement Data	Line measure- ment data	Set the line measurement data output by LineMeasure_Carte- sian.	sLineMeasurement- Data	_
ShapeMasterData	Master 2D Shape Data	Stores the master 2D shape data.	sShapeMasterData	_

Members of Structure sSlopeParams

Member	Name	Data type	Valid range	Description
Apply	Apply Slope Cor- rection	BOOL	TRUE or FALSE	Slope correction is performed when it is TRUE.
				Slope correction is not performed when it is FALSE.
Angle	Correction Angle	LREAL	-45° to 45°	Set the angle used for correction.
				The unit is [°].
				This variable is valid only when slope
				correction is performed without using
				the reference point data.
Range1High	Straight Line Cal-	LREAL	Negative number,	Specify the upper limit of the X-axis
	culation Range 1		positive number,	measurement range 1 that is used for
	Upper Limit		or 0	straight line calculation. The unit is [mm].
Range1Low	Straight Line Cal-	LREAL	Negative number,	Specify the lower limit of the X-axis
	culation Range 1		positive number,	measurement range 1 that is used for
	Lower Limit		or 0	straight line calculation. The unit is [mm].
Range2High	Straight Line Cal-	LREAL	Negative number,	Specify the upper limit of the X-axis
	culation Range 2		positive number,	measurement range 2 that is used for
	Upper Limit		or 0	straight line calculation. The unit is [mm].
Range2Low	Straight Line Cal-	LREAL	Negative number,	Specify the lower limit of the X-axis
	culation Range 2		positive number,	measurement range 2 that is used for
	Lower Limit		or 0	straight line calculation. The unit is [mm].

Members of Structure sHeightParams

Member	Name	Data type	Valid range	Description
RangeHigh	Height Calcula- tion Range Upper Limit	LREAL	Negative number, positive number, or 0	Specify the upper limit of the X-axis measurement range that is used for standard height calculation. The unit is [mm].
RangeLow	Height Calcula- tion Range Lower Limit	LREAL	Negative number, positive number, or 0	Specify the lower limit of the X-axis measurement range that is used for standard height calculation. The unit is [mm].
HeightType	Height Type	USINT	0, 1, or 2	Specify the method to determine the height within the correction range. 0: Average 1: Peak top 2: Peak bottom

Members of Structure sPositionParams

Member	Name	Data type	Valid range	Description
EdgeHeight	Edge Height	LREAL	Negative number, positive number, or 0	Specify the height used to determine whether to detect the edge. Set the height to the 2D shape data that the correction is performed.
				The unit is [mm].
EdgeNumber	Number of	USINT	Positive number	Specify what number detected edge
	Detected Edges			is used for correction.

Members of Structure sBasicData

For these member variables, set the values output by LineMeasure_CreateShape2D_Master.

Member	Name	Data type	Valid range	Description
Angle	Angle	LREAL	-45° to 45°	Set the reference angle calculated from the master 2D shape data.
				The unit is [θ].
EdgeIndex	Edge Detection	UINT	0 to the number of	Set the reference edge detection
	Index		points to measure	index that is stored in the master 2D shape data.

Members of Structure sShapeMasterData

Member	Name	Data type	Valid range	Description
Shape2D	2D Shape Data	sShape2D	—	Refer to 2D Shape Data on page 124
				for the members.
SlopeParams	Slope Correction	sSlopePa-	—	Refer to Members of Structure sSlo-
	Parameter	rams		peParams on page 156 for the mem-
				bers.
HeightParams	Height Correction	sHeight-	—	Refer to Members of Structure
	Parameter	Params		sHeightParams on page 156 for the
				members.
PositionParams	Position Correc-	sPosition-	—	Refer to Members of Structure sBa-
	tion Parameter	Params		sicData on page 157 for the mem-
				bers.
SmoothingFlt	Number of	USINT	0 to 8	Refer to Input Variables on page 154
Num	Smoothing			for details.
MedianFltNum	Median Range	USINT	0 to 6	Refer to Input Variables on page 154
				for details.
BasicData	Reference Point	sBasicData	—	Refer to Members of Structure sBa-
	Data			sicData on page 157 for the mem-
				bers.

Members of Structure sShape2D

Member	Name	Data type	Valid range	Description
DataCount	Number of Data Points	UINT	0 to 20,000	The number of data points are stored.
Resolution	Resolution	UINT	Positive number	The resolution in X direction ^{*1}
				The unit is µm.
ZValue	Z Measurement	ARRAY[01	Depends on data	The X-direction values of 2D shape
	Data	9999] OF LREAL	type.	data are stored. The unit is mm.

*1. Use the following expression to find the position of *sShape2D.ZValue[m]*. Position[m] = UINT_TO_LREAL((m-1) * *sShape2D.Resolution*) / LREAL#1000

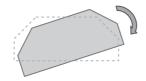
Function

The LineMeasure_CreateShape2D_Master function block provides the following functions.

(a) Conversion from the line measurement data to the 2D shape data

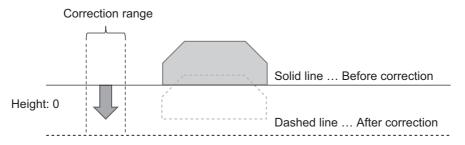
This function block converts the line measurement data to the 2D shape data.

Refer to *Line Measurement Data* on page 124 and *2D Shape Data* on page 124 for the difference in data structure between the line measurement data and 2D shape data.


(b) Measurement Correction

This function block corrects the slope and position that are detected when master measurement is performed.

a) Slope Correction


The function block corrects angular deviation that is caused by the tilt of workpiece during measurement.

The slope correction is not performed if Apply of Slope Correction Parameter is set to FALSE. For example, if Correction Angle of Slope Correction Parameter is set to 0°, the output 2D shape data contains the slope of 0° even when the workpiece is tilted.

b) Height Correction

The function block corrects the height of the measurement surface within the correction range so that it becomes 0.

(c) Filtering

Depending on the shape of the target or condition of the surface, the line measurement data may be unstable. In such a case, you can use the filters such as Smoothing and Median (X direction) to reduce noises.

a) Smoothing

At each position in X direction, travel averaging is performed according to the specified number of smoothing. You can create the data of a smooth shape.

b) Median (X direction)

The function block sorts out the values of *ZValue* within the range specified by Median Range in which the X position is set as the center.

The center value is replaced with the ZValue at the X position.

By applying the Median filter, you can remove spikes that are contained in the shape data.

(d) Reference Point Data Calculation

This function block outputs the edge detection index and reference angle. These data are called the reference point data. The reference point data calculated by this function block is used for the setting when executing LineMeasure_CreateShape2D. This data is required to correct the target 2D shape data so that deviations caused by the difference in the measurement environment between master and target can be reduced. The details on the edge detection index and reference angle are described in *Reference Point Data Output* on page 164.

The following describes an overview of the entire processing.

- a) The function block checks the input parameters when *Execute* changes to TRUE.
 - Only the parameters that are required for correction are checked.

If there is no error in the input parameters, the line measurement data (*LineMeasurementData*) that is input is corrected and filtered according to the correction and filtering settings. After the processing is completed, the line measurement data is converted to the master 2D shape data (*ShapeMasterData.Shape2D*) and stored.

The reference point data calculated from the shape data, and the correction parameter and filtering setting that are input are recorded in the master 2D shape data.

If an error is detected in the input parameters, the function block execution is aborted.

For details on the error codes, refer to *Troubleshooting* on page 169.

b) If there is no recorded data (*LineMeasurementData.DataCount* = 0), the function block execution ends without performing any operation.

The master 2D shape data is not created.

- c) The unit for the measurement data is always "mm".
- d) According to the parameter settings, correction, filtering, data structure conversion and reference data are performed, and the master 2D shape data are created.

The details on each function are described in the following sections.

e) This function block corrects and converts a maximum of 20,000 measurement data points. So, it requires a considerable time to complete processing.

If this function block exclusively uses a long processing time, other processing may not be executed or a Task Period Exceeded error may occur. To avoid this, you need to set the number of processed data points (*NumProcData*) per period.

The function block performs correction and conversion for a specified number of data points within a period. In the next period, the processing is resumed where it was interrupted.

If you increase the number of processed data points, the time until completion can be reduced. However, doing so increases the processing time per period.

If you decrease the number of processed data points, the processing time per period can be reduced. However, doing so increases the time until completion.

When you decide the number of processed data points, consider the execution environment, unused time in the task period available when correction is executed, and other factors.

If the number of processed data points is set to 0, the function block execution does not end until all correction and conversion are completed.

If this function block is assigned to the event task, the number of processed data points is ignored and the function block execution also does not end until all correction and conversion are completed.

f) If Abort is changed to TRUE, CommandAborted changes to TRUE and the function block execution is aborted.

Note that the execution is completed if all correction processing is finished in the period at which *Abort* changes to TRUE.

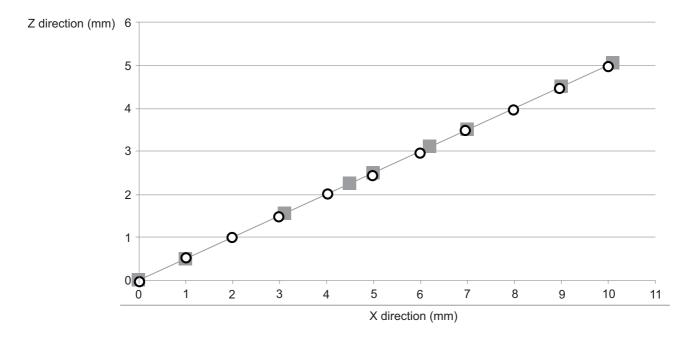
If *Execute* and *Abort* change to TRUE at the same time, no operation is performed and *CommandAborted* changes to TRUE.

g) If an error occurs, *Error* changes to TRUE and the function block execution is aborted. In addition, the error codes are output to *ErrorID* and *ErrorIDEx*.

For details on the error codes, refer to *Troubleshooting* on page 169.

h) If the function block is aborted or ended in an error, the master 2D shape data will be undefined.

Conversion to 2D Shape Data

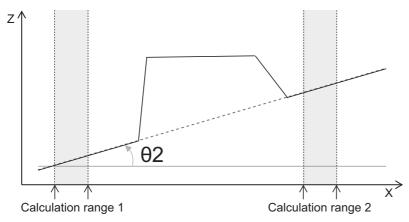

The function block converts the line measurement data to the 2D shape data.

For details on the line measurement data structure, refer to Line Measurement Data on page 124.

For details on the 2D shape data structure, refer to 2D Shape Data on page 124.

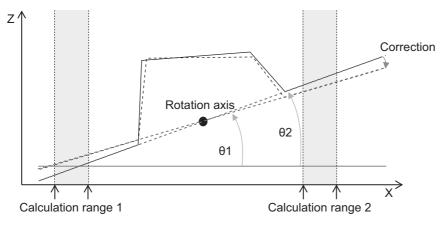
The line measurement data with irregular intervals in the X direction is converted to the 2D shape data with regular intervals in the X direction.

The following is an example of conversion. The line measurement data with the resolution of 1,000 μ m is expressed as " \blacksquare " dots in the following figure. The data are not spaced regularly. The converted 2D shape data is expressed as " \circ " dots. The measurement points are set at intervals of the resolution so that the data is spaced regularly in X direction. If a Z-direction value does not exist in the line measurement data, it is calculated by interpolation using the neighboring measurement values.


The resolution used for measurement cannot be changed when the data is converted. To change the resolution, you must redo the measurement.

Slope Correction

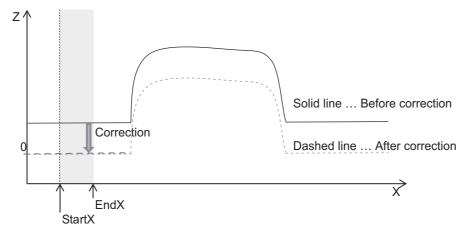
When slope correction is selected (*sSlopeParams.Apply* = TRUE), the correction procedure is performed as follows.


- (a) Input the correction angle $\theta 1$ (*sSlopeParams.BasicAngle*).
- (b) When the slope of the measured object (θ2) is calculated, the straight line is created from all Z values included in Straight Line Calculation Range 1 (*sSlopeParams.Range1Low* to *sSlopeParams.Range1High*) and Straight Line Calculation Range 2 (*sSlopeParams.Range2Low* to *sSlopeParams.Range2High*).

If one or more array elements are not found in each range, a correction-impossible error occurs.

(c) If the slope of the measured object (θ 2) is different from the correction angle θ 1, the entire measurement data is rotated so that these angles can be the same.

The rotation axis is placed at the midpoint between Range1High and Range2Low.


Height Correction

The height of the entire measurement data is corrected so that the heights within the height correction range can be 0.

(a) The function block determines the height of the measured object based on all Z values included in the height correction range (from *sHeightParams.RangeLow* to *sHeightParams.RangeHigh*) and the method specified in Height Type (*sHeightParams.HeightType*).

If one or more array elements are not found in each range, a compensation-impossible error occurs.

(b) If the calculated height is not 0, the entire measurement data is moved up/down through correction so that the height can be 0.

Position Correction

Position correction is not performed for the master data.

Smoothing Filter

When the Number of Smoothing (*SmoothingFltNum*) is set to 1 or higher, the specified number of travel averaging is performed for each position.

Median Filter (X direction)

When the Median Range (*MedianFltNum*) is set to 1 or higher, the median processing is performed for each position within the specified range.

Reference Point Data Output

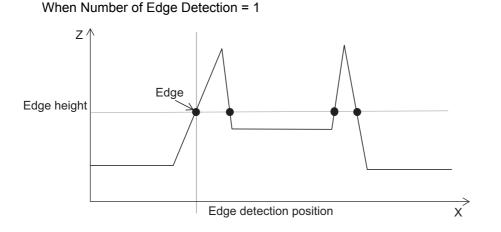
For the master 2D shape data, X-axis Measurement Start Position of the line measurement data is set as the origin of X coordinate. Then, the position at which the edge is detected is defined as the reference position. Also, the angle of the master 2D shape data relative to the horizontal surface is defined as the reference angle. The function block outputs Edge Detection Index and Angle, from which the reference position of the master 2D shape data can be calculated. These data are called the reference point data. The reference point data is used when LineMeasure_CreateShape2D is executed. This data is required to correct deviation caused by the difference in the measurement environment between the master and target.

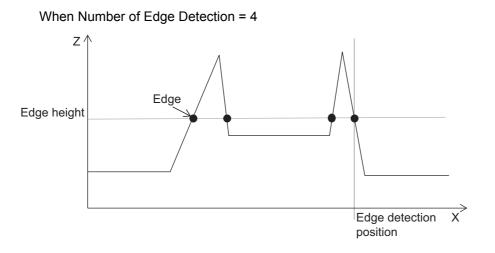
Reference Angle

The slope of the measurement data calculated in *Slope Correction* on page 162 is used as the setting value.

When slope correction is applied, the angle after correction is used.

• Edge Detection Index


Edge detection position = Resolution × Edge Detection Index


The edge detection index is calculated from the edge position detected through the following procedure.

a) The heights in the 2D shape data are checked in ascending order of X values.

When a height exceeds Edge Height (EdgeHeight), an edge is judged to be detected at that point.

A detected edge is determined to be the edge detection position according to the setting of Number of Edge Detection (*EdgeNumber*).

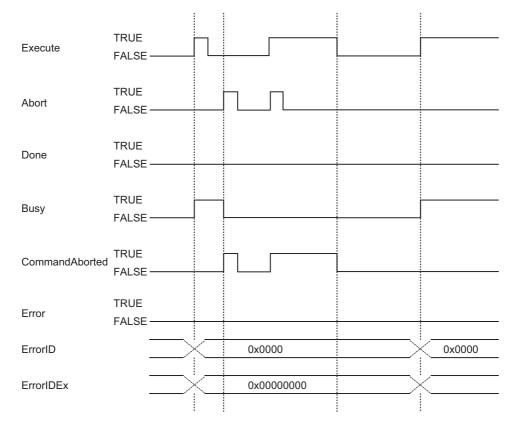
b) When a measured height is the same as Edge Height, it is not recognized as an edge.
 Only a point after passing Edge Height is determined to be an edge detection position.

Re-execution of Function Blocks

If you change *Execute* to TRUE when execution is in progress (*Busy* = TRUE), the calculation in progress is aborted and the correction calculation is restarted with new parameters.

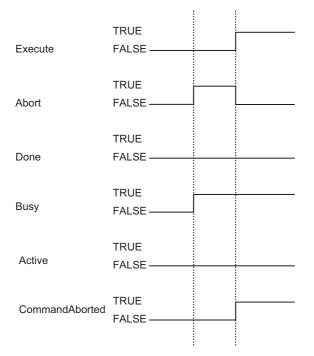
Multi-execution of Function Blocks

It is allowed to generate multiple instances from this function block and to execute multiple correction calculations simultaneously.

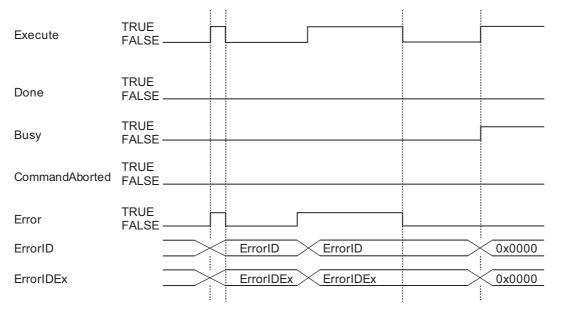

However, you must set different in-output variables for each instance when you assign them to the master 2D shape data.

Timing Charts

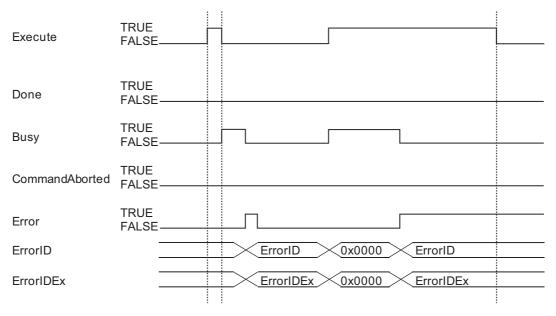
The timing charts are shown below.


• Timing Chart in a Normal State

Execute	TRUE FALSE	<u> </u>			
Done	TRUE FALSE		Π		
Busy	TRUE FALSE ———				
ChkRsltMax	TRUE FALSE			 	
ChkRsltMin	TRUE FALSE			 	
CommandAborted	TRUE FALSE			 	
Error	TRUE FALSE ———				
ErrorID		<u>0x0000</u>	:		
ErrorIDEx		0x00000	0000		


• Timing Chart When the Function Block Is Aborted

If *Execute* changes to TRUE while *Abort* is TRUE, *CommandAborted* (Interruption Completion) changes to TRUE without performing the processing.


• Timing Chart When an Error Occurs (Startup Error)

If a setting value error is detected for the input variables when the function block is executed, a startup error occurs. *Error* changes to TRUE and the values are output to *ErrorID* (Error Code) and *ErrorIDEx* (Expansion Error Code). When *Execute* changes to FALSE, *Error* changes to FALSE accordingly. However, *ErrorID* and *ErrorIDEx* retain the values until the next function block is executed.

