SOFTWARE REFERENCE MANUAL

PMAC /| PMAC2

Programmable Multi-Axis Controller
3Ax-602204-xSxx

January 18, 2008

@ DELTA TAU

\\—J—’ Data Systems, Inc.
\

21314 Lassen Street Chatsworth, CA 91311 // Tel. (818) 998-2095 Fax. (818) 998-7807 // www.deltatau.com

Copyright Information
© 2008 Delta Tau Data Systems, Inc. All rights reserved.

This document is furnished for the customers of Delta Tau Data Systems, Inc. Other uses are
unauthorized without written permission of Delta Tau Data Systems, Inc. Information contained
in this manual may be updated from time-to-time due to product improvements, etc., and may not
conform in every respect to former issues.

To report errors or inconsistencies, call or email:

Delta Tau Data Systems, Inc. Technical Support
Phone: (818) 717-5656

Fax: (818) 998-7807

Email: support@deltatau.com

Website: http://www.deltatau.com

Operating Conditions

All Delta Tau Data Systems, Inc. motion controller products, accessories, and amplifiers contain
static sensitive components that can be damaged by incorrect handling. When installing or
handling Delta Tau Data Systems, Inc. products, avoid contact with highly insulated materials.
Only qualified personnel should be allowed to handle this equipment.

In the case of industrial applications, we expect our products to be protected from hazardous or
conductive materials and/or environments that could cause harm to the controller by damaging
components or causing electrical shorts. When our products are used in an industrial
environment, install them into an industrial electrical cabinet or industrial PC to protect them
from excessive or corrosive moisture, abnormal ambient temperatures, and conductive
materials. If Delta Tau Data Systems, Inc. products are exposed to hazardous or conductive
materials and/or environments, we cannot guarantee their operation.

REVISION HISTORY

REV. DESCRIPTION DATE CHG APPVD
1 INCORPORATED V1.17C FIRMWARE ADDENDUM 09/12/06 CP C. WILSON
2 CORRECTION TO DEFINE ROTARY CMND, P. 215 01/18/08 CP S.MILICI

PMAC/PMAC2 Software Reference Manual

Table of Contents

PMAC COMMAND AND VARIABLE SUMMARY 1
INOLES reeeeieiieeeitie e et te e ettt e e ettt e eetaee e e taeee e tteeeeassaeeeassaeeeanssaee e nsaeeaannseeeannteeeeannaeeeansneeeanteeeeantaeeaanneeeeansteeeannsaeenanneeeann 1
DIETINILIONS .. et etie ettt ettt ettt et e et e et e e bt e esbeeeteeesaeeestaeasseeeateaesseeessaeasseeeasaeanseassseesssaensseeassaesseessseensseeanseensss 1
ON-LANE COMIMANASeieutiiiiieeiieeiieeiee et e et ee et e e ete e s bt eebeessbeeasseessseesssaessseassseessseasssaessseessseessseessseesssesssseensseessseensses 1
ON-1N€ GLODAL COMMUAIASc.ooveieeiiieeee ettt et e et et eesbe e s abeeesbeessbeeesbeessbeeesseessbeessseessseesnseenes 1
Addressing Mode COMMEANGSc..eeueeuiiieiiiitiee sttt sttt eae st et et e e s teeteebeeseease e e sesbeeteabeeseeneeneensenes 1
Communications CONIIOl CRATACTETS.cccuiiiiieriieriierieeeteeste ettt esteesreesteesaeeessseessseessseessseesssesssseesseenseesnes 1
General GLlobal COMMANASc.cccuiiieriieiieiieieeee ettt ettt esteeteesb e et e ssaesseesseesseessesssesssesseesseesseessenseesens 2
Global Action COMMANGScceevieriieriieitieieeiereeseesteetestesteestee bt esbeesseeseessaesseessesssesssesseesssesseessenssenssenseessees 2
Global Status COMMANGSeeuieriieitieieeie e steste ettt e steeteebeestessaesseeseesseessesseesseenseenseansasseanseenseessenseenses 2
Register ACCESS COMMAINASc.eeiirieriieiieieeieeteste st ettt et e et e teesteesbeestessaesseesseenseensesnsesseanseanseanseensenseenses 2
PLC CoNtrol COMMANGSccuieiieiieriieiieiieieeiesteseesteeteetesstesseeseesteessesssessaesseenseensesnsesssesseesseenseessesssesseessees 3
Global Variable COMMANGSc.ccccuiiiiiieiiieiiiecieeeie e st e et eseteesveesbeesbeesaeessseesssaessseesssaessseessseessseessseessseanes 3
Buffer Control COMMANASccvieiiiiiiieiieeeie st ettt esteestteesteestaeessbeessseessseessseesssaassseessssessseessseassseessseessesanes 3
MACRO Ring COMMANASeeoueiiiiriieiieiieie ettt ettt te s testee et e et et e eseeeseesseeseeseeneesseesseeseenseenseeneesseensens 4
On-line Coordinate System COMMANGScccccovciiviiiiiieei ettt ettt 4
AXiS Definition COMIMANGScceiiiiiieiiieiieeiee et eiee et etee et eeteeeteeeaee e taeeaeessbbeesseesseeenseesnsseenssessseenseesnes 4
General Coordinate-System COMMANAS.........cc.eoiiiiiriiieiertee ettt et ste ettt eae et entestesbesbesseeseeneensenes 4
Program Control COMMANGScccuerrieriieiiieieiieseesteesteeteseeesteesseeseesbesseesseesseesesssesssesseesseesseessesssesssenseensees 4
Coordinate-System Variable COMMANGScccoieriiiiiirieniieiieteeieeeesteeteeaesteseesseesaeesaessaesseeseesseessesseesses 4
AXIS AtrIbULE COMMANGSeevieiiiieiictieriieteeteete et e e te et e eteesteebeesseesbessaesseesseesseessesssesssasseessensseessesseesses 5
Buffer Control COMMANSc..ccuieiirieriieiieieeie st see ettt e tee e e b e esbessaesseesseesseesseenseessenseenseensesssenseessen 5
On-Line MOtor COMMUAIASccooeuiaeeeeeie e et tee ettt e ettt e et e et e et e e ete e e eaeeete e e eteeeeaeeebeeeaseseseeereeans 5
General MotOr COMMEANSccueevirieriieriierieeiteetesteseesteeteestesseesseeteessesssessaesseenseensesssesseesseanseenseensesssesseensees 5
JOGEING COMMANGS ..ottt ettt ettt et e bt et eateeseess e e bt e st emeeemeeesee st enteeneeeneesneesean 5
RepOrting COMMANGSccuiiiiiiiieie ettt ettt ettt et e bt et et e eseeeseesaeesseenseeneeeneaseenseeneeeneenneennean 6
Buffer Control COMMANASccvieiieiiiierieeeieeste ettt esteestteesteestaeesseessseessseessseesssaassseessssessseessseassseessseesseeanes 6
Motion Program COMIMANGSccc.iiiiiiiiieiieteee ettt ettt et e b e b e bt et satesat et e e bt e beestesbeesbeenbeenbeennesseenaee 6
IMOVE COMIMANGScuvievieeriieieieeeeteesteeteeteeseeteesteeteeseesseeseesreesseesseesseasseassessesseesseessesssesssesssesseenseesseessesssessees 6
MOVE MOAE COMMEANGSoooviirieiiieeiietieitiecteeteeteeee st e steesteesteesseeseesteebeesseesseassesseesseesseesseessesseenseessesssesssesses 6
AXIS AtrIbULe COMMANGSiovieiiieiieitiesiieieeteete ettt et e esteeseesteesbeesbeessessaesseesseesseessesssesssasseesseessenssenseenses 7
Move AttribUte COMMEANGSceervieiieieiieiieiteerieeteeteeteesteesbeesbeessesseesseesseessesssesseesseesseessesssesseesseesseessenseessees 7
Variable AssigNment COMMANGScccverieiieriieriieieeteetestteteeteeaeseaesseesseeseensesseesseesseenseesseessesseesseessesseessees 7
Program LogIC CONIIOL.........ccuiiiieiieieeieeete ettt ettt ettt ettt e et e s st e st aesseenseensessaesseesseenseenseensesnsenseesenn 7
Miscellaneous COMMEANAS.........cueeuiiriierieeiiesiesieste et ete et e sttesteebeestessaesseesseeseensesseesseanseenseensesseenseansesssesseenses 8
PLC Program COMIMANGS.coeuieitieiieieeieeie sttt et eee et e stteste e e esteeseesseesseeseaneeemeeeseesseaseenseenseeseesseeseeseensesneesnes 9
CONAILIONS........ccoeeei ettt e et e et e e bt e e et e e e ab e e eab e e e tb e e abeetbe e sseetseessaeentseensteestseessaeenteeenseeennes 9
ACHIOMS ..ottt e ettt e ettt e e e s bt e e e ts e e e e asaeaeentb e e e eatb e e e eatba e e e eaht e e e entb b e e e atbeeeentbeeeenbteeeennaeaeentreaenn 9
PMAC I-Variable SUIMIMATYcuiitiiieitetieieeeieierteete sttt eeeeetest et e tesseeteeseeseessens e seaseaseaseaseessensansesesseabesseaseeneansensens 10
GENETAL DIVISIOMS ...ttt ettt et e ettt e s bt e et e e s tb e e et e e tbeesabeesab e e sseetbeessseesbeetaeentseessseesbeensseensseas 10
GLODAL I-VATIADIES ...ttt ettt ettt et e et e et e et e e abeentteatbeentseensbeesbeensseensseas 10
Motor I-Variables X = Motor Number (X, X = 1 10 8} ..vviiiiiiiieeieiieieeie ettt ettt e e ssaennees 11
Motor Definition I-VaAriQBIEsc.cc.ociecuieiiieieiiecie ettt ettt se ettt esbeessesseeeneeeaeene e 11
MOLOF SAFEty I-VATIADIESc..oceeeeeiciiiiieieeee ettt ettt ettt eteesbe b e saesneeeneesaeene e 11
MOTtor MOVEMENT I-VATIADIES..............cccooeeveeeeeiiieeeee e ettt 11
Motor Servo Control I-Variables {Standard PID AIOFIthim)}ccccooiioiiiiioiiiiniiininiieiceeeeeeeee e 12
Motor Servo Control I-Variables {Option 6 Extended Servo Algorithm only}c.ccoccevvvivincniniinnnn, 12
Motor Commutation I-VAVIADIEScc..cccooviieieiiiiieiiee e et ettt ettt ae et e staeesate et eesabeesabeenaneas 13
FUPther MOtOr I-VAVIADIES...............c.ooocueiiiiieiiieeeee ettt ettt e et e et e e tbe e stbeesabeeseseenaneas 13
Coordinate SYStem [-Variables.........c.oiuiiiiiieii ettt sttt ettt ettt et eneeeneenneas 13
PMAC(1) Servo Interface Setup [-VariabIes.........ccueeciiieriiiiiieeiie ettt ettt ste e ae e seveesaeessaeessaeessseenssaenns 14
PMAC?2 Servo Interface Setup [-VariabIesc..ccuiiiiiiiiiiiiieiicieeeese ettt eaeesve e eeveesbeesnesrseseees 14

Global Hardware Setup I-VAriADIEsc.c.ccoovueiiiiiiiiiieeeeee ettt ettt saeeene e eens 14

Table of Contents i

PMAC/PMAC?2 Software Reference Manual

Channel n Hardware Setup I-VaAriQbIesc..ccccoueiiiiiiiieiieiieeii ettt eaeene e 14
Ultra-Lite/Supplemental Channel Hardware Setup I-Variables....................cccoeeieeiiciiiiieniienieiieieseeeeeeieannes 14
MACRO SUPPOTt I-VATIADIES......ceeeeiieiieiieieeie ettt ettt et e et esaesseesseeseessesnsesseesseenseenseenseenseensessaensees 15
PMAC Er10r COAE SUMIMATYecuveiieiieiieieeteeiestesitesteeteesseessesseesseesseessesssesssesssesseesssanseenssessesssensesnseensenssenseessens 16
PMAC SYNtax NOTESeouiiiiiiiiiiiitieir ettt st st 17
PMAC I-VARIABLE SPECIFICATION 19
GLODAL T-VATTADIES ...ttt ettt ettt e b e et b et et e st et besaeeae et ennenaens 19
10 Serial Addressing Card Number {PMAC(1) w/Flex CPU, PMAC2 ORIy}ooooveviiiiiiiiiet e, 19