• Timing Chart When an Error Occurs (Error during Function Block Execution)

If an error is detected in the 2D shape data creation or correction during the function block execution, *Busy* changes to FALSE, *Error* changes to TRUE, and the values are output to *ErrorID* (Error Code) and *ErrorIDEx* (Expansion Error Code). When *Execute* changes to FALSE, *Error* changes to FALSE accordingly. However, *ErrorID* and *ErrorIDEx* retain the values until the next function block is executed.

Precautions for Correct Use

- Execute this function block only after the line measurement function block (LineMeasure_Cartesian) is completed normally. If the line measurement function block is aborted or ended in an error, the line measurement data is undefined. If you execute this function block with undefined line measurement data, the master 2D shape data cannot be created correctly.
- Before executing this function block, carefully read the manuals for devices to use and ensure the safety for use.

Troubleshooting

Error code	Expansion error code	Description	Corrective action
0x3CD7	0x0000 0001	Number of Recorded Data (<i>LineMeasurementData</i> . <i>DataCount</i>) was set to a value that exceeds the maximum number of stored measurement data.	Set a valid number of stored data.
	0x0000 0002	Resolution (<i>LineMeasurement-</i> Data.Resolution) was set to 0.	Correct the input data.
	0x0000 0003	The X values of the measurement data that was input is not stored in ascending order.	Correct the input data.
	0x0000 0004	A reference point (slope) exceed- ing the valid range was detected from the measurement data that was input.	Correct the input data and slope correction set- ting.
	0x0000 0005	Slope correction was executed based on the reference angle detected from the measurement data that was input and Reference Angle (<i>SlopeParams.Angle</i>) in the slope correction setting. As the result, the valid range was exceeded.	Correct the input data and slope correction set- ting.
	0x0000 0006	The reference point (edge detec- tion position) was not detected from the measurement data that was input.	Correct the input data and position correction setting.
	0x0000 0007	The value specified for Number of Smoothing (<i>SmoothingFltNum</i>) is out of the valid range.	Specify a value which is within the valid range.
	0x0000 0008	The value specified for Median Range (<i>MedianFltNum</i>) is out of the valid range.	Specify a value which is within the valid range.
	0x0000 0010	Slope Correction Parameter The value specified for Reference Angle (<i>Angle</i>) is out of the valid range.	Specify a value which is within the valid range.
	0x0000 0011	Slope Correction Parameter The value specified for Straight Line Calculation Range 1 Upper Limit (<i>Range1High</i>) is out of the valid range.	Specify a value which is within the valid range.

Error code	Expansion error code	Description	Corrective action
0x3CD7	0x0000 0012	Slope Correction Parameter The value specified for Straight Line Calculation Range 1 Lower Limit (<i>Range1Low</i>) is out of the valid range.	Specify a value which is within the valid range.
	0x0000 0013	Slope Correction Parameter The value specified for Straight Line Calculation Range 2 Upper Limit (<i>Range1High</i>) is out of the valid range.	Specify a value which is within the valid range.
	0x0000 0014	Slope Correction Parameter The value specified for Straight Line Calculation Range 2 Lower Limit (<i>Range2Low</i>) is out of the valid range.	Specify a value which is within the valid range.
	0x0000 0015	Slope Correction Parameter The values specified for Straight Line Calculation Range 1 (<i>Range1Low</i> and <i>Range1High</i>) has met the following condition: lower limit ≥ upper limit.	Specify values that can meet the following con- dition: lower limit < upper limit.
	0x0000 0016	Slope Correction Parameter The values specified for Straight Line Calculation Range 2 (<i>Range2Low</i> and <i>Range2High</i>) has met the following condition: lower limit ≥ upper limit.	Specify values that can meet the following con- dition: lower limit < upper limit.
	0x0000 0017	0x0000 0017 Slope Correction Parameter Specify values that ca	Specify values that can meet the following con- dition: <i>Range1High < Range2Low</i> .
	0x0000 0018	Slope Correction Parameter There is no measurement data that corresponds to the Straight Line Calculation Range 1.	Set Straight Line Calculation Range 1 to values that include the measurement data.
	0x0000 0019	Slope Correction Parameter There is no measurement data that corresponds to the Straight Line Calculation Range 2.	Set Straight Line Calculation Range 2 to values that include the measurement data.
	0x0000 0020	Height Correction Parameter The value specified for Height Cal- culation Range Upper Limit (<i>RangeHigh</i>) is out of the valid range.	Specify a value which is within the valid range.
	0x0000 0021	Height Correction Parameter The value specified for Height Cal- culation Range Lower Limit (<i>Ran- geLow</i>) is out of the valid range.	Specify a value which is within the valid range.

Error code	Expansion error code	Description	Corrective action
0x3CD7	0x0000 0022	Height Correction Parameter	Specify values that can meet the following con-
		The values specified for Height Calculation Range (<i>RangeLow</i> and <i>RangeHigh</i>) has met the following condition: lower limit ≥ upper limit.	dition: lower limit < upper limit.
	0x0000 0023	Height Correction Parameter	Specify a value which is within the valid range.
		The value specified for Height Type (<i>HeightType</i>) is out of the valid range.	
	0x0000 0024	Height Correction Parameter	Set Height Calculation Range to values that
		There is no measurement data that corresponds to the Height Calcula-tion Range.	include the measurement data.
	0x0000 0030	Position Correction Parameter	Specify a value which is within the valid range.
		The value specified for Edge Height (<i>EdgeHeight</i>) is out of the valid range.	
	0x0000 0031	Position Correction Parameter	Specify a value which is within the valid range.
		The value specified for Number of Edge Detection (<i>EdgeNumber</i>) is out of the valid range.	

Sample Programming

Refer to Sample Programming on page 145 for LineMeasure_Cartesian.

LineMeasure_CreateShape2D

The LineMeasure_CreateShape2D function block creates the line measurement data and 2D shape data from input parameters.

Function block name	Name	FB/ FUN	Graphic expression	ST expression
LineMeasure_Cre- ateShape2D	2D Shape Data Cre- ation	FB	LineMeasure_CreateShape2D_instance \Vertice{\Ve	LineMeasure_CreateShape2D_in- stance(Execute, LineMeasurementData, Shape2D, Calibration, SlopeParams, HeightParams, PositionParams, InputBasicData, NumProcData, Abort, Done, Busy, CommandAborted, Error, ErrorID, ErrorID, ErrorIDEx);

Function Block and Function Information

ltem	Description
Library file name	OmronLib_DIM_Measurement_V1_0.slr
Namespace	OmronLib\DIM_Measurement
Function block and function number	00149
Publish/Do not publish source code	Not published.
Function block and function version	1.00

Compatible Models

Refer to Compatible Models on page 110 in the LineMeasure_Cartesian.

Variable

Input Variables

Variable	Name	Description	Data type	Valid range	Default
Execute	Execute	Executes the function block when the value is changed to TRUE.	BOOL	TRUE or FALSE	FALSE
Calibration ^{*1}	Correction Method	 0: Correction is performed based on the correction parameter and input reference data. (during target measure- ment) 1: Correction is performed based on the correction parameter. (during one-shot measurement) 	USINT	0 to 1	0
SlopeParams *1	Slope Correc- tion Parameter	Set the slope correction parameter.	sSlopePa- rams	-	-
HeightParams *1	Height Correc- tion Parameter	Set the height correction parameter.	sHeight- Params	_	—
Position Params ^{*1}	Position Cor- rection Param- eter	Set the position correction parameter.	sPosition- Params	_	_
SmoothingFlt Num ^{*1}	Number of Smoothing	0: No smoothing is performed 1: Travel averaging is per- formed twice 2: Travel averaging is per- formed 4 times 3: Travel averaging is per- formed 8 times 4: Travel averaging is per- formed 16 times 5: Travel averaging is per- formed 32 times 6: Travel averaging is per- formed 64 times 7: Travel averaging is per- formed 128 times 8: Travel averaging is per- formed 256 times	USINT	0 to 8	0
MedianFltNum *1	Median Range	0: No median processing is performed 1: Median Range is 3 2: Median Range is 5 3: Median Range is 7 4: Median Range is 9 5: Median Range is 15 6: Median Range is 31	USINT	0 to 6	0

Variable	Name	Description	Data type	Valid range	Default
InputBasic	Input Refer-	Set the value that is output by	sBasicData	—	—
Data ^{*1}	ence Data	LineMeasure_Create-			
		Shape2D_Master.			
NumProcData ^{*1}	Number of	Specify the number of data	UINT	Depends on	100
	Processed	points that are processed in a		data type.	
	Data Points	task period in the segmented			
		processing.			
Abort	Abort	Aborts the function block exe-	BOOL	TRUE or FALSE	FALSE
		cution.			

*1. When the function block is executed, the parameter is copied internally. Therefore, any parameter change made during execution is not reflected in processing.

To change the parameter, you need to re-execute the function block.

Output Variables

Variable	Name	Description	Data type	Valid range	Default
Done	Done	TRUE when the function block execution is completed.	BOOL	TRUE or FALSE	-
Busy	Executing	Changes to TRUE when the function block is acknowl- edged.	BOOL	TRUE or FALSE	_
Command Aborted	Interruption Completion	TRUE when the function block execution is aborted.	BOOL	TRUE or FALSE	_
Error	Error	TRUE while there is an error.	BOOL	TRUE or FALSE	_
ErrorID	Error Code	Outputs the error code when an error occurs.	WORD	*1	_
ErrorIDEx	Expansion Error Code	Outputs the expansion error code when an error occurs.	DWORD	*1	_

*1. Refer to Troubleshooting on page 180.

In-Out Variables

Variable	Name	Description	Data type	Valid range
LineMeasurement Data	Line measure- ment data	Set the line measurement data output by LineMeasure_Carte- sian.	sLineMeasurementData	_
Shape2D	2D Shape Data	Stores the 2D shape data after correction is performed.	sShape2D	—

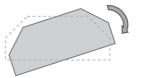
Structure

Refer to the Structure for LineMeasure_CreateShape2D_Master on page 153.

Function

The LineMeasure_CreateShape2D function block provides the following functions.

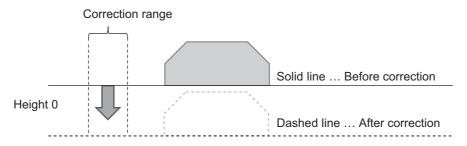
(a) Conversion from the line measurement data to the 2D shape data


Refer to Conversion from the line measurement data to the 2D shape data on page 159.

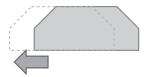
(b) Measurement Correction

When Correction Method (*Calibration*) is set to 0, correction is performed based on the reference point data so that the target data has the same slope, height and position as the master 2D shape data as shown in a), b) and c) below.

a) Slope Correction


The function block corrects angular deviation caused by factors such as a difference in angle between master and target workpieces when they are measured.

Solid line ... Target 2D shape data Dashed line ... Master 2D shape data


b) Height Correction

The function block corrects the height of the measurement surface within the correction range so that it becomes 0.

c) Position Correction

The function block corrects deviation caused by factors such as a difference in position between the master and target when they are measured.

Solid line ... Before correction, dashed line ... After correction

By using this function, deviation caused by differences in the measurement environment is corrected and you can compare the difference in shape between the master and target. If Correction Method is set to 1, correction is performed according to *Measurement Correction* on page 159. (c) Filtering

Refer to Filtering on page 159.

The following describes an overview of the entire processing.

a) The function block checks the input parameters when *Execute* changes to TRUE.

Only the parameters that are required for correction are checked.

If there is no error in the input data, the line measurement data that is input

(*LineMeasurementData*) is corrected and filtered according to the correction and filtering settings and converted to the 2D shape data (*Shape2D*).

If an error is detected in the input parameters, the function block execution is aborted.

For details on the error codes, refer to *Troubleshooting* on page 180.

- b) If there is no recorded data (*LineMeasurementData.DataCount* = 0), the function block execution ends without performing any operation.
 The 2D shape data is not created.
- c) The unit for the measurement data is always "mm".
- d) According to the parameter setting, correction, filtering and data structure conversion are performed, and the 2D shape data are created.

The details on each function are described in the following sections.

- e) When you specify 0 for Correction Method (*Calibration*), assign the members of the master 2D shape data to the following input variables.
 - SlopeParams
 - HeightParams
 - PositionParams
 - SmoothingFltNum
 - MedianFltNum
 - InputBasicData
- f) The following shows whether the input variable needs to be set or not when you specify 1 for Correction Method (*Calibration*).
 - SlopeParams

Required only for slope correction

- HeightParams
 Required
- PositionParams
- Not Required
- SmoothingFltNum Required
- MedianFltNum
 - Required
- InputBasicData
 - Not Required
- g) This function block corrects and converts a maximum of 20,000 measurement data points. So, it requires a considerable time to complete processing.

If this function block exclusively uses a long processing time, other processing may not be executed or a Task Period Exceeded error may occur. To avoid this, you need to set the number of processed data points (*NumProcData*) per period.

The function block performs correction and conversion for a specified number of data points within a period. In the next period, the processing is resumed where it was interrupted.

If you increase the number of processed data points, the time until completion can be reduced. However, doing so increases the processing time per period.

If you decrease the number of processed data points, the processing time per period can be reduced. However, doing so increases the time until completion.

When you decide the number of processed data points, consider the execution environment, unused time in the task period available when correction is executed, and other factors.

If the number of processed data points is set to 0, the function block execution does not end until all correction and conversion are completed.

If this function block is assigned to the event task, the number of processed data points is ignored and the function block execution also does not end until all correction and conversion are completed.

 h) If Abort is changed to TRUE, CommandAborted changes to TRUE and the function block execution is aborted.

Note that the execution is completed if all correction processing is finished in the period at which *Abort* changes to TRUE.

If *Execute* and *Abort* change to TRUE at the same time, no operation is performed and *CommandAborted* changes to TRUE.

i) If an error occurs, *Error* changes to TRUE and the function block execution is aborted. In addition, the error codes are output to *ErrorID* and *ErrorIDEx*.

For details on the error codes, refer to *Troubleshooting* on page 180.

j) If the function block is aborted or ended in an error, the line master 2D shape data may be undefined.

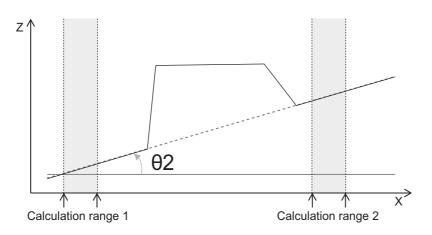
Conversion to 2D Shape Data

This function is the same as LineMeasure_CreateShape2D_Master.

Refer to Conversion to 2D Shape Data on page 161.

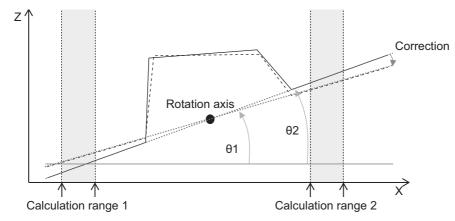
Slope Correction

When slope correction is selected (*sSlopeParams.Apply* = TRUE), the correction procedure is performed as follows.


If 1 is specified for Correction Method (*Calibration*), the performed function is the same as LineMeasure_CreateShape2D_Master.

Refer to Slope Correction on page 162.

The following description applies to Correction Method (*Calibration*) set to 0.


- (a) Assign the reference point data (*sShapeMasterData.BasicData*) of the master 2D shape data output by LineMeasure_CreateShape2D_Master to the Input Reference Data (*InputBasicData*) input variable. The reference angle (*BasicData.Angle*) in Input Reference Data is expressed as θ1.
- (b) When the slope of the measured object (θ2) is calculated, the straight line is created from all Z values included in Straight Line Calculation Range 1 (*sSlopeParams.Range1Low* to *sSlopeParams.Range1High*) and Straight Line Calculation Range 2 (*sSlopeParams.Range2Low* to *sSlopeParams.Range2High*).

If one or more array elements are not found in each range, a correction-impossible error occurs.

(c) If the slope $\theta 2$ of the measured object is different from the angle $\theta 1$ of the reference point data, the entire measurement data is rotated so that these angles can be the same.

The rotation axis is placed at the midpoint between Range1High and Range2Low.

Height Correction

This function is the same as LineMeasure_CreateShape2D_Master. Refer to *Height Correction* on page 163.

Position Correction

If Correction Method (Calibration) is set to 1, position correction is not performed.

Refer to Slope Correction on page 162.

The following description applies to Correction Method (Calibration) set to 0.

- (a) Assign the reference point data (*sShapeMasterData.BasicData*) of the master 2D shape data output by LineMeasure_CreateShape2D_Master to the Input Reference Data (*InputBasicData*) input variable.
- (b) The procedure to detect Edge Detection Index is the same as the reference point data output function of LineMeasure_CreateShape2D_Master.

Refer to the description of *Edge Detection Index* on page 164 in the *Reference Point Data Output* on page 164.

Smoothing Filter

This function is the same as LineMeasure_CreateShape2D_Master.

Refer to Smoothing Filter on page 163.

Median Filter (X direction)

This function is the same as LineMeasure_CreateShape2D_Master.

Refer to Median Filter (X direction) on page 163.

Re-execution of Function Blocks

If you change *Execute* to TRUE when execution is in progress (*Busy* = TRUE), the calculation in progress is aborted and the correction calculation is restarted with new parameters.

Multi-execution of Function Blocks

It is allowed to generate multiple instances from this function block and to execute multiple correction calculations simultaneously.

However, you must set different variables for each instance when you assign them to the 2D shape data.

Timing Charts

Refer to Timing Charts on page 166 for LineMeasure_CreateShape2D.

Precautions for Correct Use

- Execute this function block only after the line measurement function block (LineMeasure_Cartesian) is completed normally. If the line measurement function block is aborted or ended in an error, the line measurement data is undefined. If you execute this function block with undefined line measurement data, the master 2D shape data cannot be created correctly.
- If *Calibration* = 0, execute this function block using the master 2D shape data as the input variables after the master 2D shape data creation function block (LineMeasure_CreateShap2D_Master) is ended normally. If the master 2D shape data creation function block is aborted or ended in an error, the master 2D shape data may be undefined, and the 2D shape data may not be created correctly.
- Before executing this function block, carefully read the manuals for devices to use and ensure the safety for use.

Troubleshooting

Error code	Expansion error code	Description	Corrective action
0x3CD8	0x0000 0001	Number of Recorded Data (<i>LineMeasurementData.</i> <i>DataCount</i>) was set to a value that exceeds the maximum number of stored measurement data.	Set a valid number of stored data.
	0x0000 0002	Resolution (<i>LineMeasurement-</i> Data.Resolution) was set to 0.	Correct the input data.
	0x0000 0003	The X values of the measurement data that was input is not stored in ascending order.	Correct the input data.
	0x0000 0004	A reference point (slope) exceed- ing the valid range was detected from the measurement data that was input.	Correct the input data and slope correction set- ting.
	0x0000 0005	Slope correction was executed based on the reference angle detected from the measurement data that was input and Reference Angle (<i>SlopeParams.Angle</i>) in the slope correction setting. As the result, the valid range was exceeded.	Correct the input data and slope correction set- ting.
	0x0000 0006	The reference point (edge detec- tion position) was not detected from the measurement data that was input.	Correct the input data and position correction setting.
	0x0000 0007	The value specified for Number of Smoothing (<i>SmoothingFltNum</i>) is out of the valid range.	Specify a value which is within the valid range.
	0x0000 0008	The value specified for Median Range (<i>MedianFltNum</i>) is out of the valid range.	Specify a value which is within the valid range.
	0x0000 0009	The value specified for Correction Method (<i>Calibration</i>) is out of the valid range.	Specify a value which is within the valid range.
	0x0000 0010	Slope Correction Parameter The value specified for Reference Angle (<i>Angle</i>) is out of the valid range.	Specify a value which is within the valid range.
	0x0000 0011	Slope Correction Parameter The value specified for Straight Line Calculation Range 1 Upper Limit (<i>Range1High</i>) is out of the valid range.	Specify a value which is within the valid range.
	0x0000 0012	Slope Correction Parameter The value specified for Straight Line Calculation Range 1 Lower Limit (<i>Range1Low</i>) is out of the valid range.	Specify a value which is within the valid range.

Error code	Expansion error code	Description	Corrective action
0x3CD8	0x0000 0013	Slope Correction Parameter	Specify a value which is within the valid range.
		The value specified for Straight Line Calculation Range 2 Upper Limit (<i>Range1High</i>) is out of the valid range.	
	0x0000 0014	Slope Correction Parameter	Specify a value which is within the valid range.
		The value specified for Straight Line Calculation Range 2 Lower Limit (<i>Range2Low</i>) is out of the valid range.	
	0x0000 0015	Slope Correction Parameter	Specify values that can meet the following con-
		The values specified for Straight Line Calculation Range 1 (<i>Range1Low</i> and <i>Range1High</i>) has met the following condition: lower limit ≥ upper limit.	dition: lower limit < upper limit.
	0x0000 0016	Slope Correction Parameter	Specify values that can meet the following con-
		The values specified for Straight Line Calculation Range 2 (<i>Range2Low</i> and <i>Range2High</i>) has met the following condition: lower limit ≥ upper limit.	dition: lower limit < upper limit.
	0x0000 0017	Slope Correction Parameter	Specify values that can meet the following con-
		The values specified for Straight Line Calculation Range 1 and 2 have met the following condition: Range1High \geq Range2Low.	dition: <i>Range1High < Range2Low</i> .
	0x0000 0018	Slope Correction Parameter	Set Straight Line Calculation Range 1 to values
		There is no measurement data that corresponds to the Straight Line Calculation Range 1.	that include the measurement data.
	0x0000 0019	Slope Correction Parameter	Set Straight Line Calculation Range 2 to values
		There is no measurement data that corresponds to the Straight Line Calculation Range 2.	that include the measurement data.
	0x0000 0020	Height Correction Parameter	Specify a value which is within the valid range.
		The value specified for Height Cal- culation Range Upper Limit (<i>RangeHigh</i>) is out of the valid range.	
	0x0000 0021	Height Correction Parameter	Specify a value which is within the valid range.
		The value specified for Height Cal- culation Range Lower Limit (<i>RangeLow</i>) is out of the valid range.	
	0x0000 0022	Height Correction Parameter	Specify values that can meet the following con-
		The values specified for Height Calculation Range (<i>RangeLow</i> and <i>RangeHigh</i>) has met the following condition: lower limit ≥ upper limit.	dition: lower limit < upper limit.
	0x0000 0023	Height Correction Parameter	Specify a value which is within the valid range.
		The value specified for Height Type (<i>HeightType</i>) is out of the valid range.	

Error code	Expansion error code	Description	Corrective action
0x3CD8	0x0000 0024	Height Correction Parameter There is no measurement data that corresponds to the Height Calcula- tion Range.	Set Height Calculation Range to values that include the measurement data.
	0x0000 0030	Position Correction Parameter The value specified for Edge Height (<i>EdgeHeight</i>) is out of the valid range.	Specify a value which is within the valid range.
	0x0000 0031	Position Correction Parameter The value specified for Number of Edge Detection (<i>EdgeNumber</i>) is out of the valid range.	Specify a value which is within the valid range.
	0x0000 0040	Input Reference Data The value specified for Angle (<i>Angle</i>) is out of the valid range.	Specify a value which is within the valid range.
	0x0000 0041	Input Reference Data The value specified for Edge Detection Index (<i>EdgeIndex</i>) is out of the valid range.	Specify a value which is within the valid range.

Sample Programming

Refer to Sample Programming on page 145 for LineMeasure_Cartesian.

Shape2D_Height

The Shape2D_Height function block measures heights in a specified measurement range of the 2D shape data.

Function block name	Name	FB/ FUN	Graphic expression		ST expression
Shape2D_Height	2D Shape	FB			Shape2D_Height_Instance
	Height		Shape2D_Height_Instance \\OmronLib\DIM Measurement\Shape2D Height	1	(Execute,
	Measure- ment			\vdash	Shape2D,
	mont		—Shape2D Shape2D	\vdash	RangeHigh,
			RangeHigh CalcRsltMean	\vdash	RangeLow,
			-RangeLow MaxHeight	\vdash	ThresholdHigh,
			-ThresholdHigh MaxHeightPos	\vdash	ThresholdLow,
			-ThresholdLow MinHeight	\vdash	NumProcData,
			-NumProcData MinHeightPos	\vdash	Abort,
			Abort ChkRsltMax	\vdash	Done,
			ChkRsltMin	–	CalcRsltMean,
			Busy	–	MaxHeight,
			CommandAborted	–	MaxHeightPos,
			Error	<u> </u>	MinHeight,
			ErrorID	\vdash	MinHeightPos,
			ErrorIDEx	<u> </u>	ChkRsltMax,
					ChkRsltMin,
					Busy,
					CommandAborted,
					Error,
					ErrorID,
					ErrorIDEx)

Function Block and Function Information

Item	Description
Library file name	OmronLib_DIM_Measurement_V1_0.slr
Namespace	OmronLib\DIM_Measurement
Function block and function number	00141
Publish/Do not publish source code	Not published.
Function block and function version	1.00

Compatible Models

Item	Product name	Model numbers	Version	
Device	Confocal Fiber Displacement Sensor Controller	ZW-7000	-	
	Confocal Fiber Displacement Sensor Head	ZW-000	-	

Variables

Input Variables

Variable	Name	Description	Data type	Valid range	Default
Execute	Execute	Executes the function block when the value is changed to TRUE.	BOOL	TRUE or FALSE	FALSE
RangeHigh ^{*1}	Measurement Range Upper Limit	Specify the upper limit of the X-axis measurement range that is used for height measurement. The unit is mm.	LREAL	Negative num- ber, positive number, or 0	0
RangeLow ^{*1}	Measurement Range Lower Limit	Specify the lower limit of the X-axis measurement range that is used for height mea- surement. The unit is mm.	LREAL	Negative num- ber, positive number, or 0	0
ThresholdHigh ^{*1}	Threshold (High)	These thresholds are used to determine whether a measure- ment result is within the range.	LREAL	Negative num- ber, positive number, or 0	0
ThresholdLow ^{*1}	Threshold (Low)	The unit is mm. Specify values always as: Threshold (High) ≥ Threshold (Low).	LREAL	Negative num- ber, positive number, or 0	0
NumProcData *1	Number of Processed Data Points	Specify the number of data points that are processed in a task period in the segmented processing.	UINT	Depends on data type.	100
Abort	Abort	Aborts the function block exe- cution.	BOOL	TRUE or FALSE	FALSE

*1. When the function block is executed, the parameter is copied internally. Therefore, any parameter change made during execution is not reflected in processing.

To change the parameter, you need to re-execute the function block.

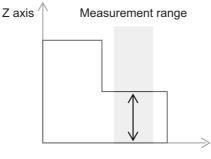
Output Variables

Variable	Name	Description	Data type	Valid range	Default
Done	Done	TRUE when the function block execution is completed.	BOOL	TRUE or FALSE	—
CalcRsltMean	Measurement	Outputs the mean value of	LREAL	Depends on	_
	Result Mean	heights in the measurement		data type.	
	Value	range. The unit is mm.			
MaxHeight	Maximum	Outputs the maximum height	LREAL	Depends on	_
	Height	in the measurement range.		data type.	
		The unit is mm.			
MaxHeightPos	Maximum	Outputs the position of the	LREAL	Depends on	_
	Height Posi-	maximum height in the mea-		data type.	
	tion	surement range. The unit is			
		mm.			
MinHeight	Minimum	Outputs the minimum height in	LREAL	Depends on	_
U	Height	the measurement range. The		data type.	
		unit is mm.			
MinHeightPos	Minimum	Outputs the position of the	LREAL	Depends on	_
C C	Height Posi-	minimum height in the mea-		data type.	
	tion	surement range. The unit is			
		mm.			
ChkRsltMax	Maximum	TRUE when Maximum Height	BOOL	TRUE or FALSE	—
	Value Judg-	is equal to or less than Thresh-			
	ment Result	old (High).			
ChkRsltMin	Minimum	TRUE when Minimum Height	BOOL	TRUE or FALSE	—
	Value Judg-	is equal to or greater than			
	ment Result	Threshold (Low).			
Busy	Measuring	TRUE when the measurement	BOOL	TRUE or FALSE	—
	_	is in progress.			
Command	Interruption	TRUE when the function block	BOOL	TRUE or FALSE	—
Aborted	Completion	execution is aborted.			
Error	Error	TRUE while there is an error.	BOOL	TRUE or FALSE	—
ErrorID	Error Code	Outputs the error code when	WORD	*1	—
		an error occurs.			
ErrorIDEx	Expansion	Outputs the expansion error	DWORD	*1	—
	Error Code	code when an error occurs.			

*1. Refer to Troubleshooting on page 192.

In-Out Variables

Variable	Name	Description	Data type	Valid range
Shape2D	2D Shape Data	Specify the 2D shape data. Refer to <i>LineMeasure_Cartesian</i> on page 109 for 2D shape data cre- ation and correction.	sShape2D	_


Members of Structure sShape2D

Member	Name	Data type	Valid range	Description
DataCount	Number of Data Points	UINT	0 to 20,000	The number of data points are stored.
Resolution	Resolution	UINT	Positive number	The resolution in X direction ^{*1} The unit is μ m.
ZValue	Z Measurement Data	ARRAY[01 9999] OF LREAL	Depends on data type.	The X-direction values of 2D shape data are stored. The unit is mm.

*1. Use the following expression to find the position of *sShape2D.ZValue[m]*. Position[m] = UINT_TO_LREAL((m-1) * *sShape2D.Resolution*) / LREAL#1000

Function

The Shape2D_Height function block measures heights in a specified measurement range of the 2D shape data.

X axis

- (a) The function block checks the input parameters when *Execute* changes to TRUE. If there is no error in the input data, *Busy* (Measuring) changes to TRUE. If there is an error, the function block execution is aborted and the error codes are output to *ErrorID* and *ErrorIDEx*. For details on the error codes, refer to *Troubleshooting* on page 192.
- (b) The measurement range must be specified so that it contains at least one measurement data (Shape.Zvalue[X]).

If X does not meet the following condition, an error occurs.

RangeLow ≤((Shape2D.Resolution * (X-1)) / LREAL#1000) ≤ RangeHigh

X can take any value between 1 and Shape2D.DataCount.

- (c) The function block outputs *CalcRsltMean* that contains the mean value of heights in the measurement range of the specified 2D shape data.
- (d) The function block outputs MaxHeight and MaxHeightPos that contain the maximum height in the measurement range of the specified 2D shape data and the X position at which the maximum height was detected. In the same way, the function block outputs MinHeight and MinHeightPos that contain the minimum height and the X position at which the minimum height was detected.
- (e) If MaxHeight exceeds Threshold (High), FALSE is output to ChkRsltMax. In the following cases, TRUE is output to ChkRsltMax. If MinHeight is smaller than Threshold (Low), FALSE is output to ChkRsltMin. In the following cases, TRUE is output to ChkRsltMin.
- (f) This function block may cause a Task Period Exceeded error because it calculates the feature amount using a maximum of 20,000 2D shape data points.

To avoid this, you need to set the number of processed data points (*NumProcData*) per period. If you increase the number of processed data points, the time until completion can be reduced. However, doing so increases the processing time per period.

If you decrease the number of processed data points, the processing time per period can be reduced. However, doing so increases the time until completion.

When you decide the number of processed data points, take into account the execution environment, unused time in the task period available when correction is executed, and other factors.

If the number of processed data points is set to 0, the function block execution does not end until all correction and conversion are completed.

If this function block is assigned to the event task, the number of processed data points is ignored and the function block execution also does not end until all correction and conversion are completed.

(g) If *Abort* is changed to TRUE, *CommandAborted* changes to TRUE and the function block execution is aborted.

If *Execute* and *Abort* change to TRUE at the same time, no operation is performed and *CommandAborted* changes to TRUE.

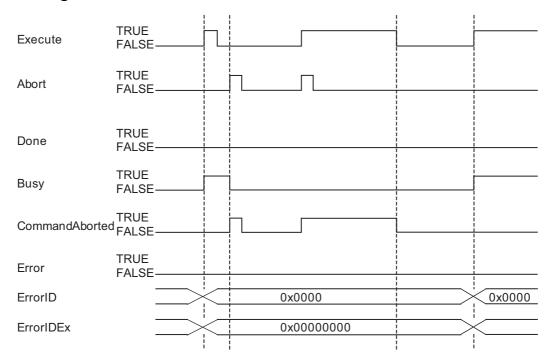
(h) If an error occurs during the function block execution, *Error* changes to TRUE and the function block execution is aborted. For details on the error codes, refer to *Troubleshooting* on page 192.

Additional Information

The time required to execute this function block varies depending on the measurement range, resolution of the 2D shape data, or other factors that determine the amount of processed data.

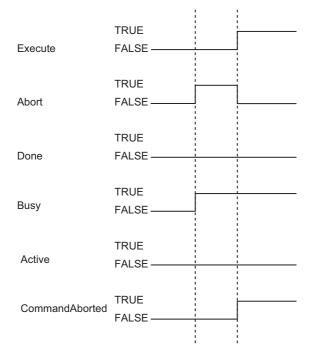
Re-execution of Function Blocks

If *Execute* is changed to TRUE again while execution is in progress (*Busy* = TRUE), the execution is aborted and the processing is performed from the beginning.


Timing Charts

The timing charts are shown below.

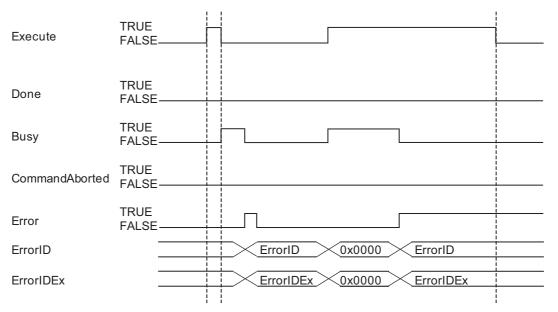
• Timing Chart in a Normal State


The values output to MaxHeight, MaxHeightPos, MinHeight, MinHeightPos, ChkRsltMax, and *ChkRsltMin* are retained until the next execution.

Execute	TRUE FALSE	Π			
Done	TRUE FALSE				
Busy	TRUE FALSE		1		
CalcRsltMean	\supset	0.0	Processing result	0.0	Processing result
MaxHeight,MaxHeight	Pos 🔿	0.0	Measurement result	0.0	Measurement result
MinHeight, MinHeightP	Pos 🔿	0.0	Measurement result	0.0	Measurement result
ChkRsltMax	TRUE FALSE				
ChkRsltMin	TRUE FALSE	1 1 1 1 1 1			
CommandAborted	TRUE FALSE	 			
Error	TRUE FALSE	 			1 1 1 1 1
ErrorID	\supset		0x0000		
ErrorIDEx	\supset		0x00000000		

• Timing Chart When the Function Block Is Aborted

If *Execute* changes to TRUE while *Abort* is TRUE, *CommandAborted* (Interruption Completion) changes to TRUE without performing the processing.


• Timing Chart When an Error Occurs (Startup Error)

If a setting value error is detected for the threshold or measurement range when the function block is executed, a startup error occurs. *Error* changes to TRUE and the values are output to *ErrorID* (Error Code) and *ErrorIDEx* (Expansion Error Code). When *Execute* changes to FALSE, *Error* changes to FALSE accordingly. However, *ErrorID* and *ErrorIDEx* retain the values until the next function block is executed.

• Timing Chart When an Error Occurs (Error during Function Block Execution)

If an error is detected for the 2D shape data during function block execution, *Busy* changes to FALSE, *Error* changes to TRUE, and the values are output to *ErrorID* (Error Code) and *ErrorIDEx* (Expansion Error Code). When *Execute* changes to FALSE, *Error* changes to FALSE accordingly. However, *ErrorID* and *ErrorIDEx* retain the values until the next function block is executed.

Precautions for Correct Use

Before executing this function block, carefully read the manuals for devices to use and ensure the safety for use.

Troubleshooting

Error code	Expansion error code	Description	Corrective action
0x3CD0	0x0000 0001	The value of Measurement Range Upper Limit is not valid.	Set a valid real number.
	0x0000 0002	The value of Measurement Range Lower Limit is not valid.	Set a valid real number.
	0x0000 0003	A value specified for the measure- ment range is not valid.	Specify values that can meet the following con- dition: Measurement Range Upper Limit ≥ Measurement Range Lower Limit.
	0x0000 0004	The value of Threshold (High) is not valid.	Set a valid real number.
	0x0000 0005	The value of Threshold (Low) is not valid.	Set a valid real number.
	0x0000 0006	Threshold (High) is smaller than Threshold (Low).	Specify values so that Threshold (High) is equal to or greater than Threshold (Low).
	0x0000 0007	There is no 2D shape data in the measurement range.	Set the measurement range or 2D shape data again.
	0x0000 0008	The number of data points (<i>DataCount</i>) of the 2D shape data is not valid.	Check whether the 2D shape data is created correctly.
	0x0000 0009	The resolution (<i>Resolution</i>) of the 2D shape data is not valid.	Check whether the 2D shape data is created correctly.

Sample Programming

Program Description

This program calculates the maximum and minimum height differences in the specified measurement range of the master and target 2D shape data. The program also determines whether the target measurement result is within the specified threshold range or not.