I Serial POFt MOGE.............cc.iieieii ettt ettt ettt 20

12 Control Panel DiSADIe...................ccccoooiiiiiiiiieiee ettt et 21

13 IO Handshake CORIFOL...............c.cccoouiiiiiiieeeeee ettt ettt 21
14 Communications INEGIItYy MOME..................c..ccoeeieiuieiiiiiesieeeieeeie ettt ettt sae e 23

L5 PLC PrOGrAmS OR/Offcooueieioiiiiiiieeieeeie ettt ettt ae ettt et sb e s et st enaesaeene e 24
16 Error REPOFLING MOCe...............coooiiiiiiiiiiieiiiieeee ettt 25
17 In-PoSition NUMBEF Of CYCIESccccccuioiiiiiiiiii ittt 26
18 Real Time INterrupt PeFiOdc.cccciiiiiiiiiiiiiiiiee ettt 26
19 Full/Abbreviated Program LiSting FOVMcc.ccciiiuiiiiiieee ettt ettt 27
110 SEIVO INICFFUDE TIMIEoeeieiee ettt ettt ettt ettt ettt et e e et e eneenneeeeenes 28
111 Programmed Move Calculation Time................c.occueiiiiiiiiie ittt 29
112 Jog-10-Position Calculation TImMe..................ccocoiiiiiiiiiiie ettt 30
113 Programmed Move Segmentation TiMe.................c.ccccoviiieiieiiiaieeeeeeieeee ettt 30
114 Auto Position Match on Run ENaDle..................coccoooiiiiiiiiiiiiiiiiiie ittt 31
115 Degree/Radian Control for User Trig FUNCHIONS.c...ccoccueieeieeieiiieeeesieesieeee e esesseesease e ennens 31
116 Rotary Buffer ReqUest ON POIREcc.ccccovueeiicuiiiieeieeie et ettt sae et saeesse s snseesseenaessaens 31
117 Rotary Buffer Request Off POIREc..cc.ocoovueiieiieieeieeieeeie ettt sse s ssseesaessaens 32
118 Fixed Buffer Full Warning POIREcccccoiiiiiiiiiiieiieieeeeee ettt ettt 33
Data Gathering [-Variablesccocieiiieiieiieie ettt ettt et e bt e b e esesseesseessee s eenseenseenseensesseenseen 33
119 Data Gathering Period (in ServO CYCIES)............cociiciioiiciiiiniiiiiiiisteeeee ettt 33
120 Data Gathering Selection MaASK.................ccoocoiiiiiiiiiiiee ettt 34
2] Data Gathering Source 1 AAAressccoocoieeiieiieiiee et 34
122-144 Data Gathering Source 2 thru 24 AdAreSSes.............ccoooueiiiiiiciiiiieiieee et 35
145 Data Gathering Buffer Location and MOode.....................cccccoveiiioiiiiiiiieiieieeeeeese st 35
146 CPU Frequency Control {PMAC W/Flex CPU ORIV}cccoceoiiiiiiiiiietet et 36
147 Address of Pointer for Control-W COMMANG.cc.cccevvueiiiiiieiiiieiieeiieeie e 36
148 DPRAM Servo Data ENGDIeccoooeiiiiiiiiiiit ettt 37
149 DPRAM Background Data ENable...................cc.cccccooeiiiiiiiiiiiaiiieiieiee et 37
150 Rapid Move Mode CONIFOLccccuouiiiiiiiiiiit ettt ettt 38
151 Compensation Table ENable...................ccccccuoiioiniiiiiiiiiiiiiiieeeeeee sttt 38
152 V Program HOIA SIEW RALE...............c.cccceviiiiiiiiii ittt 38
153 Program Step Mode CONIFOL...............c.cccoiuiiieiieiieee ettt ettt 39
154 Serial Baud Rate {PMAC(1) w/Flex CPU or PMAC2 ORIY}.........ccoeoiiieiieieeeeeeeeee e 39
155 DPRAM Background Variable Buffers ERaDIe.................ccccccoooeioiiioiiiiiiiiieiieeiee e 40
56 DPRAM ASCII Communications Interrupt ENADIe..................cccoevcuiiviuieiiiiiiieecieieie e 41
157 DPRAM Binary Rotary Buffer Enable................cc.ccccoooaiiiiiiiiiiiie ettt 41
158 DPRAM ASCII Communications ENGDIe...............cccccoooivviioiioiiiiiiiit ettt 42
159 DPRAM Buffer Maximum Motor/C.S. NUIDETcc.ccccoceivueieeiiiieeieeeeeeieeeie e eseessesseese e 42
160 Auto-Converted ADC Register Address {PMAC(1) ORI}c.ccoooviviiiciieiieieiieeeeeeeeee e 42
161 Number of Auto-Converted ADC Registers {PMAC(1) ORIy}ccovvioiiviiiiiieciiieeieeeeeeeee i 43
162 Internal Message Carriage Return CONIFOL...............cccccccieouiviiiniiiiiiiiiieeee ettt 44
163 Control-X ECho ENGDIe...............c.cccoccoiiiiiiiieiiei ettt 44
164 Internal Response Tag ENGDIe...............ccccoiviiiiiiiiiiiiiiiiiiiiit sttt 45
165 User-Configuration VAriQDIecccoouiiiiiieii ettt ettt 46
166 Servo-Channel ADC Auto-Copy Disable {PMAC2 OnLY}ccoooeiiiiieiieiieeeeeeeee e 46
167 Modbus TCP Buffer Start AAAIess...............cccoooeiiiiiiiiiieeeeeeee ettt 47
168 Alternate TWS INDUE FOTIAL............c..oocueiiieeeiieeiieeieeetee et et e et e s aeesaeesbeessseessbeessseessbeessseessseensseeies 47

ii

Table of Contents

PMAC/PMAC2 Software Reference Manual

169 Modbus TCP Software Control Panel Start AAAress................cccccoovveviecieciaiiinieiieeeieeieseeie e 48
170 — 177 ANGlOG TADIE SUUP LINES...........c..cccvecveiieiieiieeieeeieeeie ettt ettt be et eaeene e 48
18x Motor x Third-ReSOIver Gear RALIO.c...cceeeiueeeieeiiieeeieeeeee e 50
189 Cutter Comp Outside Corner Break POinL...............c.cccciciiciioieiiriiiiiit ettt 51
190 MU AFC ARG ...ttt ettt 52
19x Motor x Second-ReSOIVEr GEAT RATIOc..cccueeeiuiieiieiii e et saveesibeenaaee e 52
199 BACKIASI HYSTEF@STS ..ottt ettt ettt ettt et et e e be e teenaeenteeneeeneeeneenneens 54
LY (01103 b € BN TG -1 o) (<] RSRU RS 54
Motor Definition I-VariabBIeso.coociiiioiiieieie ettt 54
IXO0 IMOEOT X ACHIVALE ..ottt ettt ettt ettt ettt st e bt et e bt e st e eb e s bt e s bt e bt embeemtesaeesbeenbeenseenneans 54
Ix01 Motor x PMAC-Commutation ENableccccooiiiiiiiiiiiiiieeceeee st 55
1x02 Motor x Command OUPUL AAAIESSeevveeiieriiiiiiiesierieere et eee st e sreereetesaeseeesaeesseessessseesaesseesseens 55
Ix03 Motor x Position Loop Feedback AdAIesscceviiriieiiiiiiieciieiieieeie sttt 58
Ix04 Motor x Velocity Loop Feedback AdAIess.........couvviirieriieiiieiieiesieeeie ettt ens 60
Ix05 Motor x Master (Handwheel) Position AddIessceeverieriiecienienieniene et 61
Ix06 Motor x Master (Handwheel) Following Enable............ccccceeiirieriieiiieieiiesieeee e 62
Ix07 Motor x Master (Handwheel) Scale FACtOTc.cccviiiiiiiiieiieeis et 62
Ix08 Motor X Position Scale FACIOTccuiiiiiiiiiieiieciee ettt ens 62
Ix09 Motor x Velocity Loop Scale FACtOrcoouiiiiiiieiicieiee ettt 63
Ix10 Motor x Power-Up Servo Position AdAIESSccecvveerieeiiiieeiiieiiieeieecieeeiieesieesveesveesveesseeessveenenes 64
MOLOF SAfety I-VAFIADIESc.ocooeiiiiiiiieeeee ettt ettt ettt eee e 69
Ix11 Motor x Fatal (Shutdown) Following Error Limit...........cceceeieeieiininine e 69
Ix12 Motor x Warning Following Error Limitccccccverieriieiieiieieeeiecie et se e eae s seesveesveene e 71
Ix13 Motor x Positive Software Position Limit.........c.ccoceeiriiiieniininiiiieeeeee e 72
Ix14 Motor x Negative Software POSTtiON LIiMitcccoocierieriieiieiinieiieieeie et eve e seesae e es 72
Ix15 Motor x Deceleration Rate on Position Limit 0r ADOIt.........ccevieriiiierieieie e 73
Ix16 Motor x Maximum Permitted Motor Programccccceerieiiieiiininniesiee e 73
Ix17 Motor x Maximum Permitted Motor Program Accelerationccovevevvenieviieienienieieeie e 74
Ix19 Motor x Maximum Permitted Motor Jog/Home Accelerationccoceveereereereenienieeieeieeieieans 75
MOtor MOVEMENT I-VATIADIES..............cccoeiieiaiiiiiieeee ettt et e b et e et e e sabeesaseenaneas 76
Ix20 Motor x Jog/Home Acceleration Timeccecueruieriiiieiieieeieeie et e e ene 76
Ix21 Motor X JOZ/HOmME S-CUIVE TIMEeoiuiiiiiiiiiiiieniteieeie ettt sttt et st e e e eas 76
IX22 MOtOT X JOZ SPEEA.......eeiiiniieiieeiteet ettt ettt ettt et s bt e b e bt et e saesaeesaeesbeeneeenteens 77
Ix23 Motor x Homing Speed and DIrCCHONccecuiervieiieieeiieriieiieieeteseesieesaeeveseeeseeesseesseessesssessaesseens 77
[x24 (ReServed fOr FULUIE USE) ...cuiciieieiieiieiieiecie sttt ettt ettt e steete e b e esbestaesseesseesseessessaesseesseenseessenns 77
Ix25 Motor X Limit/HOME FIAZcccoiiiiiieiieiececieee ettt s s be e enne e 78
[X26 MOtor X HOmME OfFSELcc.eiuiiiiiiiiiiiniiec ettt ettt 82
Ix27 Motor X Position ROIOVET RANGE.......cc.oeciiiiiiieiieiicit ettt ens 82
Ix28 Motor X In-position Bandccoeieiiiiiiiiiiiiie ettt 84
Ix29 Motor X Output/First Phase OffSetcccoeoiiioiiiiiiieii et 84
S€rVO CONIOL I-VAVIADIES............ccov ettt ettt et e e e abe e e be e etreeeebeesaseeesbeeeaseeans 86
Ix30 — Ix58 Motor x Extended Servo Algorithm Gains {Option 6 firmware only}ccceveevveiinennenne 86
Ix30 Motor X PID Proportional GaiNl..........c.eeecueeriieriieiiieiieeseeesteesieeeseeeeieeeeeeesteessaeenseesnsaessseesssessnseeas 86
Ix31 Motor X PID DerivatiVe GaiN.......c.coueiuiiriiiiiiieiiesieeit ettt sttt et et s see e e et ens 87
Ix32 Motor x PID Velocity Feedforward Gain............coooiiiiiiiieieeeeee et 88
Ix33 Motor X PID INte@ral GaiNccceevvieiieiieiieiiesieesieesteeteeeteeteesteeseessesssessaesseesseesseessesssesseesseessesssenns 88
Ix34 Motor X PID Integ@ration MOME.........ceeviiiiriiiiiieiieiieiesieete et te st te e te e ae e saeesaeesseesaesseensaenseens 89
Ix35 Motor x PID Acceleration Feedforward Gaincocevieieiienieniniiiiceeeeece e 89
Ix36 Motor x PID Notch Filter Coefficient N1cccccociriririnirieiiieniieneeesiceeetene e 89
Ix37 Motor x PID Notch Filter Coefficient N2ccccocriririiirieiiieniese ettt 90
Ix38 Motor x PID Notch Filter Coefficient D1ccccociriiiiiiiniiiiiinineeeeeeee e 90
Ix39 Motor x PID Notch Filter Coefficient D2ccooiiiieiiiieeeeeee e 90
Ix40 - Ix56 Motor x Extended Servo Algorithm [-Variables...........ccoccoiiiiiiiiiiiii e 91
Ix40 Motor x Net Desired Position Filter Gain {Option 6L Firmware Only}ccccoociiviiininneienennne. 91
MOLOF S€rVO LOOP MOTIfIETS..........oeeeeeeeeeeee ettt ettt ettt ettt e 92
Ix57 Motor x Continuous Current LAMit.........ccoouiiiiiiiniiiiiii et 92