Main Variables

Name	Meaning	Data type	Default	Description
Height_Master	2D Shape Height Mea- surement FB	Omron- Lib\DIM_M easure- ment\Shap e2D_Heigh		Instance of the function block that measures the height of the master 2D shape data.
DIMStart_Feature ValueHeight	Execution Trigger	t BOOL		2D shape height measurement is started when this variable changes to TRUE. Assign this variable to the <i>Execute</i> input variable of Shape2D_Height.
DIMShape2D_Master	Master 2D Shape Data	Omron- Lib\DIM_M easure- ment\sSha pe2D		Set the master 2D shape data. Assign this variable to the <i>Shape2D</i> input variable of Shape2D_Height.
DIMHeight_Range High1	Measure- ment Range Upper Limit	LREAL		Specify the upper limit of the X-axis mea- surement range that is used for height mea- surement. The unit is mm. Assign this variable to the <i>RangeHigh</i> input variable of Shape2D_Height.
DIMHeight_Range Low1	Measure- ment Range Lower Limit	LREAL		Specify the lower limit of the X-axis measure- ment range that is used for height measure- ment. The unit is mm. Assign this variable to the <i>RangeLow</i> input variable of Shape2D_Height.
DIMHeight _ThresholdHigh1	Threshold (High)	LREAL		Set the threshold range. The unit is mm. Assign this variable to the <i>ThresholdHigh</i> input variable of Shape2D_Height.
DIMHeight _ThresholdLow1	Threshold (Low)	LREAL		Set the threshold range. The unit is mm. Assign this variable to the <i>ThresholdLow</i> input variable of Shape2D_Height.
Height_NumProc Data1	Number of Processed Data Points	UINT		Set the number of data points that are pro- cessed in a task period during segmented processing. Assign this variable to the <i>Num-</i> <i>ProcData</i> input variable of Shape2D_Height.
Height_Abort1	Abort	BOOL		Aborts the processing. Assign this variable to the <i>Abort</i> input variable of Shape2D Height.
Height_Done1	Done	BOOL		TRUE when the function block execution is completed. Assign this variable to the <i>Done</i> output variable of Shape2D_Height.

Name	Meaning	Data type	Default	Description
Height_CalcRslt Mean1	Measure- ment Result Mean Value	LREAL		Outputs the mean value of heights in the measurement range. The unit is mm. Assign this variable to the <i>CalcRsltMean</i> output variable of Shape2D_Height.
Height_MaxHeight1	Maximum Height	LREAL		Outputs the maximum height within the mea- surement range of the master 2D shape data. The unit is mm. Assign this variable to the <i>MaxHeight</i> output variable of Shape2D_Height.
Height_MaxHeight Pos1	Maximum Height Posi- tion	LREAL		Outputs the position of the maximum height within the measurement range of the master 2D shape data. The unit is mm. Assign this variable to the <i>MaxHeightPos</i> output variable of Shape2D_Height.
Height_MinHeight1	Minimum Height	LREAL		Outputs the minimum height within the mea- surement range of the master 2D shape data. The unit is mm. Assign this variable to the <i>MinHeight</i> output variable of Shape2D_Height.
Height_MinHeight Pos1	Minimum Height Posi- tion	LREAL		Outputs the position of the minimum height within the measurement range of the master 2D shape data. The unit is mm. Assign this variable to the <i>MinHeightPos</i> output variable of Shape2D_Height.
Height_Target	2D Shape Height Mea- surement FB	Omron- Lib\DIM_M easure- ment\Shap e2D_Heigh t		Instance of the function block that measures the height of the target 2D shape data.
DIMShape2D_Target	Target 2D Shape Data	Omron- Lib\DIM_M easure- ment\sSha pe2D		Set the target 2D shape data. Assign this variable to the <i>Shape2D</i> input variable of Shape2D_Height.
DIMHeight_Max Height2	Maximum Height	LREAL		Outputs the maximum height within the mea- surement range of the target 2D shape data. The unit is mm. Assign this variable to the <i>MaxHeight</i> output variable of Shape2D_Height.
DIMHeight_Max HeightPos2	Maximum Height Posi- tion	LREAL		Outputs the position of the maximum height within the measurement range of the target 2D shape data. The unit is mm. Assign this variable to the <i>MaxHeightPos</i> output variable of Shape2D_Height.
DIMHeight_Min Height2	Minimum Height	LREAL		Outputs the minimum height within the mea- surement range of the target 2D shape data. The unit is mm. Assign this variable to the <i>MinHeight</i> output variable of Shape2D_Height.
DIMHeight_Min HeightPos2	Minimum Height Posi- tion	LREAL		Outputs the position of the minimum height within the measurement range of the target 2D shape data. The unit is mm. Assign this variable to the <i>MinHeightPos</i> output variable of Shape2D_Height.

Name	Meaning	Data type	Default	Description
Height_ChkRsltMax2	Maximum	BOOL		TRUE when Maximum Height is equal to or
	Value Judg-			less than Threshold (High). Assign this vari-
	ment Result			able to the ChkRsltMax output variable of
				Shape2D_Height.
Height_ChkRsltMin2	Minimum	BOOL		TRUE when Minimum Height is equal to or
	Value Judg-			greater than Threshold (Low). Assign this
	ment Result			variable to the ChkRsltMin output variable of
				Shape2D_Height.
DIMHeight_DiffMax	Maximum	LREAL		Outputs the maximum height differences that
	Height Differ-			are measured from the master and target 2D
	ence			shape data.
DIMHeight_DiffMin	Minimum	LREAL		Outputs the minimum height differences that
	Height Differ-			are measured from the master and target 2D
	ence			shape data.

Ladder Diagram

			leight_Master		
DIMStart_FeatureValu…		\\OmronLib\DIM_N Execute	/leasurement\Shape2D_Height Done		Height_Done1
1 1	DIMShape2D Master		Shape2D	—DIMShape2D Master	\bigcirc
	DIMHeight_RangeHigh1—			-Height_CalcRsltMean1	
	DIMHeight_RangeLow1-			-DIMHeight_MaxHeight1	
	DIMHeight_Threshold···-				
		_		-Height_MaxHeightPos1	
	DIMHeight_Threshold…—			— DIMHeight_MinHeight1	
	Height_NumProcData1—			—Height_MinHeightPos1	
	Height_Abort1—	Abort		— Height_ChkRsltMax1	
			ChkRsltMin	— Height_ChkRsltMin1	
			Busy	— Height_Busy1	
			CommandAborted	— Height_CommandAbo…	
			Error	—Height_Error1	
			ErrorID	—Height_ErrorID1	
			ErrorIDEx	—Height_ErrorIDEx1	
		Н	leight_Target	1	
DIMStart_FeatureValu…			/easurement\Shape2D_Height Done		Height_Done2
	DIMShape2D_Target—			— DIMShape2D_Target	0
	DIMHeight_RangeHigh1-			-Height_CalcRsItMean2	
	DIMHeight_RangeLow1-			— DIMHeight_MaxHeight2	
	DIMHeight_Threshold			— Height_MaxHeightPos2	
	DIMHeight_Threshold			—DIMHeight_MinHeight2	
	Height_NumProcData2—	NumProcData	MinHeightPos	— Height_MinHeightPos2	
	Height_Abort2—	Abort	ChkRsitMax	— Height_ChkRsltMax2	
			ChkRsltMin	— Height_ChkRsltMin2	
			Busy	— Height_Busy2	
			CommandAborted	— Height_CommandAbo…	
			Error	—Height_Error2	
			ErrorID	—Height_ErrorID2	
			ErrorIDEx	—Height_ErrorIDEx2	
Height_Done1	Height_Complete			Height_C	omplete1
				(
Height_Complete1					
Height_Done2	Height_Complete			Height_C	omplete?
				(
Height_Complete2					
Height_Complete1	Height_Complete2			Height_C	omplete
				(
Height_Complete		-			
		EN	ENO		
	DIMHeight_MaxHeigh		— DIMHeight_DiffM	lax	
	DIMHeight_MaxHeigh	nt2—In2			
		EN -	ENO		
	DIMHeight_MinHeigh	nt1—In1	-DIMHeight_DiffM	lin	
	DIMHeight_MinHeigh	nt2—In2			
	Height_ChkRsltMax	2 Height_ChkR	sltMin2	DIMHeigh	t_ChkRslt

ST

```
//Master height calculation
Height_Master(
   Execute:=DIMStart_FeatureValueHeight,
   Shape2D:=DIMShape2D_Master.Shape2D,
   RangeHigh:=DIMHeight_RangeHigh1,
   RangeLow:=DIMHeight RangeLow1,
   ThresholdHigh:=DIMHeight ThresholdHigh1,
   ThresholdLow:=DIMHeight ThresholdLow1,
   NumProcData:=Height NumProcData1,
   Abort:=Height_Abort1,
   Done=>Height_Done1,
   CalcRsltMean=>Height CalcRsltMean1,
   MaxHeight=>DIMHeight_MaxHeight1,
   MaxHeightPos=>Height_MaxHeightPos1,
   MinHeight=>DIMHeight_MinHeight1,
   MinHeightPos=>Height_MinHeightPos1,
   ChkRsltMax=>Height_ChkRsltMax1,
   ChkRsltMin=>Height_ChkRsltMin1,
   Busy=>Height_Busy1,
   CommandAborted=>Height_CommandAborted1,
   Error=>Height Error1,
   ErrorID=>Height_ErrorID1,
   ErrorIDEx=>Height_ErrorIDEx1);
//Target height calculation
Height_Target(
   Execute:=DIMStart_FeatureValueHeight,
   Shape2D:=DIMShape2D_Target,
   RangeHigh:=DIMHeight_RangeHigh1,
   RangeLow:=DIMHeight RangeLow1,
   ThresholdHigh:=DIMHeight ThresholdHigh1,
   ThresholdLow:=DIMHeight ThresholdLow1,
   NumProcData:=Height NumProcData2,
   Abort:=Height Abort2,
   Done=>Height_Done2,
   CalcRsltMean=>Height CalcRsltMean2,
   MaxHeight=>DIMHeight_MaxHeight2,
   MaxHeightPos=>Height_MaxHeightPos2,
   MinHeight=>DIMHeight_MinHeight2,
   MinHeightPos=>Height_MinHeightPos2,
   ChkRsltMax=>Height_ChkRsltMax2,
   ChkRsltMin=>Height_ChkRsltMin2,
   Busy=>Height Busy2,
   CommandAborted=>Height_CommandAborted2,
   Error=>Height Error2,
   ErrorID=>Height ErrorID2,
   ErrorIDEx=>Height_ErrorIDEx2);
//Master height calculation held
IF Height_Done1 = TRUE THEN
   Height_Complete1 := TRUE;
ELSE;
END_IF;
//Target height calculation held
IF Height Done2 = TRUE THEN
   Height_Complete2 := TRUE;
ELSE;
END_IF;
//Height calculation completion processing
```

```
IF Height_Complete1 = TRUE & Height_Complete2 = TRUE THEN
    //Master/target difference calculation
    DIMHeight_DiffMax := DIMHeight_MaxHeight1-DIMHeight_MaxHeight2;
    DIMHeight_DiffMin := DIMHeight_MinHeight1-DIMHeight_MinHeight2;
    //Threshold judgment result flag processing
    IF Height_ChkRsltMax2 = TRUE & Height_ChkRsltMin2 = TRUE THEN
        DIMHeight_ChkRslt :=TRUE;
    ELSE
        DIMHeight_ChkRslt:=FALSE;
    END_IF;
    //Initialize height calculation completion flag
    Height_Complete1 := FALSE;
    ELSE;
    ELSE;
    END_IF;
```

Shape2D_Edge

The Shape2D_Edge function block measures the position (X coordinate) at which a height in the specified measurement range of the 2D shape data passes the edge level.

Function block name	Name	FB/ FUN	Graphic expression	ST expression
Shape2D_Edge	2D Shape Edge Posi- tion Mea- surement	FB	Shape2D_Edge_Instance \\OmronLib\DIM_Measurement\Shape2D_Edge Execute Done Shape2D Shape2D RangeHigh Position RangeLow Busy EdgeLevel CommandAborted Count Error Our Direction Direction ErrorID Abort Abort	Shape2D_Edge_Instance (Execute, Shape2D, RangeHigh, RangeLow, EdgeLevel, EdgeType, Count, Direction, NumProcData, Abort, Done, Position, Busy, CommandAborted, Error, ErrorID, ErrorIDEx)

Function Block and Function Information

Item	Description
Library file name	OmronLib_DIM_Measurement_V1_0.slr
Namespace	OmronLib\DIM_Measurement
Function block and function number	00142
Publish/Do not publish source code	Not published.
Function block and function version	1.00

Compatible Models

Item	Product name	Model numbers	Version
Device	Confocal Fiber Displacement Sensor Controller	ZW-7000	-
	Confocal Fiber Displacement Sensor Head	ZW-□□□	-

Variables

Input Variables

Variable	Name	Description	Data type	Valid range	Default
Execute	Execute	Executes the function block when the value is changed to TRUE.	BOOL	TRUE or FALSE	FALSE
RangeHigh ^{*1}	Measurement Range Upper Limit	Specify the upper limit of the X-axis measurement range that is used for edge detection. The unit is mm.	LREAL	Negative num- ber, positive number, or 0	0
RangeLow ^{*1}	Measurement Range Lower Limit	Specify the lower limit of the X-axis measurement range that is used for edge detection. The unit is mm.	LREAL	Negative num- ber, positive number, or 0	0
EdgeLevel ^{*1}	Edge Level	Set the edge level for height. The unit is mm.	LREAL	Negative num- ber, positive number, or 0	0
EdgeType ^{*1}	Edge Type	TRUE: Rising edge detection FALSE: Falling edge detection	BOOL	TRUE or FALSE	FALSE
Count ^{*1}	Count	Specify what number detected edge after starting measure- ment is output as the mea- surement result.	UINT	Positive number	1
Direction ^{*1}	Measurement Direction	FALSE: Measurement starts from the lower limit to the upper limit of the measure- ment range. TRUE: Measurement starts	BOOL	TRUE or FALSE	FALSE
		from the upper limit to the lower limit of the measurement range.			
NumProcData *1	Number of Processed Data Points	Specify the number of data points that are processed in a task period in the segmented processing.	UINT	Depends on data type.	100
Abort	Abort	Aborts the function block exe- cution.	BOOL	TRUE or FALSE	FALSE

*1. When the function block is executed, the parameter is copied internally. Therefore, any parameter change made during execution is not reflected in processing.

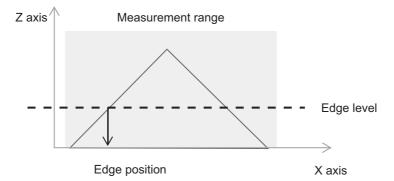
To change the parameter, you need to re-execute the function block.

Output Variables

Variable	Name	Description	Data type	Valid range	Default
Done	Done	TRUE when the function block execution is completed.	BOOL	TRUE or FALSE	_
Position	Position	Outputs the position (X coordi- nate) at which an edge is detected. The unit is mm.	LREAL	Depends on data type.	—
Busy	Measuring	TRUE when the measurement is in progress.	BOOL	TRUE or FALSE	_
Command Aborted	Interruption Completion	TRUE when the function block execution is aborted.	BOOL	TRUE or FALSE	_
Error	Error	TRUE while there is an error.	BOOL	TRUE or FALSE	—
ErrorID	Error Code	Outputs the error code when an error occurs.	WORD	*1	_
ErrorIDEx	Expansion Error Code	Outputs the expansion error code when an error occurs.	DWORD	*1	_

*1. Refer to *Troubleshooting* on page 205.

In-Out Variables


Variable	Name	Description	Data type	Valid range
Shape2D	2D Shape Data	Specify the 2D shape data. Refer to <i>LineMeasure_Cartesian</i> on page 109 for 2D shape data cre- ation and correction.	sShape2D	_

Members of Structure sShape2D

Refer to Members of Structure sShape2D on page 186 of Shape2D_Height.

Function

The Shape2D_Edge function block measures the position (X coordinate) at which a height in the specified measurement range of the 2D shape data passes the edge level.

- (a) The function block checks the input parameters when *Execute* changes to TRUE. If there is no error in the input data, *Busy* (Measuring) changes to TRUE. If there is an error, the function block execution is aborted and the error codes are output to *ErrorID* and *ErrorIDEx*. For details on the error codes, refer to *Troubleshooting* on page 205.
- (b) The measurement range must be specified so that it contains at least one measurement data (Shape.Zvalue[X]).

If X does not meet the following condition, an error occurs.

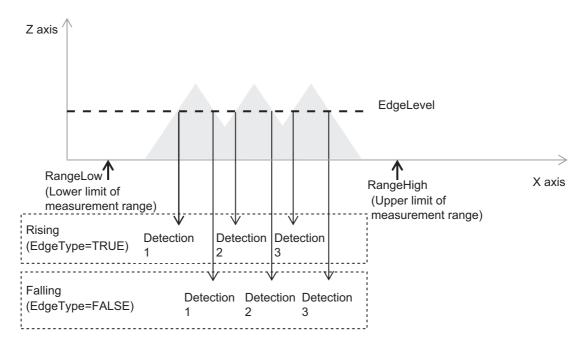
RangeLow ≤(Shape2D.Resolution * (X-1)) / LREAL#1000) ≤ RangeHigh

X can take any value between 1 and Shape2D.DataCount.

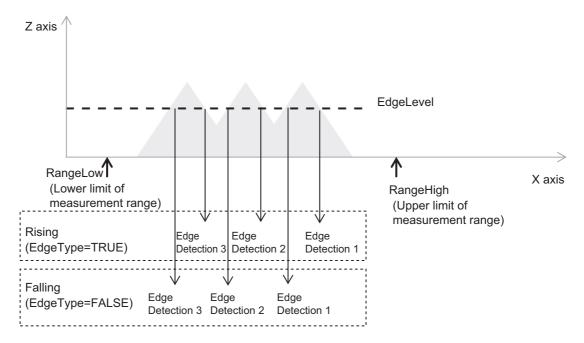
- (c) This function block measures the position at which a height (Z coordinate of the shape data) in the specified measurement range of the 2D shape data passes the edge level. The measured position is output to *Position*. The measurement result differs depending on the settings of Edge Type, Measurement Direction and Edge Count.
 - Edge Type (EdgeType)

Select in which direction (rising or falling) the height passes the edge level.

Measurement Direction (Direction)


Select Measurement Range Lower Limit or Measurement Range Upper Limit to start measurement.

Edge Count (Count)


Specify what number detected edge is output as the measurement result.

The following is an example.

Example 1. When measurement starts from the measurement range lower limit (*Direction* = FALSE), the edge detection positions are as follows depending on Edge Type and Edge Count.

Example 2. When measurement starts from the measurement range upper limit (*Direction* = TRUE), the edge detection positions are as follows depending on Edge Type and Edge Count.

(d) This function block may cause a Task Period Exceeded error because it calculates the feature amount using a maximum of 20,000 2D shape data points.

To avoid this, you need to set the number of processed data points (*NumProcData*) per period. If you increase the number of processed data points, the time until completion can be reduced. However, doing so increases the processing time per period.

If you decrease the number of processed data points, the processing time per period can be reduced. However, doing so increases the time until completion.

When you decide the number of processed data points, take into account the execution environment, unused time in the task period available when correction is executed, and other factors. If the number of processed data points is set to 0, the function block execution does not end until all correction and conversion are completed.

If this function block is assigned to the event task, the number of processed data points is ignored and the function block execution also does not end until all correction and conversion are completed.