Table of Contents iii

PMAC/PMAC?2 Software Reference Manual

Ix58 Motor x Integrated Current LIMit...........cccveeiiiciiiiierienieie ettt ereeaesaeseesaeeseesaesseesseensaesseens 93
Ix59 Motor x User-Written Servo/Phase ENablecocooiiiiiiiiiiiniiiiiieeeece e 94
Ix60 Motor x Servo Cycle Period EXIENSIONcc.eecvieiiiiiriieiieiieie et sneeseeeneens 95
Ix61 Motor x Current Loop Integral Gain {PMAGC2 0nly} ...cc.oeovieiieieiieiieieeie et 95
Ix62 Motor x Current Loop Proportional Gain (Forward Path) {PMAC2 only}......cccccvevvenienverieeiennnnns 96
Ix63 Motor X Inte@ration LAMIt........ccoeiiiiiiieiieie ettt ettt st sttt e e e e e e ens 96
Ix64 Motor x Deadband Gain FACOTcocuiiiiiiiiieiieie ettt st 97
IX65 Motor X Deadband SIZe..........cccueiuiiiiieiiieiiee ettt ettt ae et ens 98
Ix66 Motor x PWM Scale Factor {PMAC2 ONLY }...c.ooiiiiiiiieieieeese e 98
Ix67 Motor x Linear Position Error LIMitccooiiiiiiiiiiiieieieieeeste et 98
Ix68 Motor X Friction Feedforwardcooi oot 99
Ix69 Motor x Output Command LiMit.........c..ccerieriierieriiiiieiesieseese et ereeeeseesee e esseesesseesseesseesseesseens 99
COMMULALION I-VAFIADIESccoovviiiiiiiiiieiieeeeie ettt ettt ettt be e nseenseenees 102
Ix70 Motor x Number of Commutation Cycles (N)ccccieeuireiirienieieieeieeeeeee et 102
Ix71 Motor x Encoder Counts per N Commutation CYCIES........ceevverierierieniieiieieeieeieseesieesie e 102
Ix72 Motor x Commutation Phase ANGIEcccueiiiiiiiiiiieieiee et 103
Ix73 Motor x Phase Finding Output Value..........ccooiiiiiiiiiiiieeee e 104
Ix74 Motor X Phase FInding TImMec.cecuiiuieiiiiiieiieie ettt e 104
Ix75 Motor x Power-On Phase Position OffSetcccooiieiiiiiiiiieieeee e 105
Ix76 Motor x Velocity Phase Advance Gain {PMAC(1) Only}.......ccoceeiriiiieiiiniieneieceeeeeeeeee e 107
Ix76 Motor x Current-Loop Proportional Gain (Back Path) {PMAC2 only}......ccccooeeririniniinieieene 107
Ix77 Motor x Induction Motor Magnetization CUITENE..........cocuerieriieriieiiieienieniten ettt 107
Ix78 Motor X Induction Motor SIP GaIN........cceevuiriirieiierierieeie et see sttt er e e eree e e e eseesessaeseaenens 108
Ix79 Motor X Second Phase OffSet.........cceiiririiiiiiieieeeee e 109
IX80 MOtOr X POWET=-UP MOGEccoieeiieiiiieiieiecie ettt sttt ettt e ess e st e beebeessaessessaessaenns 109
Ix81 Motor x Power-Up Phase Position AddIesscccevieruiriirieniieiieie et 111
Ix82 Current loop Feedback Address {PMAQC2 ONlY} ..ccueovieiieiiiiieierieieeeeee e e 116
Ix83 Motor x Ongoing Phasing Position AddIesscccevierieriieiiieieeiesieeee e 117
Ix84 Current-Loop Feedback Mask Word {PMAC2 Only}c.ooovveiiiiiiiiieieeeeeeeeee e 118
FUrther MOtOr I-VAVIADIES...............c..cccuviiiieeieecie ettt et ettt ettt e et e et eeaeeebeeeabeeenrs 119
Ix85 Motor x Backlash Take-up Rate.......c.ccoiiiiiiiiieiiii e 119
Ix86 Motor X Backlash SiZeocooiiiiiiiii e 119
Coordinate System X [-Variables..........ccuoouiiiiiiii ettt ettt st see bt be et ese e naenes 120
Ix87 Coordinate System x Default Program Acceleration Timeccveveeiereeniierieeciesieseesie e 120
Ix88 Coordinate System x Default Program S-Curve TIimecccoevveeieeieniieriieiieieeeeseeieeee e 121
Ix89 Coordinate System x Default Program Feedrate/Move Time.........c.ccevveviieciiecienienieneeieeie e 122
Ix90 Coordinate System X Feedrate Time UnitS.........cccevoverieriieriieiieiesiereeie et eve et 122
Ix91 Coordinate System x Default Working Program Number.............cccoecvivieniiniinenece e 123
Ix92 Coordinate System X Move Blend Disable..........ccccverieriieiiiiiiierieiecee e 123
x93 Coordinate System x Time Base Control Register Address..........ocoveerierieiiniienienieeee e 123
Ix94 Coordinate System X Time Base SIeW Ratecccccoviiiiiiiiiiiieeeee e 124
Ix95 Coordinate System X Feed Hold SIeW Rate.........ccoooiiiiiiiiiiii e 125
Ix96 Coordinate System X Circle Error LImit........coocoiiiriiiiiiiiiinieieeeieeee e 125
IX97 (ReServed fOr FUUIE USE) ...ccvicviceiieiiiciieiieie ettt sttt et et ettt veebe b e s b e essestaesaeesbeesseenaeennenes 126
Ix98 Coordinate System x Maximum FEedrateccoouerieiiiiniiiiieieeee e 126
IX99 (Reserved fOr FULUIE USE) ...ccuiiiieeiieiiiciieiieieeie ettt ete ettt steebeesbeesseesaesssesseesaessesnsessnenens 126
PMAC(1) Encoder/Flag Setup [-VariabIes............cccueviieriieciiiieniesieie ettt ete e seeeetee e eseessesaesseeseessessnesens 126
1900, 1905, ..., 1975 Encoder n Decode Control “Encoder I-Variable 0” {PMAC(1) Only}ccoeeuvenenee. 126
1901, 1906, ..., 1976 Encoder n Filter Disable “Encoder I-Variable 17 {PMAC(1) Only}.....c.ccveveveernnnnee. 128
1902, 1907, ..., 1977 Encoder n Position Capture Control “Encoder I-Variable 2” {PMAC(1) Only}......... 128
1903, 1908, ..., 1978 Encoder n Flag Select Control Encoder I-Variable 3 {PMAC(1) only}...................... 130
1904, 1909, .., 1979 — (Reserved for Future Use) {PMAC(1) Only} ...oooieiiiiiiiiiiieieceeeeeeeee e 130
PMAC?2 Encoder/Flag/Output Setup [-Variablescoeiiiieiieiieeee e 131
Global / Multi-Channel ASIC I-VaAriQbIesc.ccouooveeieceiieiieecie ettt 131
1900 MaxPhase and PWM 1-4 Frequency Control {PMAC2 only}ccceoeeoieiieiiienineiceeeceeeeeeee 131
1901 Phase Clock Frequency Control {PMAC2 ONLY} ...cc.eiuiiieiiiiieiiesieeiceeeetee e 132

Table of Contents

PMAC/PMAC2 Software Reference Manual

1902 Servo Clock Frequency Control {PMAC2 ONLY} ..c.coovieiieiiiiiiiecieseee et 133
1903 Hardware Clock Control Channels 1-4 {PMAC2 Only}coovvieiiiiieieiieieeieeieeee e 134
1904 PWM 1-4 Deadtime / PFM 1-4 Pulse Width Control {PMAC2 only}......cccecvvvvrcienienieriieieene 136
1905 DAC 1-4 Strobe Word {PMAC2 ONLY} ..cuiiiiiiiieieiiesiere ettt es 136
1906 PWM 5-8 Frequency Control {PMAC2 ONLY}ccveviieiieiieieeieeieeee et e 137
1907 Hardware Clock Control Channels 5-8 {PMAC2 Only} ...ccoevieiiiiiiniiieieeeececee e 137
1908 PWM 5-8 Deadtime / PFM 5-8 Pulse Width Control {PMAC2 only}.......ccecceevirienienieieeee 139
1909 DAC 5-8 Strobe Word {PMAC2 ONLY} ..cuiiiiiiiiiieiieeieieee ettt s 139
Channel-Specific Gate Array I-VariQbIes.................ccccooioiiiiioiiiiiieieeeeee ettt 140
19n0 Encoder/Timer n Decode Control {PMAC2 Only} ...cc.oeieiiiiiiiiiieceeeieeeee e 140
I9n1 Position Compare n Channel Select {PMAC2 0nly}ccoooueiiiiiiniiiiiiieee e 141
19n2 Encoder n Capture Control {PMAC2 ONLY} ...c.oocviiiiiieiieieeieeee ettt 142
19n3 Capture n Flag Select Control {PMAGC2 ONLY} ..cveviiiiiiiiiieiiciecieeeeeeeee et e 143
I9n4 Encoder n Gated Index Select {PMAC2 ONLY} ..ccueeviieiiiiiiieiieieeeeeee et 143
I9n5 Channel n Encoder Index Gate State/Demux Control {PMAC2 only}cccoevveievienieniienirene, 144
9n6 Output n Mode Select {PMAC2 ONIY}...ooiiiiiiiiiieiieeeeeee ettt 144
9n7 Output n Invert Control {PMAC2 ONLY} ...eoiuiiiiiiiieiee e 145
9n8 Output n PFM Direction Signal Invert Control {PMAC2 only}cccoevieiieiiiiiiieieeeeeee e 145
9n9 Channel n Hardware-1/T Control {PMAC2 ONLY} ...cooiiiiiiiiiiiiiieieeee e 146
PMAC?2 DSPGATE2 [-VariabIesccueiuieiieiieieiesiiee ettt ettt ettt et ebe st e st et et e sbesteebeeaeeseeneeneenes 146
1990 Handwheel 1 Decode Control {PMAC2 Only} ...ccooiiieieieieieiesee e 146
1991 Handwheel 2 Decode Control {PMAC2 Only} ..ccoiiiieieieieeieecceee e 147
1992 MaxPhase and PWM 1*-2* Frequency Control {PMAC2 only}ccoeovveviierinienienieieeieeie e 148
1993 Hardware Clock Control Channels 1¥-2% {PMAC2 ONlY} ..ooovevvieiieiiiieiieieciecee e 149
1994 PWM 1*-2* Deadtime / PFM 1* Pulse Width Control {PMAC2 only}....ccccccevveerircievieneerieennne. 151
1995 MACRO Ring Configuration/Status {PMAC2 0nlY} ...ccveviiiiiiiienieieieeieeeeeeeee e 152
1996 MACRO Node Activate Control {PMAC2 ONLY} ..ceeviiriiiieiieieeieeieeeee e 153
1997 Phase Clock Frequency Control {PMAC2 ONLY}ooovieiieiiiiieieeieeeeee et 154
1998 Servo Clock Frequency Control {PMAC2 ONLY} ..c.ooiiiiiiiiiiieeeeet et 155
1999 (Reserved fOr FULUIE USE)cccuiieiiieeiiiciie ettt ette ettt ettt e ve e s ve e s ve e s tbeeseveeseseesssaessseassseensnas 156
MACRO Software Setup [-Variables..........ccoiiuiiiiieieieseeee ettt et be e ee e ses 156
11000 MACRO Node Auxiliary Register Enable..........cccoooiiiiiiiiiiiiiieeee e 156
11001 MACRO Ring Check Period.coeeiiiiiiiiiiieiee ettt e 157
11002 MACRO Node Protocol Type CONtrol........ccoccvieciieieiieiieniieieeieseeeieesreere e eseesaesreesseesessnesns 157
11003 MACRO Type 1 Master/Slave Communications Timeoutccceecverveerierieerienceeiieneenieeneenns 158
11004 MACRO Ring Error Shutdown COUNt.........c.cccviiierieriieiieieceeeeere e sae e sae e ens 158
11005 MACRO Ring Sync Packet Shutdown Count.............ccoeceereerieieriienieneeie et 159
11010 Resolver Excitation Phase Offset {Geo PMAC ONly} ...cc.ooviriieiiiiiieiieieeeeeeee e 159
11011 Resolver Excitation Gain {Ge0 PMAC ONLY}.....coooviiieiierieiiee et 160
11012 Resolver Excitation Frequency Divider {Geo PMAC only}ccoooveiiiieiieiieeeieeeeeee 160
11013 Motor Temperature Check Enable {Geo PMAC only}ccooveiieiiieiinieieeeeeeeeeee e 160
11015 SSI Clock Frequency Control {New, Geo PMAC 0nly} ...c.oocvveiieiiiieiieieeieeeseeeee e 161
11016 SSI Channel 1 Mode Control {Geo PMAC 0nly} ...ccoveiiiiiiiiieiiieeeee e 161
11017 SSI Channel 1 Word Length Control {Geo PMAC only}cccoooirieiiiiiiiiieceeeceeeee 162
11018 SSI Channel 2 Mode Control {Geo PMAC 0nly} ...ccouiiiiiiiiiieiiieieeee e 162
11019 SSI Channel 2 Word Length Control {Geo PMAC only}c.cccoeviiviieviieiieiicieneeieeeee e 163
11020 Lookahead Length {Option 6L firmware only}.........ccccceveieriinieniieiieienieieee e 163
11021 Lookahead State Control {Option 6L Firmware Only}ccccocvevvieiinienieiieiecie e 165
PMAC ON-LINE COMMAND SPECIFICATION 166
CSCONTROLAA ...ttt ettt b et st ettt et et et e st et ss et ens et sse s 166
SCONTROLAB> ...ttt ettt ettt ettt ettt a et ettt ettt e s eaeese s ensess et e s s 166
CCONTROLAC ...ttt ettt ettt e s st e b b e e b et et e st esb e s et e e beeae b e eseeneensensaaseneannas 167
CCONTROLAD> ...ttt ettt ettt et st b b e b ettt e st e st e s et e eaeeaeebeeneentensensaaseneennas 167
CCONTROLAF™ ..ottt ettt a s et b et e e e et e e ns et e b e e et eee bt e et ese e st entenseneeees 168
CCONTROLAG™ ..ttt ettt ettt a s et b et e e et m e nt e et e e bt eae b e eeeeneeneaneenseneeees 168