(e) If *Abort* is changed to TRUE, *CommandAborted* changes to TRUE and the function block execution is aborted.

If *Execute* and *Abort* change to TRUE at the same time, no operation is performed and *CommandAborted* changes to TRUE.

(f) If an error occurs during the function block execution, *Error* changes to TRUE and the function block execution is aborted. For details on the error codes, refer to *Troubleshooting* on page 205.

Additional Information

The time required to execute this function block varies depending on the measurement range, resolution of the 2D shape data, or other factors that determine the amount of processed data.

Re-execution of Function Blocks

If *Execute* is changed to TRUE again while execution is in progress (*Busy* = TRUE), the execution is aborted and the processing is performed from the beginning.

Timing Charts

The timing charts are shown below.

• Timing Chart in a Normal State

Execute	TRUE FALSE	<u>_</u>			1 1 1 1 1 1 1 1 1	1
Done	TRUE FALSE——			1 1 1 1 1 1 1		1
Busy	TRUE FALSE——	_				
Position			Processing result	× 0.0	Process	ing result
CommandAborted	TRUE FALSE			1 1 1 1 1 1		
Error	TRUE FALSE					
ErrorID		\times	0x0000			
ErrorIDEx			0x00000000	- - - - - - -		

• Timing Chart When the Function Block Is Aborted

Refer to Timing Chart When the Function Block Is Aborted on page 190 of Shape2D_Height.

• Timing Chart When an Error Occurs

Refer to Timing Chart When an Error Occurs (Startup Error) on page 191 of Shape2D_Height.

Precautions for Correct Use

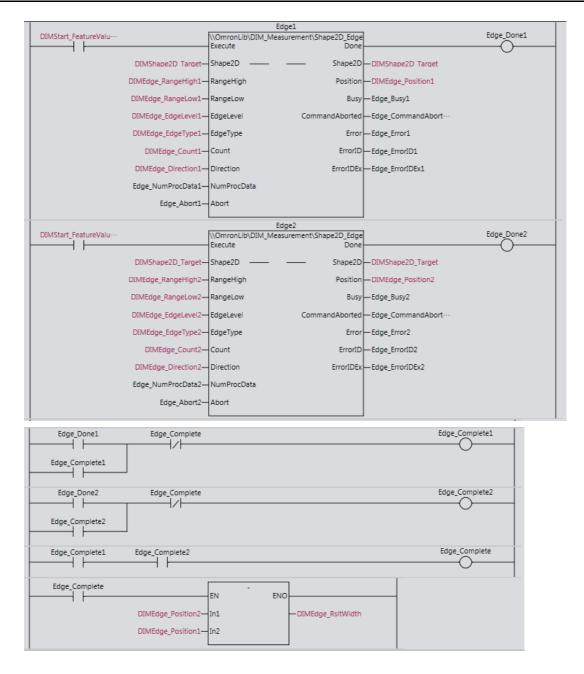
Before executing this function block, carefully read the manuals for devices to use and ensure the safety for use.

Troubleshooting

Error code	Expansion error code	Description	Corrective action
0x3CD1	0x0000 0001	The value of Measurement Range Upper Limit is not valid.	Set a valid real number.
	0x0000 0002	The value of Measurement Range Lower Limit is not valid.	Set a valid real number.
	0x0000 0003	A value specified for the measure- ment range is not valid.	Specify values that can meet the following con- dition: Measurement Range Upper Limit ≥ Measurement Range Lower Limit.
	0x0000 0004	The value of the edge level is not valid.	Set a valid real number.
	0x0000 0005	The value specified for the edge count is not valid.	Specify a positive number for the edge count.
	0x0000 0006	There is no 2D shape data in the measurement range.	Set the measurement range or 2D shape data again.
	0x0000 0007	The edge position was not detected.	Set appropriate values for the edge level and edge count.
	0x0000 0008	The number of data points (<i>DataCount</i>) of the 2D shape data is not valid.	Check whether the 2D shape data is created correctly.
	0x0000 0009	The resolution (<i>Resolution</i>) of the 2D shape data is not valid.	Check whether the 2D shape data is created correctly.

Sample Programming

Program Description


This program detects edges in a specified measurement range of the 2D shape data and calculates distances between edges. The program also determines whether the target measurement result is within the specified threshold range or not.

Main Variables

Name	Meaning	Data type	Default	Description
DIMStart_Feature	Execution	BOOL		2D shape height measurement is started
ValueEdge	Trigger			when this variable changes to TRUE. Assign
				this variable to the <i>Execute</i> input variable of
				Shape2D_Edge.
Edge1(2)	2D Shape	Omron-		Instance of the function block that measures
	Edge Posi-	Lib\DIM_M		the first or the second edge position of the
	tion Mea-	easure-		2D shape data.
	surement FB	ment\Shap		
		e2D_Edge		
DIMShape2D_Target	2D Shape	Omron-		Set the 2D shape data. Assign this variable
	Data	Lib\DIM_M		to the Shape2D input variable of
		easure-		Shape2D_Edge.
		ment\sSha		
		pe2D		
DIMEdge_Range	Measure-	LREAL		Specify the upper limit of the X-axis
High1(2)	ment Range			measurement range that is used for the first
	Upper Limit			or the second edge detection. The unit is
				mm. Assign this variable to the RangeHigh
				input variable of Shape2D_Edge.
DIMEdge_Range	Measure-	LREAL		Specify the lower limit of the X-axis
Low1(2)	ment Range			measurement range that is used for the first
	Lower Limit			or the second edge detection. The unit is
				mm. Assign this variable to the <i>RangeLow</i>
		LREAL		input variable of Shape2D_Edge.
DIMEdge_Edge	Edge Level	LREAL		Set the edge level of the height for the first or the second edge detection. The unit is mm.
Level1(2)				Assign this variable to the <i>EdgeLevel</i> input
				variable of Shape2D_Edge.
DIMEdge_EdgeType1	Edge Type	BOOL		Set the trigger condition for the first or the
(2)	Euge Type	BOOL		second edge detection.
(2)				_
				Assign this variable to the <i>EdgeType</i> input
				variable of Shape2D_Edge.
DIMEdge_Count1(2)	Edge Count	UINT		Specify what number detected edge after
				starting measurement is output as the measurement result for the first or the
				second edge detection. Assign this variable
				to the <i>Count</i> input variable of
				Shape2D_Edge.
DIMEdge	Measure-	BOOL		Set the measurement direction for the first or
_Direction1(2)	ment Direc-	DOOL		the second edge detection.
	tion			-
				Assign this variable to the <i>Direction</i> input
				variable of Shape2D_Edge.

Name	Meaning	Data type	Default	Description
DIMEdge	Position	LREAL		Outputs the position (X coordinate) at which
_Position1(2)				the first edge is detected. The unit is mm.
				Assign this variable to the Position output
				variable of Shape2D_Edge.
Edge_Complete	Edge	BOOL		Changes to TRUE when the function block
	Detection			completes the detection of two edges.
	Completed			
DIMEdge_RsltWidth	Width	LREAL		Outputs the difference between the first and
				second edge positions as the width.

Ladder Diagram

ST

```
//Edge 1 calculation
Edge1(
   Execute:=DIMStart_FeatureValueEdge,
   Shape2D:=DIMShape2D_Target,
   RangeHigh:=DIMEdge_RangeHigh1,
   RangeLow:=DIMEdge RangeLow1,
   EdgeLevel:=DIMEdge EdgeLevel1,
   EdgeType:=DIMEdge EdgeType1,
   Count:=DIMEdge Count1,
   Direction:=DIMEdge_Direction1,
   NumProcData:=Edge_NumProcData1,
   Abort:=Edge_Abort1,
   Done=>Edge_Done1,
   Position=>DIMEdge_Position1,
   Busy=>Edge_Busy1,
   CommandAborted=>Edge_CommandAborted1,
   Error=>Edge_Error1,
   ErrorID=>Edge_ErrorID1,
   ErrorIDEx=>Edge_ErrorIDEx1);
//Edge 2 calculation
Edge2(
   Execute:=DIMStart_FeatureValueEdge,
   Shape2D:=DIMShape2D Target,
   RangeHigh:=DIMEdge_RangeHigh2,
   RangeLow:=DIMEdge_RangeLow2,
   EdgeLevel:=DIMEdge_EdgeLevel2,
   EdgeType:=DIMEdge_EdgeType2,
   Count:=DIMEdge_Count2,
   Direction:=DIMEdge Direction2,
   NumProcData:=Edge NumProcData2,
   Abort:=Edge Abort2,
   Done=>Edge Done2,
   Position=>DIMEdge Position2,
   Busy=>Edge_Busy2,
   CommandAborted=>Edge CommandAborted2,
   Error=>Edge_Error2,
   ErrorID=>Edge_ErrorID2,
   ErrorIDEx=>Edge_ErrorIDEx2);
//Edge 1 calculation completion held
IF Edge Done1 = TRUE THEN
   Edge_Complete1 := TRUE;
ELSE;
END IF;
//Edge 2 calculation completion held
IF Edge_Done2 = TRUE THEN
   Edge_Complete2 := TRUE;
ELSE;
END_IF;
IF Edge_Complete1 = TRUE & Edge_Complete2 = TRUE THEN
   //Result distance calculation
   DIMEdge_RsltWidth := DIMEdge_Position2 - DIMEdge_Position1;
   //Initialize edge calculation completion flag
   Edge Complete1 := FALSE;
   Edge_Complete2 := FALSE;
ELSE;
END IF;
```

Shape2D_InflectionPoint

The Shape2D_InflectionPoint function block measures the position at which the shape line is bended (inflection point) in the specified measurement range of the 2D shape data. If there are multiple inflection points in the measurement range, the position of the inflection point with the largest amount (sensitivity) of bend is output.

Function block name	Name	FB/ FUN	Graphic expression	ST expression
Shape2D_Infrec-	2D Shape	FB	Shape2D InflectionPoint Instance	Shape2D_InflectionPoint_Instance
tionPoint	Inflection Point Mea-		\\OmronLib\DIM_Measurement\Shape2D_InflectionPoint	(Execute,
	surement		Execute Done	Shape2D,
				RangeHigh,
			Shape2D — Shape2D —	RangeLow,
			RangeHigh MaxInflectionPoint	NumProcData,
				Abort,
			RangeLow MaxInflectionPointPos	Done,
			–NumProcData Busy–	MaxInflectionPoint,
				MaxInflectionPointPos,
			Abort CommandAborted	Busy,
			Error—	CommandAborted,
				Error,
			ErrorID	ErrorID,
			ErrorIDEx	ErrorIDEx)

Function Block and Function Information

Item	Description
Library file name	OmronLib_DIM_Measurement_V1_0.slr
Namespace	OmronLib\DIM_Measurement
Function block and function number	00143
Publish/Do not publish source code	Not published.
Function block and function version	1.00

Compatible Models

Item	Product name	Model numbers	Version
Device	Confocal Fiber Displacement Sensor Controller	ZW-7000	-
	Confocal Fiber Displacement Sensor Head	ZW-000	-

Variables

Input Variables

Variable	Name	Description	Data type	Valid range	Default
Execute	Execute	Executes the function block when the value is changed to TRUE.	BOOL	TRUE or FALSE	FALSE
RangeHigh ^{*1}	Measurement Range Upper Limit	Specify the upper limit of the X-axis measurement range that is used for inflection point detection. The unit is mm.	LREAL	Negative num- ber, positive number, or 0	0
RangeLow ^{*1}	Measurement Range Lower Limit	Specify the lower limit of the X-axis measurement range that is used for inflection point detection. The unit is mm.	LREAL	Negative num- ber, positive number, or 0	0
NumProcData ^{*1}	Number of Processed Data Points	Specify the number of data points that are processed in a task period in the segmented processing.	UINT	Depends on data type.	100
Abort	Abort	Aborts the function block exe- cution.	BOOL	TRUE or FALSE	FALSE

*1. When the function block is executed, the parameter is copied internally. Therefore, any parameter change made during execution is not reflected in processing.

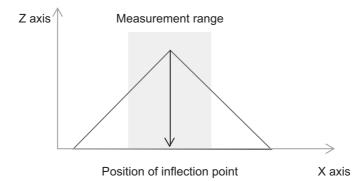
To change the parameter, you need to re-execute the function block.

Output Variables

Variable	Name	Description	Data type	Valid range	Default
Done	Done	TRUE when the function block	BOOL	TRUE or FALSE	—
		execution is completed.			
MaxInflection	Maximum	Outputs the maximum inflec-	LREAL	Depends on	—
Point	Inflection Point	tion point sensitivity.		data type.	
	Sensitivity				
MaxInflection	Maximum	Outputs the position (X coordi-	LREAL	Depends on	—
PointPos	Inflection Point	nate) of the maximum inflec-		data type.	
	Position	tion point. The unit is mm.			
Busy	Measuring	TRUE when the measurement	BOOL	TRUE or FALSE	—
		is in progress.			
Command	Interruption	TRUE when the function block	BOOL	TRUE or FALSE	—
Aborted	Completion	execution is aborted.			
Error	Error	TRUE while there is an error.	BOOL	TRUE or FALSE	—
ErrorID	Error Code	Outputs the error code when	WORD	*1	—
		an error occurs.			
ErrorIDEx	Expansion	Outputs the expansion error	DWORD	*1	_
	Error Code	code when an error occurs.			

*1. Refer to Troubleshooting on page 215.

In-Out Variables


Variable	Name	Description	Data type	Valid range
Shape2D	2D Shape Data	Specify the 2D shape data. Refer to <i>LineMeasure_Cartesian</i> on page 109 for 2D shape data cre- ation and correction.	sShape2D	_

Members of Structure sShape2D

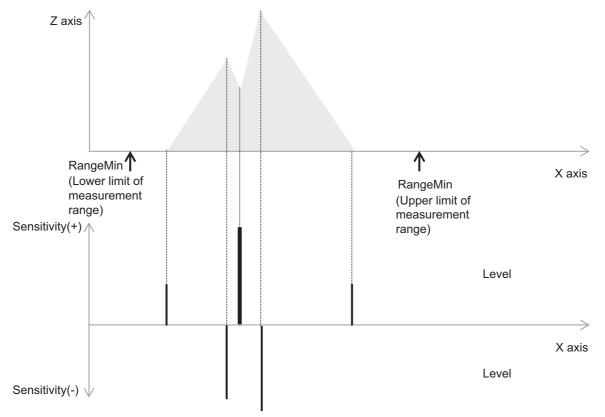
Refer to Members of Structure sShape2D on page 186 of Shape2D_Height.

Function

The Shape2D_InflectionPoint function block measures the position at which the shape line is bended (inflection point) in the specified measurement range of the 2D shape data. If there are multiple inflection points in the measurement range, the position of the inflection point with the largest amount (sensitivity) of bend is output.

- (a) The function block checks the input parameters when *Execute* changes to TRUE. If there is no error in the input data, *Busy* (Measuring) changes to TRUE. If there is an error, the function block execution is aborted and the error codes are output to *ErrorID* and *ErrorIDEx*. For details on the error codes, refer to *Troubleshooting* on page 215.
- (b) The measurement range must be specified so that it contains at least one measurement data (Shape.Zvalue[X]).

If X does not meet the following condition, an error occurs.


RangeLow ≤ Shape2D.Resolution * (X-1)) / LREAL#1000) ≤ RangeHigh

X can take any value between 1 and Shape2D.DataCount.

(c) Of the inflection points within the measurement range, the inflection point that is measured with the maximum sensitivity is output.

The sensitivities are compared as absolute values.

If there are multiple inflection points that were measured with the maximum sensitivity, the inflection point with the lowest position is output.

In the following example, the shape shown below is used for inflection point detection.

In the above figure, there are five inflection points.

Of these inflection points, the third from the left (bold line) is measured with the maximum sensitivity. So this point is recognized as the inflection point, and its sensitivity and position are output.

(d) This function block may cause a Task Period Exceeded error because it calculates the feature amount using a maximum of 20,000 2D shape data points.

To avoid this, you need to set the number of processed data points (NumProcData) per period.

If you increase the number of processed data points, the time until completion can be reduced. However, doing so increases the processing time per period.

If you decrease the number of processed data points, the processing time per period can be reduced. However, doing so increases the time until completion.

When you decide the number of processed data points, take into account the execution environment, unused time in the task period available when correction is executed, and other factors.

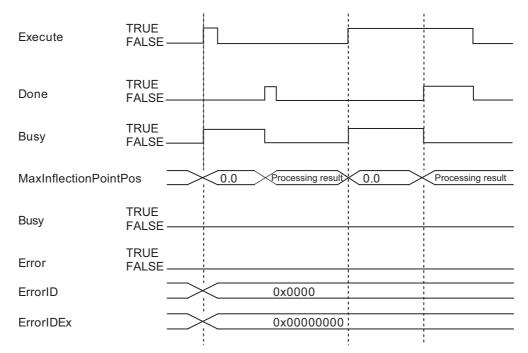
If the number of processed data points is set to 0, the function block execution does not end until all correction and conversion are completed.

If this function block is assigned to the event task, the number of processed data points is ignored and the function block execution also does not end until all correction and conversion are completed.

(e) If *Abort* is changed to TRUE, *CommandAborted* changes to TRUE and the function block execution is aborted.

If *Execute* and *Abort* change to TRUE at the same time, no operation is performed and *CommandAborted* changes to TRUE.

(f) If an error occurs during the function block execution, *Error* changes to TRUE and the function block execution is aborted. For details on the error codes, refer to *Troubleshooting* on page 215.


Re-execution of Function Blocks

If *Execute* is changed to TRUE again while execution is in progress (*Busy* = TRUE), the execution is aborted and the processing is performed from the beginning.

Timing Charts

The timing charts are shown below.

• Timing Chart in a Normal State

• Timing Chart When the Function Block Is Aborted

Refer to Timing Chart When the Function Block Is Aborted on page 190 of Shape2D_Height.

• Timing Chart When an Error Occurs

Refer to Timing Chart When an Error Occurs (Startup Error) on page 191 of Shape2D_Height.

Precautions for Correct Use

Before executing this function block, carefully read the manuals for devices to use and ensure the safety for use.

Troubleshooting

Error code	Expansion error code	Description	Corrective action
0x3CD2	0x0000 0001	The value of Measurement Range Upper Limit is not valid.	Set a valid real number.
	0x0000 0002	The value of Measurement Range Lower Limit is not valid.	Set a valid real number.
	0x0000 0003	A value specified for the measure- ment range is not valid.	Specify values that can meet the following con- dition: Measurement Range Upper Limit ≥ Measurement Range Lower Limit.
	0x0000 0004	There is no shape data in the mea- surement range.	Set the measurement range or 2D shape data again.
	0x0000 0005	The position of the inflection point was not detected.	Set appropriate values for the inflection point level, sign, and measurement direction again.
	0x0000 0006	The number of data points (<i>DataCount</i>) of the 2D shape data is not valid.	Check whether the 2D shape data is created correctly.
	0x0000 0007	The resolution (<i>Resolution</i>) of the 2D shape data is not valid.	Check whether the 2D shape data is created correctly.

Sample Programming

Program Description

This program calculates the position at which the inflection point of the shape line is detected in the specified measurement range of the 2D shape data.

Main Variables

Name	Meaning	Data type	Default	Description
DIMStart_Feature ValueInflectionPoint	Execution Trigger	BOOL		2D shape height measurement is started when this variable changes to TRUE. Assign this variable to the <i>Execute</i> input variable of Shape2D_InflectionPoint.
InflectionPoint1	2D Shape Inflection Point Mea- surement FB	Omron- Lib\DIM_M easure- ment\Shap e2D_Inflect ionPoint		Instance of the function block that measures the inflection point of the 2D shape data.
DIMShape2D_Target	Target 2D Shape Data	Omron- Lib\DIM_M easure- ment\sSha pe2D		Set the Target 2D shape data. Assign this variable to the <i>Shape2D</i> input variable of Shape2D_InflectionPoint.
DIMInflection_Range High1	Measure- ment Range Upper Limit	LREAL		Specify the upper limit of the X-axis mea- surement range that is used for inflection point detection. The unit is mm. Assign this variable to the <i>RangeHigh</i> input variable of Shape2D_InflectionPoint.
DIMInflection_Range Low1	Measure- ment Range Lower Limit	LREAL		Specify the lower limit of the X-axis measure- ment range that is used for inflection point detection. The unit is mm. Assign this vari- able to the <i>RangeLow</i> input variable of Shape2D_InflectionPoint.
Inflection_NumProc Data1	Number of Processed Data Points	UINT		Set the number of data points that are pro- cessed in a task period during segmented processing. Assign this variable to the <i>Num-</i> <i>ProcData</i> input variable of Shape2D_Inflec- tionPoint.
DIMInflection_Max Senstvt1	Maximum Inflection Point Sensi- tivity	LREAL		Outputs the maximum inflection point sensi- tivity. Assign this variable to the <i>MaxInflectionPoint</i> output variable of Shape2D_InflectionPoint.
DIMInflection _Position1	Maximum Inflection Point Posi- tion	LREAL		Outputs the position (X coordinate) of the maximum inflection point. The unit is mm. Assign this variable to the <i>MaxInflectionPointPos</i> output variable of Shape2D_InflectionPoint.

Ladder Diagram

			InflectionPoint1		
DIMStart_FeatureValu…		\\OmronLib\DIM Execute	_Measurement\Shape2D_InflectionPoint Done		Inflection_Done1
	DIMShape2D Target—	Shape2D —		—DIMShape2D Target	
D	IMInflection_Range	RangeHigh	MaxInflectionPoint	-DIMInflection_MaxSe…	
DI	MInflection_RangeL	RangeLow	MaxInflectionPointPos	-DIMInflection_Position1	
In	flection_NumProcD	NumProcData	Busy	-Inflection_Busy1	
	Inflection_Abort1	Abort	CommandAborted		
			Error	-Inflection_Error1	
			ErrorID	-Inflection_ErrorID1	
			ErrorIDEx	-Inflection_ErrorIDEx1	

ST

```
//Inflection point calculation
InflectionPoint1(
  Execute:=DIMStart_FeatureValueInflectionPoint,
  Shape2D:=DIMShape2D Target,
  RangeHigh:=DIMInflection_RangeHigh1,
  RangeLow:=DIMInflection_RangeLow1,
  NumProcData:=Inflection_NumProcData1,
  Abort:=Inflection_Abort1,
  Done=>Inflection_Done1,
  MaxInflectionPoint=>DIMInflection_MaxSenstvt1,
  MaxInflectionPointPos=>DIMInflection_Position1,
  Busy=>Inflection_Busy1,
  CommandAborted=>Inflection_CommandAborted1,
  Error=>Inflection_Error1,
  ErrorID=>Inflection_ErrorID1,
  ErrorIDEx=>Inflection_ErrorIDEx1);
```

Shape2D_Angle

The Shape2D_Angle function block draws a straight line between heights within in the two calculation measurement ranges of the 2D shape data. Then, the function block calculates the angle θ of the straight line to the horizontal surface.

This function block also outputs slope a and intercept b of the straight line relative to the horizontal axis X and vertical axis Z (height).

Function block name	Name	FB/ FUN	Graphic expression	ST expression
Shape2D_Angle	2D Shape	FB		Shape2D_Angle_Instance
	Angle Mea-		Shape2D_Angle_Instance \\OmronLib\DIM_Measurement\Shape2D_Angle	(Execute,
	surement		Execute Done	Shape2D,
				Range1High,
			Shape2D — Shape2D —	Range1Low,
			Range1High Angle	Range2High,
			Range1Low Slope	Range2Low,
			Siope	NumProcData,
			Range2High Intercept	Abort,
			Range2Low Busy	Done,
			NumProcData CommandAborted	Angle,
				Slope,
			Abort Error	Intercept,
			ErrorID	Busy,
			ErrorIDEx	CommandAborted,
				Error,
				ErrorID,
				ErrorIDEx)

Function Block and Function Information

Item	Description
Library file name	OmronLib_DIM_Measurement_V1_0.slr
Namespace	OmronLib\DIM_Measurement
Function block and function number	00144
Publish/Do not publish source code	Not published.
Function block and function version	1.00

Compatible Models

Item	Product name	Model numbers	Version
Device	Confocal Fiber Displacement Sensor Controller	ZW-7000	-
	Confocal Fiber Displacement Sensor Head	ZW-000	-

Variables

Input Variables

Variable	Name	Description	Data type	Valid range	Default
Execute	Execute	Executes the function block when the value is changed to TRUE.	BOOL	TRUE or FALSE	FALSE
Range1High ^{*1}	Measurement Range 1 Upper Limit	Specify the upper limit of the X-axis measurement range 1 that is used for straight line calculation. The unit is mm.	LREAL	Negative num- ber, positive number, or 0	0
Range1Low ^{*1}	Measurement Range 1 Lower Limit	Specify the lower limit of the X-axis measurement range 1 that is used for straight line calculation. The unit is mm.	LREAL	Negative num- ber, positive number, or 0	0
Range2High ^{*1}	Measurement Range 2 Upper Limit	Specify the upper limit of the X-axis measurement range 2 that is used for straight line calculation. The unit is mm.	LREAL	Negative num- ber, positive number, or 0	0
Range2Low ^{*1}	Measurement Range 2 Lower Limit	Specify the lower limit of the X-axis measurement range 2 that is used for straight line calculation. The unit is mm.	LREAL	Negative num- ber, positive number, or 0	0
NumProcData *1	Number of Processed Data Points	Specify the number of data points that are processed in a task period in the segmented processing.	UINT	Depends on data type.	100
Abort	Abort	Aborts the function block exe- cution.	BOOL	TRUE or FALSE	FALSE

*1. When the function block is executed, the parameter is copied internally. Therefore, any parameter change made during execution is not reflected in processing.

To change the parameter, you need to re-execute the function block.

Variable	Name	Description	Data type	Valid range	Default
Done	Done	TRUE when the function block execution is completed.	BOOL	TRUE or FALSE	-
Angle	Angle	Outputs the calculated angle of the straight line. The unit is θ .	LREAL	-90° to 90° ^{*1}	_
Slope	Slope	Outputs the calculated slope of the straight line.	LREAL	Depends on data type.	-
Intercept	Intercept	Outputs the calculated Z-inter- cept of the straight line.	LREAL	Depends on data type.	-
Busy	Measuring	TRUE when the measurement is in progress.	BOOL	TRUE or FALSE	-
Command Aborted	Interruption Completion	TRUE when the function block execution is aborted.	BOOL	TRUE or FALSE	-
Error	Error	TRUE while there is an error.	BOOL	TRUE or FALSE	—
ErrorID	Error Code	Outputs the error code when an error occurs.	WORD	*2	-
ErrorIDEx	Expansion Error Code	Outputs the expansion error code when an error occurs.	DWORD	*2	_

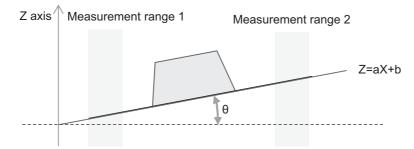
Output Variables

*1. Measurement is impossible when the slope and intercept cannot be calculated. Refer to *Function* on page 221 for details.

*2. Refer to *Troubleshooting* on page 223.

In-Out Variables

Variable	Name	Description Data type		Valid range
Shape2D	2D Shape Data	Specify the 2D shape data. Refer to <i>LineMeasure_Cartesian</i> on page 109 for 2D shape data cre- ation and correction.	sShape2D	_


Members of Structure sShape2D

Refer to *Members of Structure sShape2D* on page 186 of Shape2D_Height.

Function

The Shape2D_Angle function block draws a straight line between heights within the two calculation measurement ranges of the 2D shape data. Then, it calculates the angle θ of the straight line to the horizontal surface.

This function block also outputs slope a and intercept b of the straight line relative to the horizontal axis X and vertical axis Z (height).

- (a) The function block checks the input parameters when *Execute* changes to TRUE. If there is no error in the input data, *Busy* (Measuring) changes to TRUE. If there is an error, the function block execution is aborted and the error codes are output to *ErrorID* and *ErrorIDEx*. For details on the error codes, refer to *Troubleshooting* on page 223.
- (b) The measurement range must be specified so that it contains at least one measurement data (Shape.Zvalue[X]).

If X does not meet the following condition, an error occurs.

RangeLow ≤((Shape2D.Resolution * (X-1)) / LREAL#1000) ≤ RangeHigh

X can take any value between 1 and Shape2D.DataCount.

- (c) The function block draws a straight line using all heights within the specified measurement range 1 and measurement range 2.
- (d) When a straight line is drawn successfully, the function block calculates and outputs the angle of the straight line relative to the horizontal line. The output values are the slope and Z-intercept of the straight line.

If the angle in the measurement range is close to 90° or -90° and the slope and intercept cannot be calculated, a measurement error occurs.

(e) This function block may cause a Task Period Exceeded error because it calculates the feature amount using a maximum of 20,000 2D shape data points.

To avoid this, you need to set the number of processed data points (NumProcData) per period.

If you increase the number of processed data points, the time until completion can be reduced. However, doing so increases the processing time per period.

If you decrease the number of processed data points, the processing time per period can be reduced. However, doing so increases the time until completion.

When you decide the number of processed data points, take into account the execution environment, unused time in the task period available when correction is executed, and other factors.

If the number of processed data points is set to 0, the function block execution does not end until all correction and conversion are completed.

If this function block is assigned to the event task, the number of processed data points is ignored and the function block execution also does not end until all correction and conversion are completed.

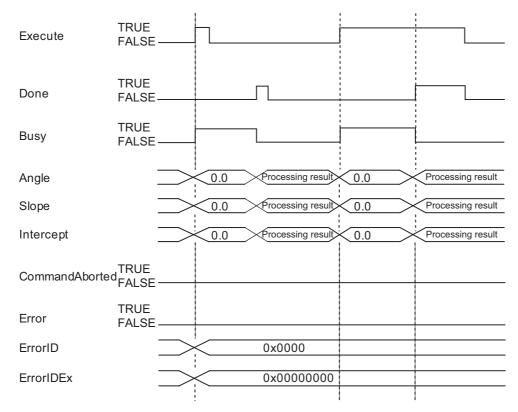
(f) If *Abort* is changed to TRUE, *CommandAborted* changes to TRUE and the function block execution is aborted.

If *Execute* and *Abort* change to TRUE at the same time, no operation is performed and *CommandAborted* changes to TRUE.

(g) If an error occurs during the function block execution, *Error* changes to TRUE and the function block execution is aborted. For details on the error codes, refer to *Troubleshooting* on page 223.

Additional Information

The time required to execute this function block varies depending on the measurement range, resolution of the 2D shape data, or other factors that determine the amount of processed data.


Re-execution of Function Blocks

If *Execute* is changed to TRUE again while execution is in progress (*Busy* = TRUE), the execution is aborted and the processing is performed from the beginning.

Timing Charts

The timing charts are shown below.

• Timing Chart in a Normal State

• Timing Chart When the Function Block Is Aborted

Refer to Timing Chart When the Function Block Is Aborted on page 190 of Shape2D_Height.

• Timing Chart When an Error Occurs

Refer to Timing Chart When an Error Occurs (Startup Error) on page 191 of Shape2D_Height.

Precautions for Correct Use

Before executing this function block, carefully read the manuals for devices to use and ensure the safety for use.

Troubleshooting

Error code	Expansion error code	Description	Corrective action
0x3CD3	0x0000 0001	The value of Measurement Range 1 Upper Limit is not valid.	Set a valid real number.
	0x0000 0002	The value of Measurement Range 1 Lower Limit is not valid.	Set a valid real number.
	0x0000 0003	A value specified for the measurement range 1 is not valid.	Specify values that can meet the following condition: Measurement Range 1 Upper Limit ≥ Measurement Range 1 Lower Limit.
	0x0000 0004	The value of Measurement Range 2 Upper Limit is not valid.	Set a valid real number.
	0x0000 0005	The value of Measurement Range 2 Lower Limit is not valid.	Set a valid real number.
	0x0000 0006	A value specified for the measurement range 2 is not valid.	Specify values that can meet the following condition: Measurement Range 2 Upper Limit ≥ Measurement Range 1 Lower Limit.
	0x0000 0007	The measurement range 1 and measurement range 2 are overlapped or inverted.	Specify values that can meet the following condition: measurement range 1 > measurement range 2.
	0x0000 0008	There is no shape data in the measurement range 1.	Set the measurement range 1 or 2D shape data again.
	0x0000 0009	There is no shape data in the measurement range 2.	Set the measurement range 2 or 2D shape data again.
	0x0000 000A	The slope or intercept of the straight line cannot be calculated.	Set the measurement range 1, measurement range 2 or 2D shape data again.
	0x0000 000B	The number of data points (DataCount) of the 2D shape data is not valid.	Check whether the 2D shape data is created correctly.
	0x0000 000C	The resolution (<i>Resolution</i>) of the 2D shape data is not valid.	Check whether the 2D shape data is created cor- rectly.

Sample Programming

Program Description

This program draws a straight line between heights within in the calculation measurement ranges of the 2D shape data. Then, the program calculates the angle, slope and intercept.

Main Variables

Name	Meaning	Data type	Default	Description
DIMStart_Feature	Execution	BOOL		2D shape height measurement is started
ValueAngle	Trigger			when this variable changes to TRUE. Assign
				this variable to the <i>Execute</i> input variable of
				Shape2D_Angle.
Angle1	2D Shape	Omron-		Instance of the function block that measures
	Angle Mea-	Lib\DIM_Me		the angle of the 2D shape data.
	surement	asure-		
	FB	ment\Shape		
		2D_Angle		
DIMShape2D_Target	Target 2D	Omron-		Set the target 2D shape data. Assign this
	Shape Data	Lib\DIM_Me		variable to the Shape2D input variable of
		asure-		Shape2D_Angle.
		ment\sShap		
		e2D		
DIMAngle_Range1	Measure-	LREAL		Specify the upper limit of the X-axis mea-
High1	ment			surement range 1 that is used for straight line
	Range 1			calculation. The unit is mm. Assign this vari-
	Upper Limit			able to the <i>Range1High</i> input variable of
DIMAnala Banaa1	Measure-	LREAL		Shape2D_Angle. Specify the lower limit of the X-axis measure-
DIMAngle_Range1 Low1	ment			ment range 1 that is used for straight line cal-
LOWI	Range 1			culation. The unit is mm. Assign this variable
	Lower Limit			to the <i>Range1Low</i> input variable of
				Shape2D_Angle.
DIMAngle_Range2	Measure-	LREAL		Specify the upper limit of the X-axis mea-
High1	ment			surement range 2 that is used for straight line
	Range 2			calculation. The unit is mm. Assign this vari-
	Upper Limit			able to the Range2High input variable of
				Shape2D_Angle.
DIMAngle_Range2	Measure-	LREAL		Specify the lower limit of the X-axis measure-
Low1	ment			ment range 2 that is used for straight line cal-
	Range 2			culation. The unit is mm. Assign this variable
	Lower Limit			to the Range2Low input variable of
				Shape2D_Angle.
Angle_NumProcData1	Number of	UINT		Set the number of data points that are pro-
	Processed			cessed in a task period during segmented
	Data Points			processing. Assign this variable to the Num-
DIMAnalo Analo1	Anglo			ProcData input variable of Shape2D_Angle.
DIMAngle_Angle1	Angle	LREAL		Outputs the calculated angle of the straight
				line. The unit is θ . Assign this variable to the <i>Angle</i> output variable of Shape2D_Angle.
Angle_Slope1	Slope	LREAL		Outputs the calculated slope of the straight
Allyle_Slupe I	Siope			line. Assign this variable to the <i>Slope</i> output
				variable of Shape2D_Angle.

Name	Meaning	Data type	Default	Description
Angle_Intercept1	Intercept	LREAL		Outputs the calculated Z-intercept of the
				straight line. Assign this variable to the
				<i>Intercept</i> output variable of Shape2D_Angle.

Ladder Diagram

	Angle1						
DIMStart_FeatureValu…	\\OmronLib\DIM_Measurement\Shape2D_Angle						
	Execute Done						
DIMShape2D Target-	Shape2D Shape2D	—DIMShape2D Target					
DIMAngle_Range1High1—	Range1High Angle	-DIMAngle_Angle1					
DIMAngle_Range1Low1-	Range1Low Slope	-Angle_Slope1					
DIMAngle_Range2High1—	Range2High Intercept	—Angle_Intercept1					
DIMAngle_Range2Low1—	Range2Low Busy	—Angle_Busy1					
Angle_NumProcData1—	NumProcData CommandAborted	-DIMAngle_Command…					
DIMAngle_Abort1-	Abort Error	-Angle_Error1					
	ErrorID	-Angle_ErrorID1					
	ErrorIDEx	-Angle_ErrorIDEx1					

ST

```
//Angle, slope and intercept calculation
Angle1(
  Execute:=DIMStart FeatureValueAngle,
  Shape2D:=DIMShape2D_Target,
  Range1High:=DIMAngle_Range1High1,
  Range1Low:=DIMAngle Range1Low1,
  Range2High:=DIMAngle Range2High1,
  Range2Low:=DIMAngle Range2Low1,
  NumProcData:=Angle NumProcData1,
  Abort:=Angle Abort1,
  Done=>Angle_Done1,
  Angle=>DIMAngle_Angle1,
  Slope=>Angle_Slope1,
   Intercept=>Angle_Intercept1,
  Busy=>Angle_Busy1,
   CommandAborted=>Angle_CommandAborted1,
   Error=>Angle_Error1,
  ErrorID=>Angle_ErrorID1,
  ErrorIDEx=>Angle ErrorIDEx1);
```

Shape2D_Area

The Shape2D_Area function block calculates the area in the specified range. A range of the 2D shape data must be specified as the integral range.

The function block determines the base using shape data within the integral range, and calculates the area (sectional area) of a region bounded by the base and waveform of the 2D shape data.