Table of Contents

PMAC/PMAC?2 Software Reference Manual

SCONTROLAH> ...ttt ettt bttt et ettt e ettt ettt ettt s e et et e neenes 168
CCONTROLATZ ..ot e et ettt ettt ettt ea ettt ee st ent et e e 168
CSCONTROLAK™ ...t ettt ettt ettt s e s as ettt et s et e s s eseeneeasess et esse s eens 169
SCONTROLAL> ..ottt ettt ettt b b a e s ettt ettt e st eseeneetsens et esse s ens 169
CSCONTROLAM> ...ttt ettt ettt b s ettt et ettt e s s esseneeas st et sse s nas 171
CCONTROLAN ...ttt ettt ettt a st e b b e e b et e st e st enb et et e eaeeae b e eseeseensenteaseneanas 171
CCONTROLAO> ...ttt ettt ettt s et b e b e a et st e st e s et e eaeeae b e ese st eneentenseneaeas 172
CCONTROLAP> ...ttt a et a et a s e bt b e b bt et e st e st et et e aeeae b e eneeneessensaaseneaanas 172
CCONTROLAQD ..ottt ettt et e et s s e et e b e et e et et e e m e eat e s e b e e et eee bt e et eseeneeneenseneeees 173
CCONTROLAR™ ..ottt ettt ettt st a et b et e e et e e st e nt e et e et eee bt e et ene e st ent e e e ees 173
CCONTROLASD ...ttt ettt ettt h et e s et a e bt et e et e ee e es e em e e e e b e st eneeseentenaeeeeees 174
CCONTROL-T> ..ottt ettt bttt e e ettt et ea ettt et en e et enteneenes 174
CCONTROL-U> ...ttt ettt e h et e ettt et ettt ettt n et e e e s 174
SCONTROLAV> oottt ettt ettt ettt ettt a e s ettt ettt eeae et eseensens st et sse s e 175
CCONTROLAX ..ottt ettt ettt ettt a et ettt et et et e b s eseeasensens et sse s 175
SCONTROLAY> ..ot ettt ettt ettt bt s ettt st et e b e ebeeaeeseeasens st et et s 176
CCONTROLAZ> ...ttt et ettt at s e st e b bttt e st e st et et e aeeae b e eseentessensenseeeannas 176
B ettt et et ettt e ehe st et et e ebe ekt ekt eR e ea s en s et et e s e ekt eR e Rt eA s et e b et e ke eR e en s ensen s e b e ete b e ese st st entenbeeennas 177
FCOMSTANL} ...ttt ettt ettt ettt ettt e e e et e ea e bt ene e e et e e st e st et e enaeenaeeneeneeas 177
FHLCOMSTANEL = ..ottt ettt et ettt ettt et e e tb e et e e tbeesss e e tbeastaeestbeassseessaeenseesnbaesnseesnbeennseennss 178
FHLCOMSTANEL = (...t e ettt ettt ettt ettt et e e tb e et e e tbeasbaeestbeansaeensaeenseesnbaeenseesnseennseennss 178
H{CONSIANT}-> {AXIS AEFINITION)oiiiii ettt 179
ettt h e E e e oAtttk Rt Rt eh e Rtttk Rt Rt Rt n e a e et b h ettt en e 181
B ettt R h et a ettt R e Rt R bt n et b e he ettt en et 181
B ettt h e h et et a et e bt ARt bt n ettt ae et n e st et 182
B e ettt h a1 e st a s bt b e ehe ke st st st et e beeheete st ent bbb ebeeteene st ena et 183
Bttt ettt ettt et b eh e Ae et a s st h b e s et eeh e At s bbb s et e aeent st et b et e eheeneeneessent et et eanas 184
DOLCOMSTANL} ...ttt ettt h ettt ettt bt et ettt sttt ettt et et ente e e 185
B e R 7717 OSSPSR 186
ettt ettt et ettt e ea e ea b et e b ek e oA ekt es e ea b e A b e b e b bt ekt st en s ea b et e ebeebeeteeneentenae s ene e 186
< {OPLHON OL fIrMWATE ORIV} ..ottt ettt ettt 187
> {OPLON OL fIFMWATE ORIV}c..o.oiiiieeieee ettt ettt ettt 187
ettt ettt Rttt a e a ettt ke Rt k£ Rt ea e ea s et bt AL oA e eR £ eR s e Rt et e b e Rt ke eR e eR e ea s en s e b e eneete et eneeneentenseneanes 188
2 L et h ettt h et R e et a et e Rt h e R e R e Rt e st e At Rt Rt R e eR e eR e et et R e eh e Rt Rt e n e et et e bt naeen et neene et ne s 189
L TP 192
L ST TPSUSURSRP 196
(@) ettt ettt a e he et et a e bt e b e Aot s st a st et b e heess st ent et et e b ebeetsens st st et ene e 199
@FCAT] ...ttt bttt ettt 199
Lttt ettt et ettt ettt ettt b e b b ettt ettt s ea b e b e b e b e ek e ete et s es s es s e s b e b e ke ks ks es s essea b e b e b e ehe ek s essessenbensenbeehe ke ensessessensensenben 200
A ettt ettt eh et e es e At btk eh e oAt At e At b e b e b e bt ekt en e st es b et e b e ebeeteens st entense b 201
ABS ettt eh ettt ettt h bttt a et h e b e he bttt n e st enb et e b e b eteene st st e s e b 202
JAXTIS P ={COMSIANL] ...ttt ettt ettt e e e et et e bt at e et e st e bt eneeenaeeneeeneas 202
2 OO STUSUUSUSUS 203
CHECKSUM. ...ttt ettt ettt s e et bttt e ettt e e at et e b e teeae bt e et eateneentenseneeees 204
CLEAR ...ttt ettt ettt ekt R ekt 2 etttk R e Rt e et a ettt ene sttt eee s 204
CLEARFAULT ...ttt ettt e a ettt et ettt ettt ee e st et et e neenes 205
CLOSE ...ttt ettt et et b e etttk Rt et ettt b et n sttt 205
FOOMSIANLY ...ttt ettt ettt ettt e e b e e s e et e e ae e e ae e beesbeesseenseeabeesseseesbeesseenseenaennees 205
DIATE ...ttt ettt h e h et a et b bt et ne e at et b e bt neete st et ns s s 206
DEFINE BLCOMPccooiuiiiieiteeeeeeee ettt ettt et ettt et b st et at ettt seese s essens et e s e ese s 206
DEFINE COMP (0ne-dimenSIONQL)..............c.ccocoueriiiiiiiiiiiiieieeee ettt 207
DEFINE COMP (tWO-AIMENSTONAL).............oeecueiiiieeiieiiieeee et eete ettt etae et aae b e eareeenns 209
DEFINE GATHER.......c..ooiiiii ettt ettt ettt ettt e bbbttt ettt et e b e eaeebeeneestensanseesenas 212
DEFINE LOOKAHEAD {Option 6L firmware OnLY}c..ccoceiiiioeiiie ittt 213
DEFINE ROTARY ..ottt ettt ettt ettt ettt a e e e b e bt neene e st et enseenenes 215
DEFINE TBUEF ...ttt ettt a ettt e sttt et e b e et et e et ems e s e eae e bt eneaneeseaneenseeneees 217

vi

Table of Contents

PMAC/PMAC2 Software Reference Manual

DEFINE TCOMP.........c.ooiiiiiiiee ettt ettt ettt ettt a ekt h et ettt ea et ee e ene et e et e e nes 217
DEFINE UBUFFERccoitiiaieeee ettt ettt ettt ettt ea ettt ettt et 218
DELETE BLCOMRP.........coocooiiieitieeieeeeeeeeee ettt ettt s et ae et est et s et enseas st et sse s 219
DELETE COMP ..ottt ettt ettt ettt et ettt ettt e b e st st ens et e s e s 220
DELETE GATHERcooovioiiot oot ettt ettt et s sttt s et ens ettt e e ese s 220
DELETE LOOKAHEAD {Option 6L firmware only}!cccooiveioiiiiii ittt 221
DELETE PLCOC ...ttt ettt ettt ettt et et e b e bttt st e st e b et e ebeebeebeebeeseensensanseenennas 221
DELETE ROTARY ...ttt ettt ettt ettt b e b e bt a et nt e e b e ebeebe st estensanseeeeenas 222
DELETE TBUEF ...ttt ettt ettt et e a et e et b e et et et e nt e e eae et e eeeaneeseeneenseneenes 222
DELETE TCOMP ..ottt ettt ettt b e bttt et e e st et e e s e bt eeeeneese et enseeeenes 223
DELETE TRACE ...t ettt ettt et ettt b e et et et et e nb e s e bt eeeeneeneeneenseeeenees 223
DISABLE PLC ...ttt ettt et a ekt h et s et bttt ene ettt 223
DISABLE PLCC........ciiiiiiit e ettt et ettt h et e et et ea et eeeb e st et e e neenes 224
EAVERSIONccooooiiiioiieitee ettt h ettt ettt b et s e se ettt e st ene ettt nb s 225
ENABLE PLC ..ottt et ettt ettt b ettt ae sttt e b e s ese s eas st et ns s s 225
ENABLE PLCOC.........ccooiiiiiiiet oottt et ettt ettt se et st at et et b e s e ese s ets st et esseesenas 226
ENDGATHER. ..ottt ettt et ettt ettt e et et e bt ae et e st e st e b et e ebe b e e beeneentesbensanseenennas 227
ettt a et b h ekt eh e a et et b e b et e eh et s en s et e b e ebeeheebeene st entenseeenas 227
FRAX ..ottt ettt h ettt ettt h bt bt h ettt e b eh e he et eae st entenseneanas 228
GATHER ..ottt ettt a o2t h e s a2t e sttt e et ekt e et ee e ne et e b e e e bt e et eneeneentenseneenees 229
5 SOOI 229
HOME ...ttt ettt ekttt et a et e b e et ekt e e et e st et e b e a e bt eeen e st ent et e eenes 230
HOMETZ ..ottt ettt ekt e et bttt et h et ettt ettt n ettt 231
THCOMSIAMEY ...ttt ettt b et e s e et e e st e be s e ess e e st e est e seenbeesbeenseesseeneas 231
T{CONSIANEY={EXPIESSION} ...ttt ettt ae bbb eta e seebeesbeenseenaeenees 232
T{COMSIANEY = ..ottt ettt bttt et ettt sb ettt et ee s 233
INC oottt h ettt ettt h btk ns st s bbb bt eneete st et nse s 233
T ettt ettt bt b he ettt a st b b he et nteat st et b e s aeereeas st et enbeseenas 234
ettt ettt 234
ettt ettt ettt a e ea e btk e oAt ekt en e es b et ek e heeh e ke eR e ea s en b en b e b e ebeeheebe st eneensansesennas 235
. ettt etttk a e st bt ehe oAt ekt es e es b et e b e b e Rt ke eh e At en s en b e b e eheebeebeentestensansesennas 235
JILCOMSTANL ..ottt ettt e et e et e et e et eeataeeataeanbaeeatseesseeeabaeanbaeeabeesnseesabeeenseennses 236
OSSPSR 236
OO USO USRI 237
JTLCONMSTANE } .ottt ettt ekttt et e et e et et e bt e et eme e en e et e st e teenteeneeeneeaneas 237