Function block name	Name	FB/ FUN	Graphic	expression	ST expression
Shape2D_Area	2D Shape	FB	Shana2D (Vrag Instance	Shape2D_Area_Instance
	Sectional			Area_Instance surement\Shape2D_Area	(Execute,
	Area Mea- surement				Shape2D,
	Surement		Execute	Done –	RangeHigh,
			-Shape2D	Shape2D	RangeLow,
					Target,
			RangeHigh	Area	NumProcData,
			-RangeLow	Busy-	Abort,
			, in go to it	,	Done,
			-Target	CommandAborted	Area,
			-NumProcData	Бикал	Busy,
				Error —	CommandAborted,
			-Abort	ErrorID	Error,
					ErrorID,
				ErrorIDEx	ErrorIDEx)

Function Block and Function Information

Item	Description
Library file name	OmronLib_DIM_Measurement_V1_0.slr
Namespace	OmronLib\DIM_Measurement
Function block and function number	00145
Publish/Do not publish source code	Not published.
Function block and function version	1.00

Compatible Models

Item	Product name	Model numbers	Version
Device	Confocal Fiber Displacement Sensor Controller	ZW-7000	-
	Confocal Fiber Displacement Sensor Head	ZW-000	-

Variables

Input Variables

Variable	Name	Description	Data type	Valid range	Default
Execute	Execute	Executes the function block when the value is changed to TRUE.	BOOL	TRUE or FALSE	FALSE
RangeHigh ^{*1}	Integral Range Upper Limit	Specify the upper limit of the X-axis range that is used for integral calculation. The unit is mm.	LREAL	Negative num- ber, positive number, or 0	0
RangeLow ^{*1} Integral Range Lower Limit		Specify the lower limit of the X-axis range that is used for integral calculation. The unit is mm.	LREAL	Negative num- ber, positive number, or 0	0
Target ^{*1}	Target of Inte- gration	Specify in which direction (above or below base) the height is recognized as the tar- get of integration. FALSE: Height above base TRUE: Height below base	BOOL	TRUE or FALSE	FALSE
Processed points that are		Specify the number of data points that are processed in a task period in the segmented processing.	UINT	Depends on data type.	100
Abort	Abort	Aborts the function block exe- cution.	BOOL	TRUE or FALSE	FALSE

*1. When the function block is executed, the parameter is copied internally. Therefore, any parameter change made during execution is not reflected in processing.

To change the parameter, you need to re-execute the function block.

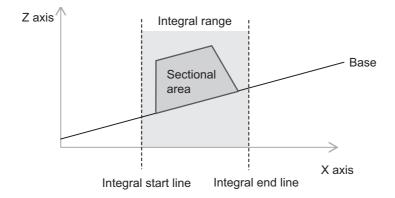
Output Variables

Variable	Name	Description	Data type	Valid range	Default
Done	Done	TRUE when the function block	BOOL	TRUE or FALSE	—
		execution is completed.			
Area	Sectional Area	Outputs the calculated sec-	LREAL	Depends on	—
		tional area. The unit is mm ² .		data type.	
Busy	Measuring	TRUE when the measurement	BOOL	TRUE or FALSE	—
		is in progress.			
Command	Interruption	TRUE when the function block	BOOL	TRUE or FALSE	_
Aborted	Completion	execution is aborted.			
Error	Error	TRUE while there is an error.	BOOL	TRUE or FALSE	—
ErrorID	Error Code	Outputs the error code when	WORD	*1	—
		an error occurs.			
ErrorIDEx	Expansion	Outputs the expansion error	DWORD	*1	—
	Error Code	code when an error occurs.			

*1. Refer to *Troubleshooting* on page 232.

In-Out Variables

Variable	Name	Description	Data type	Valid range
Shape2D	2D Shape Data	Specify the 2D shape data. Refer to <i>LineMeasure_Cartesian</i> on page 109 for 2D shape data cre- ation and correction.	sShape2D	_


Members of Structure sShape2D

Refer to *Members of Structure sShape2D* on page 186 of Shape2D_Height.

Function

The Shape2D_Area function block calculates the area in the specified range. A range of the 2D shape data must be specified as the integral range.

The function block determines the base using shape data within the integral range, and calculates the area (sectional area) of a region bounded by the base and waveform of the 2D shape data.

The function block checks the input parameters when *Execute* changes to TRUE. If there is no error in the input data, *Busy* (Measuring) changes to TRUE. If there is an error, the function block execution is aborted and the error codes are output to *ErrorID* and *ErrorIDEx*. For details on the error codes, refer to *Troubleshooting* on page 232.

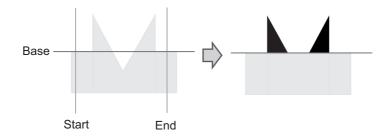
The integral range must be specified so that it contains at least one measurement data (Shape.Zvalue[X]).

If X does not meet the following condition, an error occurs.

RangeLow ≤((Shape2D.Resolution * (X-1)) / LREAL#1000) ≤ RangeHigh

X can take any value between 1 and Shape2D.DataCount.

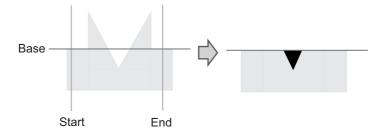
In the integral range, the height of each point relative to the base is calculated, and the sum of those heights are used to calculate the area.


Integration is performed only for heights in the direction specified with Target (Target of Integration).

The heights in the opposite direction to *Target* are regarded as the base height.

The following is an example.

If *Target* is FALSE, the concave region is regarded as the base, as shown in the following figure (on the right).


The area of the convex region (black color) is calculated.

If *Target* is TRUE, the convex region is regarded as the base, as shown in the following figure (on the right).

The area of the concave region (black color) is calculated.

The area is output as a negative value.

If there is no height of integration in the integral range, 0 is output to Area.

This function block may cause a Task Period Exceeded error because it calculates the feature amount using a maximum of 20,000 2D shape data points.

To avoid this, you need to set the number of processed data points (NumProcData) per period.

If you increase the number of processed data points, the time until completion can be reduced. However, doing so increases the processing time per period.

If you decrease the number of processed data points, the processing time per period can be reduced. However, doing so increases the time until completion.

When you decide the number of processed data points, take into account the execution environment, unused time in the task period available when correction is executed, and other factors.

If the number of processed data points is set to 0, the function block execution does not end until all correction and conversion are completed.

If this function block is assigned to the event task, the number of processed data points is ignored and the function block execution also does not end until all correction and conversion are completed.

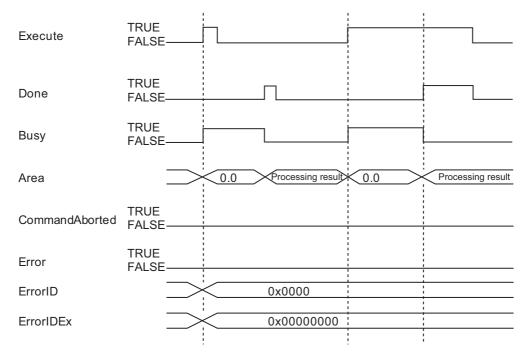
If *Abort* is changed to TRUE, *CommandAborted* changes to TRUE and the function block execution is aborted.

If *Execute* and *Abort* change to TRUE at the same time, no operation is performed and *CommandAborted* changes to TRUE.

If an error occurs during the function block execution, *Error* changes to TRUE and the function block execution is aborted. For details on the error codes, refer to *Troubleshooting* on page 232.

Additional Information

The time required to execute this function block varies depending on the measurement range, resolution of the 2D shape data, or other factors that determine the amount of processed data.


Re-execution of Function Blocks

If *Execute* is changed to TRUE again while execution is in progress (*Busy* = TRUE), the execution is aborted and the processing is performed from the beginning.

Timing Charts

The timing charts are shown below.

• Timing Chart in a Normal State

• Timing Chart When the Function Block Is Aborted

Refer to Timing Chart When the Function Block Is Aborted on page 190 of Shape2D_Height.

• Timing Chart When an Error Occurs

Refer to Timing Chart When an Error Occurs (Startup Error) on page 191 of Shape2D_Height.

Precautions for Correct Use

Before executing this function block, carefully read the manuals for devices to use and ensure the safety for use.

Troubleshooting

Error code	Expansion error code	Description	Corrective action
0x3CD4	0x0000 0001	The value of Integral Range Upper Limit is not valid.	Set a valid real number.
	0x0000 0002	The value of Integral Range Lower Limit is not valid.	Set a valid real number.
	0x0000 0003	A value specified for the integral range is not valid.	Specify values that can meet the following con- dition: Integral Range Upper Limit ≥ Integral Range Lower Limit.
	0x0000 0004	There is no shape data in the inte- gral range.	Set the integral range or 2D shape data again.
	0x0000 0005	The number of data points (<i>DataCount</i>) of the 2D shape data is not valid.	Check whether the 2D shape data is created correctly.
	0x0000 0006	The resolution (<i>Resolution</i>) of the 2D shape data is not valid.	Check whether the 2D shape data is created correctly.

Sample Programming

Program Description

This program calculates the area in the specified measurement range of the 2D shape data.

Main Variables

Name	Meaning	Data type	Default	Description
DIMStart_Feature	Execution	BOOL		2D shape height measurement is started
ValueArea	Trigger			when this variable changes to TRUE. Assign
				this variable to the <i>Execute</i> input variable of
				Shape2D_Area.
Area1	2D Shape	Omron-		Instance of the function block that measures
	Sectional Area Mea-	Lib\DIM_M		the sectional area of the 2D shape data.
	surement	easure- ment\Shap		
	Surement	e2D_Area		
DIMShape2D_Target	Target 2D	Omron-		Set the target 2D shape data. Assign this
	Shape Data	Lib\DIM_M		variable to the Shape2D input variable of
		easure-		Shape2D_Area.
		ment\sSha		
		pe2D		
DIMArea_RangeHigh1	Integral	LREAL		Specify the upper limit of the X-axis range
	Range			that is used for integral calculation. The unit
	Upper Limit			is mm. Assign this variable to the RangeHigh
				input variable of Shape2D_Area.
DIMArea_RangeLow1	Integral Range	LREAL		Specify the lower limit of the X-axis range that is used for integral calculation. The unit
	Lower Limit			is mm. Assign this variable to the <i>RangeLow</i>
	Lower Linnit			input variable of Shape2D_Area.
DIMArea_Target1	Target of	BOOL		Specify in which direction (above or below
got.	Integration			base) the height is recognized as the target
				of integration.
				FALSE: Height above base
				TRUE: Height below base
				Assign this variable to the Target input vari-
				able of Shape2D_Area.
Area_NumProcData1	Number of	UINT		Set the number of data points that are pro-
	Processed			cessed in a task period during segmented
	Data Points			processing. Assign this variable to the Num-
	Sectional	LREAL		ProcData input variable of Shape2D_Area.
DIMArea_Area1	Sectional Area	LKEAL		Outputs the calculated sectional area. The
				unit is mm ² . Assign this variable to the Area
				output variable of Shape2D_Area.

Ladder Diagram

	Area	1	
DIMStart_FeatureValu…	\\OmronLib\DIM_Measur		Area_Done1
	Execute	Done	
DIMShape2D_Target-	Shape2D — –	Shape2D	- DIMShape2D_Target
DIMArea_RangeHigh1—	RangeHigh	Area	- DIMArea_Area1
DIMArea_RangeLow1-	RangeLow	Busy	— Area_Busy1
DIMArea_Target1—	Target	CommandAborted	—Area_CommandAbort…
Area_NumProcData1—	NumProcData	Error	—Area_Error1
Area_Abort1—	Abort	ErrorID	—Area_ErrorID1
		ErrorIDEx	-Area_ErrorIDEx1

ST

```
//Sectional area calculation
Areal(
   Execute:=DIMStart_FeatureValueArea,
   Shape2D:=DIMShape2D_Target,
   RangeHigh:=DIMArea RangeHigh1,
   RangeLow:=DIMArea_RangeLow1,
   Target:=DIMArea_Target1,
   NumProcData:=Area_NumProcData1,
   Abort:=Area_Abort1,
   Done=>Area_Done1,
   Area=>DIMArea_Area1,
   Busy=>Area_Busy1,
   CommandAborted=>Area_CommandAborted1,
   Error=>Area Error1,
   ErrorID=>Area ErrorID1,
   ErrorIDEx=>Area_ErrorIDEx1);
```

Shape2D_Compare

The Shape2D_Compare function block compares the master 2D shape data and target 2D shape data in the specified measurement range and detects the difference in height (Z direction).

Function block name	Name	FB/ FUN	Graphic expression	ST expression
Shape2D_Compare	2D Shape Compari- son Mea- surement	FB	Shape2D_Compare_Instance \\\OmronLib\DIM_Measurement\\Shape2D_Compare Execute Done Shape2D_Master Shape2D_Master Shape2D_Tartget Shape2D_Tartget RangeHigh CompRsIt RangeLow PosMaxDefPos ThresholdHigh PosMaxDefPos NumProcData NegaMaxDefPos Abort Busy CommandAborted ErrorID ErrorID	Shape2D_Compare_Instance (Execute, Shape2D_Master, Shape2D_Tartget, RangeHigh, RangeLow, ThresholdHigh, ThresholdLow, NumProcData, Abort, Done, CompRslt, PosMaxDef, PosMaxDef, PosMaxDef, NegaMaxDefPos, NegaMaxDefPos, Busy, CommandAborted, Error, ErrorID, ErrorID, ErrorIDEx)

You can set the permissible range to ignore differences within the range.

Function Block and Function Information

Item	Description
Library file name	OmronLib_DIM_Measurement_V1_0.slr
Namespace	OmronLib\DIM_Measurement
Function block and function number	00146
Publish/Do not publish source code	Not published.
Function block and function version	1.00

Compatible Models

Item	Product name	Model numbers	Version
Device	Confocal Fiber Displacement Sensor Controller	ZW-7000	-
	Confocal Fiber Displacement Sensor Head	ZW-000	-

Variables

Input Variables

Variable	Name	Description	Data type	Valid range	Default
Execute	Execute	Executes the function block when the value is changed to TRUE.	BOOL	TRUE or FALSE	FALSE
RangeHigh ^{*1}	Comparison Range Upper Limit	Specify the upper limit of the X-axis range that is used for comparison. The unit is mm.	LREAL	Negative num- ber, positive number, or 0	0
RangeLow ^{*1}	Comparison Range Lower Limit	Specify the lower limit of the X-axis range that is used for comparison. The unit is mm.	LREAL	Negative num- ber, positive number, or 0	0
ThresholdHigh ^{*1}	Threshold (Positive Maxi- mum Differ- ence)	These thresholds are used to determine whether a differ- ence from the master is within the permissible range. The unit	LREAL	Positive num- ber or 0	0
ThresholdLow ^{*1}	Threshold (Negative Maximum Dif- ference)	is mm.	LREAL	Positive num- ber or 0	0
NumProcData ^{*1}	Number of Processed Data Points	Specify the number of data points that are processed in a task period in the segmented processing.	UINT	Depends on data type.	100
Abort	Abort	Aborts the function block exe- cution.	BOOL	TRUE or FALSE	FALSE

*1. When the function block is executed, the parameter is copied internally. Therefore, any parameter change made during execution is not reflected in processing.

To change the parameter, you need to re-execute the function block.

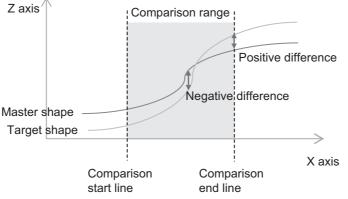
Output Variables

Variable	Name	Description	Data type	Valid range	Default
Done	Done	TRUE when the function block execution is completed.	BOOL	TRUE or FALSE	_
CompRsIt	Comparison Result	Changes to TRUE when a dif- ference is detected.	BOOL	TRUE or FALSE	_
PosMaxDef	Positive Maxi- mum Differ- ence	Outputs the maximum differ- ence in Z positive direction. The unit is mm. If there is no difference in the positive direction, 0 is output.	LREAL	Depends on data type.	_
PosMaxDefPos	Positive Maxi- mum Differ- ence Position	Outputs the position of the maximum difference in Z posi- tive direction. The unit is mm. If there is no difference in the positive direction, 0 is output.	LREAL	Depends on data type.	_
NegMaxDef	Negative Maxi- mum Differ- ence	Outputs the maximum differ- ence in Z negative direction. The unit is mm. If there is no difference in the negative direction, 0 is output.	LREAL	Depends on data type.	_
NegMaxDefPos	Negative Maxi- mum Differ- ence Position	Outputs the position of the maximum difference in Z neg- ative direction. The unit is mm. If there is no difference in the negative direction, 0 is output.	LREAL	Depends on data type.	_
Busy	Measuring	TRUE when the measurement is in progress.	BOOL	TRUE or FALSE	_
Command Aborted	Interruption Completion	TRUE when the function block execution is aborted.	BOOL	TRUE or FALSE	_
Error	Error	TRUE while there is an error.	BOOL	TRUE or FALSE	—
ErrorID	Error Code	Outputs the error code when an error occurs.	WORD	*1	_
ErrorIDEx	Expansion Error Code	Outputs the expansion error code when an error occurs.	DWORD	*1	—

*1. Refer to Troubleshooting on page 241.

In-Out Variables

Variable	Name	Description	Data type	Valid range
Shape2D_Master	Master 2D Shape Data	Specify the 2D shape data that is used as the master for compari- son. Refer to <i>LineMeasure_Car-</i> <i>tesian</i> on page 109 for 2D shape data creation and correction.	sShape2D	—
Shape2D_Target	Target 2D shape data	Specify the 2D shape data that is used as the target for compari- son. Refer to <i>LineMeasure_Car-</i> <i>tesian</i> on page 109 for 2D shape data creation and correction.	sShape2D	—


Members of Structure sShape2D

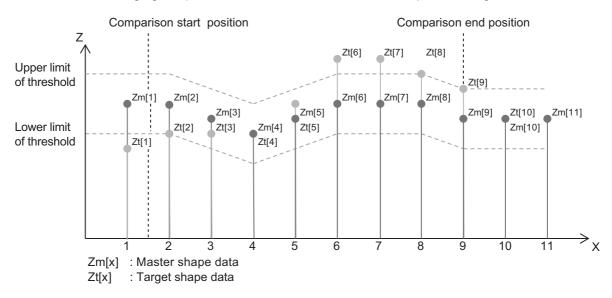
Refer to Members of Structure sShape2D on page 186 of Shape2D_Height.

Function

The Shape2D_Compare function block compares the master 2D shape data and target 2D shape data in the specified measurement range and detects the difference in height (Z direction).

You can set the permissible range to ignore differences within the range.

- (a) The function block checks the input parameters when *Execute* changes to TRUE. If there is no error in the input data, *Busy* (Measuring) changes to TRUE. If there is an error, the function block execution is aborted and the error codes are output to *ErrorID* and *ErrorIDEx*. For details on the error codes, refer to *Troubleshooting* on page 241.
- (b) An error occurs if the X start position or resolution of the master and that of the target do not match.
- (c) The comparison range must be specified so that it contains at least one measurement data (Shape.Zvalue[X]).


If X does not meet the following condition, an error occurs.