S ettt ettt et eeteeteeteettetteteteateeteeteestettesteteseeteeteentestenteteseeseeteentestentensanbeeseeseentestententenbesebeeteeseestentensesentas 238

SJCOMSTANL .ottt e et e et e it e et e e tb e e e abe e tb e e e sb e e tb e e sbeessbe e sbeetbeesbeentbeetbeenteeensaeennae s 239
JMCOMSTANL] ..ottt ettt ettt e et e et e et e e aae e eab e e e ab e e e et e e e abeesabeeesbeeeabaeansaeeabeeeaseesnbeesnseesnss 239
RSP SUUSU SRS 240
LJOZ COMMANAINCONSIANL] ..ottt ettt be bbb tb e baebeesbeenseenseenees 240
ettt a b et R R e et h e h ekt R Rt a et b e h ettt en ettt et e eenes 242
LEARN ..ottt ekt ettt R h ettt b e ettt ene sttt 242
LIST ..o ettt h bt ettt ettt s e h et nt et b e bt eneets st et e s s s 243
LIST BLOOMP ..ottt ettt ettt ettt ettt ettt et st et et es e s ens et ess et sse s nas 244
LIST BLCOMP DEFccooiiiiieieeeeeeeeeee ettt ettt a e s sttt et et es et ens ettt et 244
LIST COMP ...ttt ettt ettt ettt et e sttt e b e b e e bt e h e e st ent e b e ebeebe b e eseenbensanseeeennas 244
LIST COMP DEFooiiieee ettt e e e ht et s et b e bt bt bt at e st ent e e b e beeseenteseensanseeeennas 245
LIST GATHER ...ttt ettt ettt ettt e b b e bt at e st e st e ab e b e ebeeneestensensanseenennas 246
LIST LINK ..ottt a ettt bttt ekt h et a et e e a e e bttt oot et e e m e nbeese et e eeeaneeneeneeneeenennes 246
LIST PC ..ottt a et h e 2t ekt e et et a et e e a e e bt e Rt ettt en et e a ekt ee et st et e e eeenen 247
LIST PE.......ooeeeeeeeeeeee ettt ettt ettt o2ttt e s et e bt ekt eh e et e e e a et et et e eae et eeene et e st et e nenen 247
LIST PLC ..ottt ettt ettt ettt bt bt ekt a e a ettt ettt en sttt 248
LIST PROGRAMttt ettt h et e ettt ettt e ettt et et 249
LIST ROTARY ...ttt ettt ettt ettt a ettt et ese et s eas st et e s e s s 250
LIST TCOMP..........ooooeeeeeee et et ettt sttt et ettt s st at ettt eeseebeeneensens et e s e eseenas 251
LIST TCOMP DEFoocooiuiiieiiieeeeeeee ettt ettt ettt s e st ettt et ettt ensens st et e s s s 251

Table of Contents vii

PMAC/PMAC?2 Software Reference Manual

MYICONSIANL} ...ttt ettt ettt ettt e ke e be e b e e sb e e s e e st e e et e saeesseesseesseeaseeseesbeesbeenseesseenees 252
MYCONSIANE}={OXPIESSION) ...ttt ettt ettt ebeeseess e e s e esbeeseebeesseenseenseeneas 252
MECOMSTANEL-> ..ottt ettt ettt et ettt ettt b ettt et e e 253
MECOMSTANEY = ittt et b e h ettt ettt be ettt b e eae ettt e e 253
MECONSLANE}->D:{AAAVESS) ... 254
M{conStant}->DP . {AAAVESS)ccceeoiiiie ettt ettt 255
MYCONSIANE}->F:fAAATESS] ...ttt ettt et et 255
M{conStant}->L:{AAATESS)cccooieiiiie ettt et 256
M{constant}->TWB: {Multiplex QAAIesS}............ccoovvuiiiiiiiiiiiiese ettt tae et eaae b e aee e 257
M{conStant}->TWD:{AAATESS]ccceeiiieie ettt ettt ettt esbe e ssbeeeabeesnsaeebeeenseeeenes 257
M{constant}->TWR:{AdAress !, {OffSEL} ...t 258
MYCONSLANE}->TWS: {AAATESS]} ..ottt ettt e ettt eesbeense s enees 259
MYCONSLANE}-> X/ Y {AAAVESS] ..ottt ettt sbe e enseenees 262
MACROAUX ...ttt ettt et e h et ettt e h ettt e b ettt e b ettt s e bt ne et et s ebene e 263
MACROAUXREAD. ...ttt ettt ettt ettt ettt st et s ekt st bttt ebe s 264
MACROAUXWRITE ...ttt ettt ettt ekttt et en e bttt be s 265
MACROSLVLcommand} {NOAEH}coooieiie ettt 265
MACROSLV{nodett}, {s1ave variable)c.cccooieiiiiieieeee ettt 266
MACROSLV{nodett}, {slave variable} ={CONSIANL]ccoovuiriiiiiiii ettt 267
MACROSLVREAD. ...ttt ettt ettt ettt 268
MACROSLYWRITE ..ottt ettt ettt ettt ettt 268
MEFLUSH ...ttt et ettt h et h et h ettt h ettt b ettt ettt 269
OFCONSIANL}........ocoeeeeeeeeeie ettt ettt ettt e ete e e sb e e sb e et e s b e e b e e sbe e st e e ae e e asesbe e st e esseessebeesbeenseensenneas 270
OPEN BINARY ROTARY ...ttt 270
OPEN PLC ..ottt etttk ettt et 271
OPEN PROGRAM ...ttt ettt ekttt ettt a ettt a sttt bene et saeneas 272
OPEN ROTARY ..ottt ettt ettt ettt ekttt ekt s e b et b et e sttt es et et eneeneneeneas 273
ettt ekt a ket s ket a ket n ettt h et st bttt bt b e 273
PLCONSIANL] ...ttt ettt ettt et e at et e bt ene e eme e e et et e bt e e eneeeneeeeean 274
PLCONSIANT} ={EXPIOSSION] ...ttt ettt a ettt eeean 274
PASSWORDTISIFIRG) ..o ettt ettt ettt et ae et e bt ettt e et et e bt enteenaeeneeeneas 275
PAUSE PLC.....cooiiiiiiieiee ettt ettt et ettt ettt ettt 276
Pttt et e h et bttt e 277
PE oottt ettt 277
PMATCH ...ttt ettt ettt 278
PR oottt ettt 279
0 ettt a et et a ekt eh ekt a ekt h ekt AR s ekt ee ekt s ekt h e sttt en ket en et et ene et neeneas 279
OFCOMSIANL] ...ttt ettt ettt b bttt s ettt bttt ettt e e 280
O CONSLANTI Z{OXPFESSION} ...ttt sttt 280
Rttt h ket h R e h b e a e Rt a ettt h et a bttt b ettt b e 281
RIHJ{AAAIESS] ...ttt ettt ettt ae ettt et et e et et ebeenteeneeeeeeeeeas 281
RESUME PLQC ...ttt etttk ekttt s et et s bbbt b et be e 282
ettt bk h e h e h ek E bRt h b e h bRk b e h et b bbbttt b et b et 283
SAVE ..ottt bbb bk b e bbbttt 284
SETPHASE ...tttk b e bbb b ettt bt 285
SIZE ..okttt 286
TYPE ...ttt ettt ettt et 286
UNDEFINEc..ccooiiiiiiiiiiiiiiitee ettt ettt ettt ettt 287
UNDEFINE ALL.........cootiiiiitiee ettt ettt b bttt b et b et s bt ene b 287
ekttt ekt a ekt a ekt h etk h st E b et ekt e ekt s ekt e stk hen ekt en et et eneeteeaenean 288
VERSION ..ottt etttk et s ettt s ekt s ekt ees ekt e st et b es e et et e st et e e entetenaenean 288
WHEQAAIESS) ..o ettt ettt et et e ettt ettt et e bttt e s e ene e et a et enes 289
/OO OSSOSO US PSRRI 289
PMAC PROGRAM COMMAND SPECIFICATION 292
Laxis HAQLAX [{AXISHAQTAL. ..] c.oooeeoeeieeeeeeee ettt ettt e b et eese e be e b enns 292

viii Table of Contents

PMAC/PMAC2 Software Reference Manual

taxis}{data}:{data} [{axis} {data}: {dAta}...]c.cccocoooviiiiiiiiiiiiiiieeee s 292
taxis}{data}Ndata} [{axis HAdAtadQta)...]coooeiieiiiiiiiiii s 293
{axis}{data} [{axis}{data}...] {vector}{data} [{vector}{data}...]ccccccoovinimininininiiiiiiienennne 294
ALAALA ..ottt 296
ABS ..ottt et he ettt h b b ae ettt at et et b e eaeeteeteens st et ne s 296
ADDRESS ... ettt ettt bttt a e a bbbk ekttt s e e st et et e b e eaeeteeneens st e s e ae s 297
ADISTCONSIANE] ...ttt ettt et et e e e e h e bt e st e et e et e et e bt et e enteeneeseeennee et eteeneeenes 297
AND ({CORGILION,) ...ttt ettt et ettt et e ettt e s e sne et e neeete e e enes 298
AROTYCONSIANL] ... oottt ettt et ettt e et e et e et e e s e eabe e e staeeabeeeasaeeaseeesbaensseessseensseessseensseenes 298
BYAQIA) ...ttt ettt a ettt b e bttt e et et neea 299
BLOGCKSTART ...ttt ettt ettt et a e e e e e bt bt e et et e et e st e et e e bt e et eneeneeseeneese e 299
BLOGKSTORP........cooieeeee ettt ettt et h et e h bt ettt be bt ettt n et e et e 300
CLAALAY ... ettt et ettt be bt e e e s ettt eeaeebe e ab e st st e e st e be et e enb e e b e eneeenees 300
CALL ..ottt et et ettt ettt a et h ekttt h b a et nt ettt b et ete st ettt 301
GO0tttk a et h ke h ket h ettt ket h e bttt ekt n bttt e h ettt en e b 302
CCl ettt ettt ettt h ket h ekt a ekttt ekt A btttk n ket n e bttt b et et be e 302
CC2 ettt ettt et h a2t a et bt a oAt ekt h e st a b b et e b e bt eht st et e b et e bt te st st ent et e eaanas 303
CORLAALA ...ttt ettt et st s e b et e b e bttt stest et et e b e eb e b e seestestentenseneaaas 303
CIRCLE ..o ettt ettt ettt a e et h ekt e st et e b e e b e e b e e st eatese e st e b e eb e b e eseeneensentanseneanas 304
CIRCLE?2 ...ttt ettt ettt et e kbt et e st e et e e et e bt e et ee e ee e em e b e e e bt e et enteneentenaeneeees 304
COMMAND "{COMMAIA "oooeeeeeee ettt ettt ettt ettt et e et e e st e e sab e e s tbeesaseestbeensaesaseeanseeennes 305
COMMANDNICIET] ...ttt ettt ettt e ekt e e et e st e e be bt bt et ene e s e et enaeneenes 307
DIAAEA} ...ttt ettt ettt e eenbeenaeereas 308
DELAY{AALA] ...ttt ettt ettt ettt et ab ettt ettt et eneeenees 308
DISABLE PLC ...ttt ettt ettt h ekt h ettt ettt en ettt 309
DISABLE PLCC {constant}[,{CONSIANT}... [........c.cocooiiiiiiiiiiiiieieee sttt 310
DISPLAY [{constant}] "{IMeSSAZE} "cccceviiiiriiiiiiteiet ettt 310
DISPLAY ... {VAFIADIE)] ..ottt 311
DWELL ..ot ettt ettt b4tk h stk et e h ekt h st e a bt e b e beeae b eae st entense e s 312
ELSE ...ttt ettt h sttt h e he et e eh e st en st b e b et e ete st st ent et e eenas 312
ENABLE PLC ...ttt ettt ettt a sttt e b e bttt s e st e ssenb et e e et e ne bt st st nb e e 314
ENABLE PLCC........coii ittt ettt ettt s ettt e ekt e ettt e st e st e st e e et e eb e et e eneenteseeneeseneea 314
EINDIF ..ottt ettt e et h ekt h a2ttt he oAkt eR et n et e et e be bttt ene st ene et ebe e 315
ENDWHILE ..ottt ettt et h et e et b e et e bt b e ettt et et bt et ene e st e e e te e 315
FLAAUAY ..ottt ettt ettt b et te e ae e be b eab et eteebeen 316
FRAX ..ottt e b et h et bttt h ettt b e ae ettt e et et 317
GLAGLA) ...ttt ettt ettt ettt 318
GOSUB ...ttt ekt s ekt a et h st ket a ket h et st ket h ettt ettt b et e e 319
GOTO ...ttt ettt ekttt a ket a ket h et bt bt n e bttt n e b 319
HOME ..ottt ettt o2t h ettt e st et e b e e a e b e bt st st et e b e b e be b e eae st et e b e e nas 320
HOMELZ ...ttt ettt ettt ettt e at et b e b et e heea e st et b e b b ebeene sttt eee s 321
TLAALA). ...ttt ettt ettt ettt ettt a bbb ettt ae st ns e e nas 322
T{CONSTANE}Z{OXPTESSTON ..ottt ettt ettt ettt ettt e et e e ate e e sbaesabaeanbaeeabaeensaeeabaesnseennses 322
IDISTCONMSIANE} ..ottt ettt ettt e et e et e et e e bt e et e e asaeeabaeeaseeeabeeenseeenbaeanbaeenbeesnsaesnseesnseesnnes 323
TE (JCONATLION}) ..ottt et e et e et e et e e bt eesbteeabeeensaeeabaeansaeeaseesnsaesabeeenseennses 323
INC oot et h R e e e h ek Rt R Rt n e a et ea ettt ene ettt 324
TROTYCONSLANL ...ttt ettt b e e s e st e et e ae e s e e ss e e st e easeessebeesbeenseenaennees 325
JYAAEQ) ..ottt ettt ettt ettt he ettt ettt b e eeabeenaennaas 326
KAQUQ) ..ottt 326
LINEAR. ..ottt et ettt b e e s ek ettt ettt s e h e e a ettt beea e b eaeete st s e 327
MECONSIANII={EXPTESSION] ...ttt ettt ettt et ettt 327
MYCONSIANT} =={@XPFESSTON ..ottt ettt ettt et et e b e e e enaeeneeeneas 328
MYCONSIANT} & ={@XPFESSTON] ... ettt ettt ettt ettt et et enaeeneeneeas 329
MYCONSTANEY | Z{EXPIESSION] ...ttt ettt b e bt ea et e e ent st et e e eeeees 329
MYCONSIANT} N = @XPIOSSION ...ttt ettt ettt et e et e et e e tbeesaeetaeantaeenbaesssaeensaeenseenases 330
IMYAALAL ...ttt ettt ettt etttk e ettt a et eeen e st et et e 331

Table of Contents ix

PMAC/PMAC?2 Software Reference Manual

MACROAUXREAD. ..ottt ettt ettt 331
MACROAUXWRITE ..ottt ettt ettt 332
MACROSLVREAD. ...ttt ettt ettt ettt ettt ettt et et be st et ebe s 333
MACROSLYWRITE ..ottt ettt ettt ettt ekttt ekt st bt st bt ebe s 333
INFCOMSIANL] ...ttt ettt ettt ettt ettt sttt et et 334
INORMUAL ...ttt ettt bttt e h et bbbttt b et b et b ettt 335
OFCONSTANL}........oe et ettt et a ettt et e et et ekt e ke e aeeee e eae e ea e e et emeeeaeeese e bt enseenseeneeaneas 335
OR({CONILION,) ... ettt ettt ettt e ae e et b ettt et e bt e e e e eneeneeas 336
P{CONSTANIIZ{EXPTESSIONS ..ottt ettt ettt ettt et e et e et e e taeetbeenbaeeabeesnseeeabeeenseennses 337
PAUSE PLC.....cooiiiiiiitee ettt ettt ettt ettt et 337
PRELUDEc.occoiiiiiiiiie ettt ettt et ettt ettt b ettt ettt 338
PSET ..ottt ettt 339
PUTHAGLA) ...ttt ettt ettt et b e e eesb e e ssesaaeeaeeseenseenseesteeseesseens 340
O CONSLANTI Z{EXPFESSION} ...ttt bttt 341
REAALAJ ...ttt 341
RAPID. ...ttt ettt h ekt h ket h ket a e ket a bttt h ettt ettt bt b et 342
READ ...ttt bt etk etk ettt h ettt bttt 343
RESUME PLQC ..ottt ettt ettt ettt ekttt b et s bbbttt b e 344
RETURN ...tttk h ekttt ekt etk h st ettt b e bbbttt b et b e 345
STAALAY ...ttt bbbt e 346
SEND ...ttt bbb bbbt h bbbttt 346
SENDNIGIEET]ooeeee ettt ettt ettt e e e e e ettt e s ab e e stb e e ssbeessbeessbeesbeessbeetseensbeensseesseennees 348
SETPHASE ..ottt ettt ettt et 349
SPLINE ..ottt ettt bttt 350
SPLINE2 ..ottt ettt ettt ettt 350
STOP......oooeeeeee ettt a etk R kbR h b Akt h s kbbb st s bttt b et b et 351
TLAULAY ...ttt ettt 351
TALAAIA) ...ttt bttt 352
TINIT ...tttk b etttk b st ekt s ekt h e st ekt e st bt e bt e bt e st e bttt b ettt b e 353
TMYAQIA) ...ttt ettt ettt e et e e e e et e e bt et e ne e e ae e ae et e e bt et e neeeenean 353
N e 2 72 OSSPSR 354
TSELECTCONSIANL}oocevveeeeeeee ettt ettt et e et e et e et e et e et e e tbeessaeetbeassae e saeanseesnsaeenseesnseeanseennss 355
ULAQIAS ..ottt ettt ettt ettt et ettt e et e e tb e e e ab e e e tb e e e ab e et b e e ab e e tt e e tb e e bt e e taeeteeenaeenree s 355
VEAQEQ) ..ottt et b et ae e ae ettt beebeenbeenaeenes 356
WHAAAY ..ottt ettt ettt b e e at et ae ettt beebeenbeenaeenes 356
WALIT ..otttk btttk ettt ettt ettt et 356
WHILE({CONAIEION.) ...ttt ettt ettt 357
XYAAIAY ..ottt ettt 358
YIAAUA) ...ttt ettt ettt 359
YA e USRS UPTUSPSPR 359
PMAC MATHEMATICAL FEATURES 360
MathematiCal OPEIALOTSeeeuieitieiieieete et ettt ettt e st e bt et eate et eess e e bt enseemeesaeesseesseenseeneeemteeseesseenseensesnsesneesne 360
SO OO OO OO OO OSSOSO PSP SOUR PO 360
OO OO OSSOSO OSSOSO POUSPRRRR 360
OO OO OO OO OO OSSOSO U SOPROUT PRSPPSO 360
ettt et e h ettt ekt h kb ekt e e h e b ekttt h ettt ettt ettt 360
et h L ekt h et bttt h et h b et h ekt h ettt ettt ettt et 361
ettt et ekttt ettt h et ekttt ettt et 362
| ettt ettt ettt ettt a ettt a et b et oAt o4 etk ek e e Rt h et e Atk A s ek ek a s sk n skt eh ket s bt n bt n b entenes 362
OO OO OO OO SU P PUU PRSPPSO 363
Mathematical FUNCHIONSc..coiiiiiiriiiiirieieee ettt st et 363
ABS ekt bk bt E bkt h ettt s ettt ettt sttt neene s 363
ACOS ...ttt bt bk bt b ettt ettt naene s 364
ASIN .otttk et sttt ettt eie s 364
ATAN .otttk ekttt h ek h ettt ettt ettt 364