RangeLow ≤((Shape2D.Resolution * (X-1)) / LREAL#1000) ≤ RangeHigh

X can take any value between 1 and Shape2D.DataCount.

(d) The heights of the 2D shape data specified as the master and the heights of the 2D shape data specified as the target are compared at each position in the comparison range.
 Differences outside the comparison range are not included in the comparison result.

In the following figure, positions 2 to 9 are included in the comparison range.

- (e) The permissible range is determined by the master Z value (reference point) at each position, Threshold (Positive Maximum Difference) and Threshold (Negative Maximum Difference).
 If there is a difference exceeds the permissible range, Comparison Result changes to TRUE.
 If a height of the target is equal to Z ± threshold, the height is included in the permissible range.
 In the above figure, Zt[6] and Zt[7] are out of range.
- (f) The function block outputs the maximum differences in Z positive and negative directions together with the positions of these differences.

If there are multiple maximum differences, the one with a smaller position is output.

The maximum difference is detected from all data within the comparison range, regardless of the permissible range setting.

In the above figure, the positive maximum difference is Zt[6]-Zm[6], and the negative maximum difference is Zt[2]-Zm[2].

(g) This function block may cause a Task Period Exceeded error because it calculates the feature amount using a maximum of 20,000 2D shape data points.

To avoid this, you need to set the number of processed data points (*NumProcData*) per period. If you increase the number of processed data points, the time until completion can be reduced. However, doing so increases the processing time per period.

If you decrease the number of processed data points, the processing time per period can be reduced. However, doing so increases the time until completion.

When you decide the number of processed data points, take into account the execution environment, unused time in the task period available when correction is executed, and other factors.

If the number of processed data points is set to 0, the function block execution does not end until all correction and conversion are completed.

If this function block is assigned to the event task, the number of processed data points is ignored and the function block execution also does not end until all correction and conversion are completed.

(h) If *Abort* is changed to TRUE, *CommandAborted* changes to TRUE and the function block execution is aborted.

If *Execute* and *Abort* change to TRUE at the same time, no operation is performed and *CommandAborted* changes to TRUE.

(i) If an error occurs during the function block execution, *Error* changes to TRUE and the function block execution is aborted. For details on the error codes, refer to *Troubleshooting* on page 241.

Additional Information

The time required to execute this function block varies depending on the measurement range, resolution of the 2D shape data, or other factors that determine the amount of processed data.

Re-execution of Function Blocks

If *Execute* is changed to TRUE again while execution is in progress (*Busy* = TRUE), the execution is aborted and the processing is performed from the beginning.

Timing Charts

The timing charts are shown below.

• Timing Chart in a Normal State

Execute	TRUE FALSE			
Done	TRUE FALSE	Γ	, 1 1 1 1 1 1	
Busy	TRUE FALSE			
CompRsIt	TRUE FALSE	Difference	1 1 1 1 1 1	No difference
PosMaxDef	\supset	0.0 Comparison result	0.0	Comparison result
PosMaxDefPos	\supset	0.0 Comparison result	0.0	Comparison result
NegaMaxDef	\rightarrow	0.0 Comparison result	0.0	Comparison result
NegaMaxDefPos	\supset		0.0	Comparison result
CommandAborted	TRUE FALSE——		- 	
Error	TRUE FALSE			
ErrorID	\supset	0x0000	1 1 1	1 1 1 1
ErrorIDEx	\supset	0x00000000	1 1 1 1	1 1 1 1 1 1

• Timing Chart When the Function Block Is Aborted

Refer to Timing Chart When the Function Block Is Aborted on page 190 of Shape2D_Height.

• Timing Chart When an Error Occurs

Refer to Timing Chart When an Error Occurs (Startup Error) on page 191 of Shape2D_Height.

Precautions for Correct Use

Before executing this function block, carefully read the manuals for devices to use and ensure the safety for use.

Troubleshooting

Error code	Expansion error code	Description	Corrective action
0x3CD5	0x0000 0001	The value of Comparison Range	Set a valid real number.
		Upper Limit is not valid.	
	0x0000 0002	The value of Comparison Range	Set a valid real number.
		Lower Limit is not valid.	
	0x0000 0003	A value specified for the compari-	Specify values that can meet the following con-
		son range is not valid.	dition: Comparison Range Upper Limit ≥ Com-
			parison Range Lower Limit.
	0x0000 0004	The value of Threshold (Positive	Set a valid real number.
		Maximum Difference) is not valid.	
	0x0000 0005	The value of Threshold (Negative	Set a valid real number.
		Maximum Difference) is not valid.	
	0x0000 0007	The resolutions do not match.	Set the shape data of the master or target
			again.
	0x0000 0008	There is no shape data in the com-	Set the comparison range or master shape
		parison range. (master)	data again.
	0x0000 0009	There is no shape data in the com-	Set the comparison range or target shape data
		parison range. (target)	again.
	0x0000 000A	The number of data points	Check whether the master 2D shape data is
		(DataCount) of the 2D shape data	created correctly.
		is not valid. (master)	
	0x0000 000B	The number of data points	Check whether the target 2D shape data is cre-
		(DataCount) of the 2D shape data	ated correctly.
		is not valid. (target)	
	0x0000 000C	The resolution (Resolution) of the	Check whether the master 2D shape data is
		2D shape data is not valid. (mas-	created correctly.
		ter)	
	0x0000 000D	The resolution (Resolution) of the	Check whether the target 2D shape data is cre-
		2D shape data is not valid. (target)	ated correctly.

Sample Programming

Program Description

This program compares the master and target 2D shape data in the specified measurement range and calculates the difference.

Main Variables

Name	Meaning	Data type	Default	Description
DIMStart_Feature	Execution	BOOL		2D shape height measurement is started
ValueCompare	Trigger			when this variable changes to TRUE. Assign
				this variable to the <i>Execute</i> input variable of
				Shape2D_Compare.
Compare1	2D Shape	Omron-		Instance of the function block that compares
	Comparison	Lib\DIM_M		the master and target 2D shape data in the
	Measure-	easure-		specified measurement range, and detects
	ment FB	ment\Shap		the difference of the height.
		e2D_Com-		
		pare		
DIMShape2D_Master	Master 2D	Omron-		Set the master 2D shape data. Assign this
	Shape Data	Lib\DIM_M		variable to the Shape2D_Master input vari-
		easure-		able of Shape2D_Compare.
		ment\sSha		
	Townsh OD	pe2D		Out the terrest OD shares date. Assign this
DIMShape2D_Target	Target 2D	Omron-		Set the target 2D shape data. Assign this
	Shape Data	Lib\DIM_M easure-		variable to the <i>Shape2D_Target</i> input vari- able of Shape2D_Compare.
		ment\sSha		able of Shapezb_Compare.
		pe2D		
DIMCompare_Range	Comparison	LREAL		Specify the upper limit of the X-axis range
High1	Range			that is used for comparison. The unit is mm.
	Upper Limit			Assign this variable to the <i>RangeHigh</i> input
				variable of Shape2D_Compare.
DIMCompare_Range	Comparison	LREAL		Specify the lower limit of the X-axis range
Low1	Range			that is used for comparison. The unit is mm.
	Lower Limit			Assign this variable to the RangeLow input
				variable of Shape2D_Compare.
DIMCompare	Threshold	LREAL		Set the threshold range. The unit is mm.
ThresholdHigh1	(Positive			Assign this variable to the ThresholdHigh
	Maximum			input variable of Shape2D_Compare.
	Difference)			
DIMCompare	Threshold	LREAL		Set the threshold range. The unit is mm.
ThresholdLow1	(Negative			Assign this variable to the ThresholdLow
	Maximum			input variable of Shape2D_Compare.
	Difference)			
DIMCompare_Comp	Comparison	BOOL		Changes to TRUE when a difference out of
Rslt1	Result			the allowable range is detected.
DIMCompare_Pos	Positive	LREAL		Outputs the maximum difference in Z positive
MaxDef1	Maximum			direction. The unit is mm. If there is no differ-
	Difference			ence in the positive direction, 0 is output.

Name	Meaning	Data type	Default	Description
DIMCompare_Pos	Positive	LREAL		Outputs the position of the maximum differ-
MaxDefPos1	Maximum			ence in Z positive direction. The unit is mm. If
	Difference			there is no difference in the positive direction,
	Position			0 is output.
DIMCompare_Nega	Negative	LREAL		Outputs the maximum difference in Z nega-
MaxDef1	Maximum			tive direction. The unit is mm. If there is no
	Difference			difference in the negative direction, 0 is out-
				put.
DIMCompare_Nega	Negative	LREAL		Outputs the position of the maximum differ-
MaxDefPos1	Maximum			ence in Z negative direction. The unit is mm.
	Difference			If there is no difference in the negative direc-
	Position			tion, 0 is output.

Ladder Diagram

Compare1						
DIMStart_FeatureValu…	\\OmronLib\DIM_Measurement\Shaj Execute	Done	Compare_Done1			
DIMShape2D Master	Shape2D_Master —— Sh	ape2D_MasterDIMShape2D	Master			
DIMShape2D Target-	Shape2D_Target —— SI	hape2D_Target — DIMShape2D	Target			
DIMCompare_RangeH	RangeHigh	CompRsit DIMCompare	_CompR…			
DIMCompare_RangeL···-	RangeLow	PosMaxDef DIMCompare	_PosMax…			
DIMCompare_Thresh	ThresholdHigh	PosMaxDefPos DIMCompare	_PosMax…			
DIMCompare_Thresh	ThresholdLow	NegMaxDef DIMCompare	_NegMa···			
Compare_NumProcDa	NumProcData N	legMaxDefPos DIMCompare	_NegMa···			
Compare_Abort1—	Abort	Busy Compare_Bus	iy1			
	Con	mandAborted Compare_Cor	nmandA····			
		Error Compare_Erro	or1			
		ErrorID Compare_Erro	prID1			
		ErrorIDEx - Compare_Erro	prIDEx1			

ST

```
//Comparison calculation
Compare1(
  Execute:=DIMStart FeatureValueCompare,
  Shape2D_Master:=DIMShape2D_Master.Shape2D,
  Shape2D_Target:=DIMShape2D_Target,
  RangeHigh:=DIMCompare_RangeHigh1,
  RangeLow:=DIMCompare_RangeLow1,
  ThresholdHigh:=DIMCompare_ThresholdHigh1,
  ThresholdLow:=DIMCompare_ThresholdLow1,
  NumProcData:=Compare_NumProcData1,
  Abort:=Compare Abort1,
  Done=>Compare Done1,
  CompRslt=>DIMCompare CompRslt1,
  PosMaxDef=>DIMCompare PosMaxDef1,
  PosMaxDefPos=>DIMCompare PosMaxDefPos1,
  NegMaxDef=>DIMCompare_NegMaxDef1,
  NegMaxDefPos=>DIMCompare_NegMaxDefPos1,
  Busy=>Compare_Busy1,
  CommandAborted=>Compare_CommandAborted1,
  Error=>Compare_Error1,
  ErrorID=>Compare_ErrorID1,
  ErrorIDEx=>Compare_ErrorIDEx1);
```

Appendix

Referring to Library Information

When you make an inquiry to OMRON about the library, you can refer to the library information to identify the library to ask about.

The library information is useful in identifying the target library among the libraries provided by OMRON or created by the user.

The library information consists of the attributes of the library and the attributes of function blocks and functions contained in the library.

Attributes of libraries

Information for identifying the library itself

Attributes of function blocks and functions

Information for identifying the function block and function contained in the library

Use the Sysmac Studio to access the library information.

Attributes of Libraries, Function Blocks and Functions

The following attributes of libraries, function blocks and functions are provided as the library information.

Attributes of Libraries

No.*1	Attribute	Description
(1)	Library file name	The name of the library file
(2)	Library version	The version of the library
(3)	Author	The name of creator of the library
(4)	Comment	The description of the library ^{*2}

*1. These numbers correspond to the numbers shown on the screen images in the next section, *Referring* to Attributes of Libraries, Function Blocks and Functions on page 247.

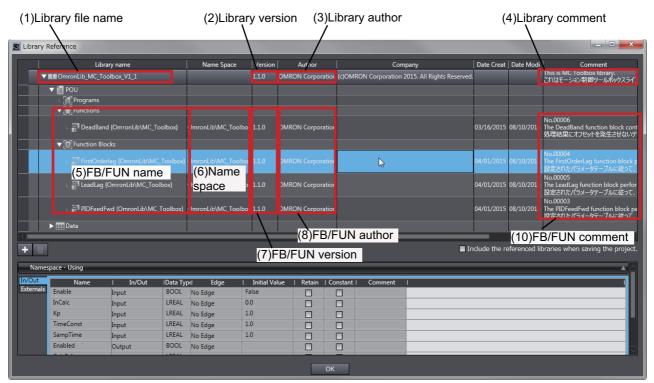
*2. It is provided in English and Japanese.

• Attributes of Function Blocks and Functions

No.*1	Attribute	Description
(5)	FB/FUN name	The name of the function block or function
(6)	Name space	The name of name space for the function block or function
(7)	FB/FUN version	The version of the function block or function
(8)	Author	The name of creator of the function block or function
(9)	FB/FUN number	The function block number or function number
(10)	Comment	The description of the function block or function ^{*2}

*1. These numbers correspond to the numbers shown on the screen images in the next section, *Referring* to Attributes of Libraries, Function Blocks and Functions on page 247.

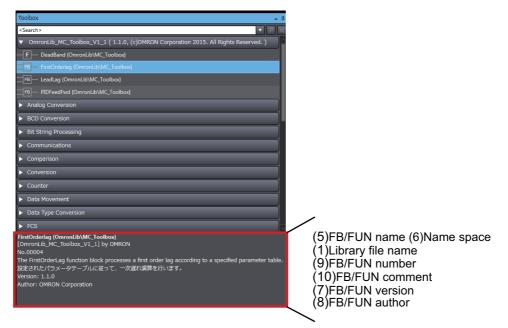
*2. It is provided in English and Japanese.


Referring to Attributes of Libraries, Function Blocks and Functions

You can refer to the attributes of libraries, function blocks and functions of the library information at the following locations on the Sysmac Studio.

- Library Reference Dialog Box
- Toolbox Pane
- · Ladder Editor

(a) Library Reference Dialog Box


When you refer to the libraries, the library information is displayed at the locations shown below.

(b) Toolbox Pane

Select a function block and function to display its library information at the bottom of the Toolbox Pane.

The text "by OMRON" which is shown on the right of the library name (1) indicates that this library was provided by OMRON.

(c) Ladder Editor

Place the mouse on a function block and function to display the library information in a tooltip.

Section0 - Program0 ×	Toolbox 🚽 म
Variables	<search></search>
0 In001 In00	OmronLib_BC_DeviceMonitor_Vi BB DataRecorderCSVWrite (Omron F DataRecorderGet (OmronLib)BC F DataRecorderPut (OmronLib)BC FB LogCompare (OmronLib)BC_De FB MonitorCylinder_Double (Omro
Instance Name: DataRecorderCSVWrite Instance Type: \\OmronLib\BC_DeviceMonitor\DataRecorderCSVWrite Comment: No.00025 The DataRecorderCSVWrite function block writes the records that are stored in the data rec データレコーダに指納されているレコードを、SD メモリカードにCSV 形式で書き込みます。	(6)Name space (5)FB/FUN name (9)FB/FUN number (10)FB/FUN comment

Referring to Function Block and Function Source Codes

You can refer to the source codes of function blocks and functions provided by OMRON to customize them to suit the user's environment.

User function blocks and user functions can be created based on the copies of these source codes.

The following are the examples of items that you may need to customize.

- · Customizing the size of arrays to suit the memory capacity of the user's Controller
- · Customizing the data types to suit the user-defined data types

Note that you can access only function blocks and functions whose Source code published/not published is set to Published in the library information shown in their individual specifications.

Use the following procedure to refer to the source codes of function blocks and functions.

- Select a function block or function in the program.
- **2** Double-click or right-click and select **To Lower Layer** from the menu.

The source code is displayed.

1

📲 Secti	ion0 - Program0	DataRecorderCSVWrite··· ×				-
Variables						
0	Execute	Busy	ataRecorder—In Ou		SizeOfDataRecorder := SizeOfAr CiF WriteDataRecorder.Top > Size ErrorStatus := DWORD#16#1; CheckError := TRUE; ELSIF WriteDataRecorder.Botton ErrorStatus := DWORD#16#2;	eOfD n > S
1	Execute	FCiose.Done	NG /	@MOVI EN ENC WORD#16#0—In Ou	O EN ENO	Erro
2			FC	Open		

Precautions for Correct Use

For function blocks and functions whose source codes are not published, the following dialog box is displayed in the above step 2. Click the **Cancel** button.

OMRON AUTOMATION AMERICAS HEADQUARTERS • Chicago, IL USA • 847.843.7900 • 800.556.6766 • www.omron247.com

OMRON CANADA, INC. • HEAD OFFICE Toronto, ON, Canada • 416.286.6465 • 866.986.6766 • www.omron247.com

OMRON ELECTRONICS DE MEXICO • HEAD OFFICE México DF • 52.55.59.01.43.00 • 01-800-226-6766 • mela@omron.com

OMRON ELECTRONICS DE MEXICO • SALES OFFICE Apodaca, N.L. • 52.81.11.56.99.20 • 01-800-226-6766 • mela@omron.com

OMRON ELETRÔNICA DO BRASIL LTDA • HEAD OFFICE São Paulo, SP, Brasil • 55.11.2101.6300 • www.omron.com.br OMRON ARGENTINA • SALES OFFICE Cono Sur • 54.11.4783.5300

OMRON CHILE • SALES OFFICE Santiago • 56.9.9917.3920

OTHER OMRON LATIN AMERICA SALES 54.11.4783.5300

OMRON EUROPE B.V. • Wegalaan 67-69, NL-2132 JD, Hoofddorp, The Netherlands. • +31 (0) 23 568 13 00 • www.industrial.omron.eu

Authorized Distributor:

Controllers & I/O

Machine Automation Controllers (MAC)
 Motion Controllers

Programmable Logic Controllers (PLC)
 Temperature Controllers
 Remote I/O

Robotics

Industrial Robots
 Mobile Robots

Operator Interfaces

• Human Machine Interface (HMI)

Motion & Drives

- Machine Automation Controllers (MAC)
 Motion Controllers
 Servo Systems
- Frequency Inverters

Vision, Measurement & Identification

Vision Sensors & Systems • Measurement Sensors • Auto Identification Systems

Sensing

- Photoelectric Sensors Fiber-Optic Sensors Proximity Sensors
- Rotary Encoders
 Ultrasonic Sensors

Safety

- Safety Light Curtains
 Safety Laser Scanners
 Programmable Safety Systems
- Safety Mats and Edges
 Safety Door Switches
 Emergency Stop Devices
- Safety Switches & Operator Controls Safety Monitoring/Force-guided Relays

Control Components

- Power Supplies
 Timers
 Counters
 Programmable Relays
- Digital Panel Meters
 Monitoring Products

Switches & Relays

Limit Switches • Pushbutton Switches • Electromechanical Relays
 Solid State Relays

Software

Programming & Configuration • Runtime