Table of Contents

PMAC/PMAC2 Software Reference Manual

ATANZ ..ottt e e ettt b e bt ekt h e h et h et Rt Rt Rttt ettt n e n et ne e 365
COS..c.oeeeeeee ettt et e e et e R R Rt h e a e bR Rt n e h e ettt h et n sttt 366
Xttt ettt ettt bttt nt sttt beea e aeeneete st et re s 366
INT ..o ettt ettt ettt a e h e ae ettt a et h et ettt a e n bbbt neete st et ns et nnas 366
N ettt h bt bt e a et b e bbbt h e h et h e h bbbt e a e h ettt sh e bt ebeebeene et enee 367
STIN ettt ettt 1t h e a1t et h et ekt eeh e st ea bt e b e ke eh ekt eb e eatent et e ebeebeeteene st ent et ebeaaea 367
SORT ...ttt ettt ettt e st et e b e o2ttt e ket es st b e b e ke eh ekt s e eateab et e beebeete st st enb et ebeeaen 368
TAN ..ottt ekttt a ettt b e h e oAt eh e st a b e b he bttt R e ea s nt et e b e b e b e teeae st ntenteeenas 368
SAVED SETUP REGISTERS NOT REPRESENTED BY I-VARIABLES 370
Analog Data Table Setup REZISIETS.........cc.iiiiieieriiieie ettt ettt sttt ettt et e e e sbesteebeeaeeseeneeneenes 370
X:$0708 — Y:$070F Analog Table SEtUP LINES.......cetiririririreririeieieieieiesetreseresesesteteseseseseseseesesssesssesseeas 370
Encoder Conversion Table Setup Registers: Y:$0720 — Y:S073F ..ovooviiiiieiiiiecieeeeeeeeeee et 372
Y:80720 — Y:8073F Conversion Table Setup LINESc...c.cccoeceecieeiiesieiieiieeie e eeeeieesie v ese e sneens 372
VME/DPRAM Addressing Setup Registers: X:$0783 — X:F078Cocuviieieieiiieeiieiieieeieteieie e 389
X:80783 VME Address MOGIfIEr...........cc.cccoiiiiiiiiiiiiiiiitet ettt 389
X:80784 VME Address Modifier DOn’t Care Bilsc.cccccoioeiininiiiiiiiiiiieieeseee ettt 389
X:80785 VME Base Address Bits A31-A24...........cccocoueiiiiiiiiieieeee ettt 389
X:30786 VME Mailbox Base Address Bits A23-A16 ISA DPRAM Base Address Bits A23-A16 390
X:30787 VME Mailbox Base Address Bits A15-A08 ISA DPRAM Base Address Bits A15-A14 & Control
390
X:80788 VME INEEITUDE LEVEL ..ottt 391
X:80789 VME INEETTUDE VECIOT ...ttt ettt see e 391
X:80784 VME DPRAM Base Address Bits A23-A20.........cccoveiiiiiiiiiieiieeeeee sttt 391
X:$078B VME DPRAM ENGDIe.........c..ccoooiiieiiaiieieeee ettt 392
X:$078C VME Address Width COREFOL..............ccccooveiiiiieiiieieieeeiete ettt 392
PMAC2 Servo IC Setup Bits and REGISTETScceevuieriieiieieeieieieeiesee sttt ettt et esteesaessaessaesseeseensesneesees 393
X:8C005 etc. Bit 17 Encoder n Third-Channel Demux Control {PMAC2 only}cccocveivoivocccnanennenn, 393
X:8C005 etc. Bit 18 Encoder n Hardware 1/T Enable {PMAC2 ORIy}c.cccoeviviiiiiiiiiiiiiiicee, 393
X:8C014, X:8C034 Servo IC m ADC Strobe Word {PMAC2 ORIY}cccouvireiiiiiiiiieiteeseeees 394
PMAC I/O AND MEMORY MAP 396
Global Servo Calculation REGISTEIS.ccouiiiiiieiieiiet ettt ettt ettt et et eenaesneesees 397
Motor Calculation Registers: PMAC(1), PID Servo AIZOrithm.........cccoeiiiiiiiiiiiiieieeee e 399
Motor Calculation Registers: PMAC(1), Extended Servo Algorithm (ESA).......ccccooiiieieiinieieeeee 401
Motor Calculation Registers: PMAC2, PID Servo AIGOIIthimcceecviiiiiiirieiieieceeeieieee e s 404
Motor Calculation Registers: PMAC2, Extended Servo Algorithm (ESA)ccoovvieviieiieiiieeeieeee e 407
BUITETS ...ttt ettt h e e bt b e et e st et e e b et e bbbt e a e ea b et et b e he bt neentenee 410
Encoder Conversion (Interpolation) TabIe..........c.cccverieiiriieiieiieieeie ettt seense e ses 410
(€301 21 W € e] oYY B A o4 1] 1<) SRR 412
Motor and Coordinate System Status and Control REGISTETSc.cccverieriieriierieeieeieseeeeie et 412
Buffer Management REGISTETSccuiiiiiieiieeie ettt ettt ettt et e et e et et e et e sae et e et e enteeseeeseenbeenseeneesneesees 417
PMAC(1) DSPGATE Servo IC REZISIETSecueieuiieieiieiieiieetie sttt ettt ettt ettt et e e ente e s seesneeseeneesneeeee 418
PMAC2 DSPGATEL Servo IC REGISTETS.eeeieuieriieiieiieieeiieeteeste ettt sttt ettt et sae et e e enaeeseesseesneeseensesneeens 420
PMAC2 DSPGATE2 I/O and MACRO REZISLEISc.eeueriiiiiieetieieeiieiieieie ettt et et e e see e seestesne et eneeee e nes 425
Dual-Ported RAM (Option 2 REQUITEA)ccueeiuiiiiiiiiiiicieeieecte ettt ettt ettt et ste e st saeesreesseessesae e veesaeesseesseenneses 435
DPRAM COntrol Panel REZISTOFSccccoviiiiiieieeieee ettt ettt ettt sttt nnees 435
Control Panel REGUESE WOFAS.c..ccoeiiiviiciieieeieeie ettt ettt eae et eat bbb nseeneeenees 435
Bit FOrmat Of REGUESE WOTAS............cc.occueiieiieiiiiii ettt ettt ettt be e sta et se e et e enseeneese e 436
Control Panel Feedrate OVErTide................cocuiuaiiiiiiiiiiet ittt 436
Servo Fixed Data REPOTtNG BUSFEEcccccciiiiiiiiiiii ittt ettt 436
Motor-Specific Registers for Servo Fixed Data Reporting BUfercccceciveoininiiiiiiiiiiiiieiencenc e 436
Background Fixed Data Reporting BUJEFcc.cccoiiiiiiiiiiiiiiiiesese sttt 438
Motor/Coordinate System Specific Registers for Background Fixed Data Buffer.................cccccovevveencnnnnn. 438
Background Variable Transfer BUTTErscooiiiiiiioiie e e e 442
PMAC 10 HOSE TEANSTEF ...ttt ettt e et s et e e be ettt eee et neene e e eeeees 442
Variable Address Buffer Format (2x16-Dit WOFAS)ccccooiuiiiiaiiie ettt 442

Table of Contents xi

PMAC/PMAC?2 Software Reference Manual

Background Variable Data Write Buffer -- Host t0 PMAC Transfer..............c..ccocoevvvevieeieceeeieiieieecieeeeninens 442
Variable Address Buffer Format for each Data Structure (6X16-Dit)..............c..cccooveveeeveeeeeciareiieseeireeeeennns 443
Binary Rotary Motion Program Transfer BUFETsS...........ccccic ittt 443
DPRAM Data GAthering BUSFercccoiiiiiiiiiiii ittt 444
Variable-Size Buffers, Open-USe SPACEcccccoiriiiiiiiiiiiiiiiiiiee sttt e 444
VME-Bus Registers (PMAC(1)-VME, PMAC2-VME, PMAC2-VME Ultralite only)cccoccevoverieiiniieneene 445
PMAC2 I/O CONIOl REZISLEISeeeeieiieieeie ettt ettt ettt ettt et ete et e st esae e te e et esteeseesseenseenseenaesneesns 445
PCI/ISA Bus PMAC?2 Versions (PMAC2-PCI, PMAC2-PC, PMAC2-Lite, PMAC2-PC UltralLite): 445
VME Bus PMAC?2 Versions (PMAC2-VME, PMAC2-VME UItraLite).:cccccooeevueeiuiencieeniiienieeeieeenneennes 446
Inputs and Outputs (PMAC-PC, PMAC-PCI, PMAC-VME, PMAC-Lite, PMAC-PCI Lite only)cccee...... 446
Inputs and Outputs (Mini-PMAC, Mini-PMAC-PCI Only)......ccccooiiiiiiieieeseseseeeeeee e 448
Inputs and Outputs (PMACTL.5-STD ON1Y)...cccuiiiiiieiieiieiieieeeeste ettt steeste e sreesseesseessesssessaesseesseensesssesees 449
PMAC?2 Option 12/12A Analog-to-Digital CONVEItErS.........ccverierrerrieeierieriesieesteeeesseesseesseessesssessesseesseessesssesnns 455
PMAC(1)-PCI, PMAC(1)-PCI Lite Option 12/12A Analog-to-Digital COnVerters..........cecueeeevverenenereeeeeenenn 455
Expansion Port (JEXP) I/Oooouioiieiee ettt ettt ettt st sse et e st e enteenaeesaenseenseenneennennes 455
PMAC(1) SUGGESTED M-VARIABLE DEFINITIONS 458
PMAC2 SUGGESTED M-VARIABLE DEFINITIONS 472
PMAC FIRMWARE UPDATES 490
Battery-backed PMAC(1) DOAIASc.eeouieiieiieiieeiieetieee ettt ettt ettt ettt s seesne e b e be e eneesee 490
Flash-backed PMAC(1), all PMAC2 DOAIASccveiuieiieiiiie ettt ettt sve e eiaesteesveeaeeneesaesane e 490
Update Summary: From V1.15t0 V1.16 (JULy 1996)ooiiiiiiiiieieeeee e 491
(@ 27 = PSRRI 491
AGIIIONS ...ttt ettt h ettt ettt ekt e et e st e st e st ettt ettt ee e ettt 491
TrVATTADIES ..t bbbttt bbbt h e a et et b e ea e b ae bt st et enee 491
Conversion Table ENMIIESc..couiiiiiiiiiiiieie ettt ettt ettt st st e b e et est et e nee 492
ON-LiNe COMMANGScveiiiiiiieiieieteteste ettt ettt ettt et e b sb e eb e e bt eae et et enbesaeebeebeebeeneensenee 492
Motion Program COMMANGSc.eecuerierierieriieitieteeteseeseeseesteeteeaeseesseesseeseenseansesssesseesseesseensesnsesnsesses 492
DPRAM SHIUCTUIES....c..eeuterieeitettete ettt ettt ettt s stee st e bt esaeeseesaeesaeesaeemaeessteesesasesteenteenbeeneenneennesanenaee 492

LSS 11153 001S) 11U 493
Update Summary: From V1.16 to VI.16A (Sept 1996)oomiiiiiiieieeeeeeeee ettt 493
Update Summary: From V1.16A t0 V1I.16B (OCt 1990)......ccouiiiiiiiieiieeeeeteseee et 493
Update Summary: From V1.16B to V1.16C (API 1997) c..oouiiuiiieieeee ettt 493
Update Summary: From V1.16C to V1.16D (NOV 1997) ..cuiiiiiiiieieee ettt 494
Update Summary: From V1.16D to VI.16F (JUNE 1999)c.cooiiiiiiiiiieciieieeteee ettt e 495
Update Summary: From VI.16F to V1.16G (Sept 1999)....cuioiieiiiiicieeietteteet ettt e 496
Update Summary: From V1.16G to V1.16H (Sept 2000)cceecuirierieriieiieieeieeiesteete e eaeseeesee e esessaesnneses 497
Update Summary: From V1.16H to V1.17 (Oct 2001, FLEX CPU 0nlY)....ccccoiieiiiriirieiieiieieeie e 497
Update Summary: From V1.17 to V1.17A (Jan 2002, FLEX CPU 0nlY) ...ccceeviiiiiiirienieieeieeee e 498
Update Summary: From V1.17A to V1.17B (Sep 2002, FLEX CPU 0nly).....ccceeoieiieriiiieiieriee e 498
Update Summary: From V1.17B to V1.17C (Sept. 2005, FLEX CPU 0nlY)...cceooieiiiiiiiieciereeceeeee e 498

xii

Table of Contents

PMAC/PMAC2 Software Reference Manual

Table of Contents xiii

PMAC/PMAC2 Software Reference Manual

PMAC COMMAND AND VARIABLE SUMMARY

Notes

PMAC syntax is not case sensitive.

Spaces are not important in PMAC syntax, except where noted

{} —itemin {} can be replaced by anything fitting definition

[1 —itemin [] is optional to syntax

[{item}...] —indicates previous item may be repeated in syntax
[..{item}] —the periods are to be included in the syntax to specify a range
() — parentheses are to be included in syntax as they appear

Definitions

constant — numerically specified non-changing value
variable — entity that holds a changeable value
I-variable — variable of fixed meaning for card setup and personality (1 of 1024)
P-variable — global variable for programming use (1 of 1024)
Q-variable — local var. (in coord. sys.) for programming use (1 of 1024)
M-variable — variable assigned to memory location for user use (1 of 1024)
pre-defined variable — mnemonic that has fixed meaning in card
function — SIN,COS,TAN,ASIN,ACOS,ATAN,ATAN2,LN,EXP,SQRT,ABS,INT
operator — for arithmetic or bit-by-bit logical combination of two values:
+, -, *,/, % (mod), & (and), | (or), * (xor)
expression — grouping of constants, variables, functions, and operators
data — constant w/out parentheses, or expression w/ parentheses
comparator — evaluates relationship between two values: =, 1=, >, 1> < I< ~ I~
condition — evaluates as true or false based on comparator(s)
simple condition — {expression} {comparator} {expression}
compound condition — logical combination of simple conditions
motor — element of control for hardware setup; specified by number
coordinate system — collections of motors working synchronously
axis — element of a coordinate system; specified by letter chosen from X, Y, Z, A, B, C, U, V, W
buffer — space in user memory for program or list; contains up to 256 motion programs and 32
PLC blocks

On-Line Commands

(Executed immediately upon receipt by PMAC)
On-line Global Commands

Addressing Mode Commands

@n — Address card n (n is hex digit 0 to f); serial host only
@ — Report currently addressed card to host; serial host only
#n — Make Motor n currently addressed motor

— Report currently addressed motor number to host

&n — Make coord. sys. n the currently addressed coord. sys.
& — Report currently addressed coordinate system to host

Communications Control Characters
<CTRL-H> — Erase last character from host (backspace)
<CTRL-I> — Repeat last command from host (tab)
<CTRL-M> — End of command line (carriage return)

PMAC Command and Variable Summary

PMAC/PMAC?2 Software Reference Manual

<CTRL-N> — Report checksum of current command line
<CTRL-T> — Toggle serial communications full/half duplex
<CTRL-W> — Execute ASCII command from DPRAM buffer
<CTRL-X> — Abort current PMAC command and response strings
<CTRL-Y> — Report last command to host; ready to repeat to card
<CTRL-Z> — Make serial port the communications port

General Global Commands

$$$ — Global reset: including all motors and coord. systems

$$$*** _ Reset and re-initialize entire card

PASSWORD={string} — Set/confirm password for PROG1000-32767,PLCO0-15
SAVE - Save [-variables into non-volatile memory

UNDEFINE ALL - Erase definition of all coordinate systems

CLEARFAULT - Clear Geo PMAC fault display {Geo PMAC only}

Global Action Commands

<CTRL-A> — Abort all motion programs and moves
<CTRL-D> — Disable all PLC and PLCC programs
<CTRL-K> — Kill outputs for all motors

<CTRL-L> — Close rotary program buffer

<CTRL-0> — Do feed hold on all coordinate systems
<CTRL-Q> — Quit all programs at end of calculated moves
<CTRL-R> — Run working programs in all coordinate systems
<CTRL-S> — Step working programs in all coordinate systems
<CTRL-U> — Open rotary program buffer

Global Status Commands

<CTRL-B> — Report all motor status words to host
<CTRL-C> — Report all coordinate system status words to host
<CTRL-F> — Report all motor following errors (unscaled)
<CTRL-G> — Report global status words in binary form
<CTRL-P> — Report all motor positions (unscaled)
<CTRL-V> — Report all motor velocities (unscaled)

??? — Report global status words in hex ASCII

DATE — Report date of firmware version used

LIST [{buffer}] — Report contents of open [or specified] buffer
SIZE — Report size of open memory in words (sub-blocks)
TYPE — Report type of PMAC

VERSION — Report firmware revision level

EAVERSION — Report firmware revision level & information
CHECKSUM — Report firmware reference checksum value

Register Access Commands

R{address} [, {constant}] — Report contents of specified memory word address
[or specified number of addresses] in decimal

RH{address} [, {constant}] — Report contents of specified memory word address
[or specified number of addresses] in hex

W{address}, {constant} [, {constant}..] — Write value to specified memory
word address [or values to range]

2 PMAC Command and Variable Summary

PMAC/PMAC2 Software Reference Manual

PLC Control Commands

ENABLE PLC{constant}[, {constant}...] — Enable operation of specified
interpreted PLC program(s]

DISABLE PLC{constant}[, {constant}...] — Disable operation of specified
interpreted PLC program(s]

PAUSE PLC{constant} [, {constant}...] — Suspend operation of specified
interpreted PLC program(s] at present point

RESUME PLC{constant}[, {constant}...] — Continue operation of specified
interpreted PLC program(s] at paused point

ENABLE PLCC{constant}[, {constant}...] — Disable operation of specified
compiled PLC program|s]

DISABLE PLCC{constant} [, {constant}...] — Disable operation of specified
compiled PLC program|[s]

Global Variable Commands
{constant} — Equivalent to PO={constant}
if no unfilled table; otherwise value entered into table
I{constant}={expression} — Expression value assigned to I-variable
I{constant}[..{constant}]=* — Set I-variable[s] to default[s]
P{constant}[..{constant}]={expression} — Expression value assigned to
P-variable(s)
M{constant}[..{constant}]={expression} — Expression value assigned to
M-variable(s)
M{constant}->{definition} — M-variable defined as specified
M{constant}->* — M-variable defined as non-pointer variable
I{constant}[..{constant}] — Report I-variable value(s) to host
P{constant}[.. {constant}] — Report P-variable value(s) to host
M{constant}[..{constant}] — Report M-variable value(s) to host
M{constant}[..{constant}]->— Report M-variable definition(s) to host

Buffer Control Commands

OPEN PROG {constant} — Open specified motion program buffer for entering/editing

OPEN ROTARY — Open all defined rotary program buffer for entry

OPEN BINARY ROTARY — Open all defined rotary program buffers for binary entry thru

DPRAM

OPEN PLC{constant} — Open specified PLC program buffer for entry

CLOSE — Close currently opened buffer

CLEAR - Erase contents of opened buffer

DEFINE GATHER [{constant}] — Setup a data gathering buffer using all open memory

[or of specified size]

DELETE GATHER - erase the data gathering buffer

GATHER [TRIGGER] - Start data gathering [on external trigger]

ENDGATHER — Stop data gathering

DELETE PLCC{constant} — Erase specified compiled PLC program

DELETE TRACE — Erase the program trace buffer (no action taken; kept for backward
compatibility)

DEFINE TBUF {constant} — Setup specified number of axis transformation matrices

DELETE TBUF — Erase all axis transformation matrices

DEFINE UBUFFER{constant} — Set up a user buffer of specified number of words

PMAC Command and Variable Summary

PMAC/PMAC?2 Software Reference Manual

MACRO Ring Commands

MACROAUX — Report Type 0 MACRO slave variable value to host

MACROAUXREAD — Copy Type 0 MACRO slave variable to PMAC variable

MACROAUXWRITE — Copy PMAC variable value to Type 0 MACRO slave variable

MACROSLV {command} {node#} — Send command to Type 1 MACRO slave

MACROSLV {node#}, {slave variable} — Report Type 1 MACRO slave variable value

to host

MACROSLV {node#}, {slave variable}={constant} — Set Type 1 MACRO slave
variable value

MACROSLVREAD — Copy Type 1 MACRO slave variable to PMAC variable

MACROSLVWRITE — Copy PMAC variable value to Type 1 MACRO slave variable

On-line Coordinate System Commands
(These act immediately on currently addressed coordinate system)

Axis Definition Commands
#n->[{constant}] {axis} [+{constant}] — Define axis in terms of motor #,
scale factor, and offset.
Examples: #1->X
#4->2000A+500
#n->[{constant}] {axis} [+[{constant}] {axis}[+[{constant}] {axis}]]
[+{constant}] — Define 2 or 3 axes in terms of motor #, scale factors, and offset.
Valid only within XYZ or UVW groupings.
Examples: #1->8660X-5000Y
#2->5000X+8660Y+5000

#n->— Report axis definition of Motor n in this C. S.
UNDEFINE — Erase definition of all axes in this C. S.

General Coordinate-System Commands

?? — Report coordinate system status in hex ASCII form
% {constant} — Specify feedrate override value

% — Report current feedrate override value to host

Program Control Commands

R — Run current program

S — Do one step of current program

B[{constant}] — Set program counter to specified location

H — Feed hold for coordinate system

A — Abort present program or move starting immediately

Q — Halt program; stop moves at end of last calculated program command

/ — Halt program execution at end of currently executing move

\ — Do program hold that permits jogging while in hold mode

MFLUSH — Erase contents of synchronous M-variable stack without executing

Coordinate-System Variable Commands

Q{constant} [..{constant}]={expression} — Assign expression value to
Q-variable(s)

Q{constant} [..{constant}] — Report Q-variable value(s) to host

4 PMAC Command and Variable Summary

PMAC/PMAC2 Software Reference Manual

Axis Attribute Commands
{axis}={expression} — Change value of commanded axis position
Z — Make present commanded position of all axes in coordinate system equal to zero.

INC[({axis} [, {axis}...])] —Make all [or specified] axes do their moves incrementally
ABS[({axis} [, {axis}...])] —Make all [or specified] axes do their moves absolute
FRAX ({axis} [, {axis}...]) — Make specified axes to be used in vector feedrate calculations

PMATCH — Re-match coordinate system axis positions to motor commanded positions
(used in case axis definition or motor position changed since last axis move)

Buffer Control Commands

PC — Report next program number and line (offset) to be executed to host

LIST PC[, [{constant}] — List next line of working program [and specified lines afterward]
to be calculated

PE — Report working program number and line (offset) currently executing to host

LIST PE[, [{constant}] — List currently executing line of working program [and specified
lines afterward]

DEFINE ROT {constant} — Establish rotary motion program buffer of specified word size
for the addressed coordinate system

DELETE ROT — Erase rotary motion program buffer for addressed coordinate system

PR — Report number of lines between executing point and last loaded line in rotary program buffer.

LEARN — Read present commanded positions and add as axis commands to open program buffer

On-Line Motor Commands
(These act immediately on the currently-addressed motor. Except for the reporting commands, these
commands are rejected if the motor is in a coordinate system that is currently running a motion program.)

General Motor Commands

$ — Reset motor — feedback device(s) and phasing

$* — Read absolute position of motor according to Ix10

HM — Perform homing routine for motor

HMZ — Perform zero-move homing routine for motor

SETPHASE — Set commutation angle for present position to [x75
K — Kill output for motor

O{constant} — Open-loop output of specified magnitude

Jogging Commands

J+ — Jog motor indefinitely in positive direction

J- — Jog motor indefinitely in negative direction

J/ — Stop jogging motor; also restore to position control

J=— Jog motor to last pre-jog or pre-handwheel position

J={constant} — Jog motor to specified position

J=* — Variable jog to position

J: {constant} — Jog motor specified distance from current commanded position

J: * — Variable incremental jog from current commanded position

J* {constant} — Jog motor specified distance from current actual position

J~* — Variable incremental jog from current actual position

{jog command}“*{constant} — Jog until trigger, final value specifies distance from trigger
position to stop

PMAC Command and Variable Summary 5

PMAC/PMAC?2 Software Reference Manual

Reporting Commands

P — Report position of motor

V — Report velocity of motor

F — Report following error of motor

? — Report status words for motor in hex ASCII form

Buffer Control Commands
DEFINE BLCOMP {entries}, {count length} — Establish backlash compensation table
for motor; to be filled by specified
number of values
DELETE BLCOMP — Erase backlash compensation table for motor
DEFINE COMP {entries}, [#{source}, [#{target},]], {count length} —
Establish leadscrew compensation table for motor; to be filled by specified number
of values
DEFINE COMP{rows}.{columns}, [#{sourcel}, [#{source2},
[#{target},]]], {row count length}, {column count length} — Establish
two dimensional leadscrew compensation table for motor; to be filled by specified number of
values
DELETE COMP — Erase leadscrew compensation table for motor.
DEFINE TCOMP {entries}, {count length} — Establish torque compensation table for
motor; to be filled by specified number
of values .
DELETE TCOMP — Erase torque compensation table for motor.

Motion Program Commands

Move Commands
{axis}{data} [{axis}{data}...] — Simple movement statement; can be used in
LINEAR, RAPID or SPLINE modes
Example: X1000 Y (P1l) Z (P2*P3)
{axis}{data}:{data} [{axis}{data}:{data}...] —Position:velocity move; to be
used only in PVT mode
Example: X5000:750 ¥3500: (P3) A(P5+P6) :100
{axis}{data}*{data} [{axis}{data}*{data}...] —Move until trigger, variant of
RAPID mode
{axis}{data}[{axis}{data}...] [{vector}{data}...] — Circle move;
to be used only in circular mode; vector is to circle center
Example: X2000 Y3000 Z1000 I500 J300 K500
DWELL{data} — Keep same commanded position; fixed time base
DELAY {data} — Keep same commanded position; variable time base
HOME {constant} [, {constant}...] — Home specified motor(s)
HOMEZ {constant} [, {constant}...] — Do zero-move homing of specified motor(s)

Move Mode Commands

LINEAR — Blended linear interpolation move mode

RAPID — Mode where all axes move a maximum velocity and accel.

CIRCLE1 — Clockwise circular interpolation move mode

CIRCLE2 — Counterclockwise circular interpolation move mode

PVT{data} — Position/velocity/time transition-point move mode (parabolic velocity profiles)
SPLINE1 — Uniform cubic spline move mode

6 PMAC Command and Variable Summary

PMAC/PMAC2 Software Reference Manual

SPLINE2 — Non-uniform cubic spline move mode
CCO — Turns off cutter radius compensation

CC1 - Turns on cutter radius compensation left
CC2 — Turns on cutter radius compensation right

Axis Attribute Commands

ABS[({axis} [, {axis},...])] —Makes all [or specified] axes in absolute move mode

INC[({axis} [, {axis},...])] —Makes all [or specified] axes in incremental move mode

FRAX[({axis} [, {axis}...])] — Specifies feedrate axes

NORMAL{vector}{data} [{vector}{data}...] — Specifies normal vector to plane for

circular moves and cutter compensation

PSET{axis}{data}[{axis}{data}...] — Sets axis position values

R{data} — Specifies circle radius; negative value is long arc

CCR{data} — Specifies cutter compensation radius value (modal)

TSEL{data} — Selects specified axis transformation matrix

TINIT - Initializes selected axis transformation matrix as identity matrix

ADIS{data} — Sets displacement vector of selected matrix to values starting with specified
Q-variable

IDIS{data} — Increments displacement vector of selected matrix to values starting with
specified Q-variable

AROT{data} — Sets rotation/scaling portion of selected matrix to values starting with specified
Q-variable

IROT{data} — Incrementally changes rotation/scaling portion of selected matrix by multiplying
it with values starting with specified Q-variable

Move Attribute Commands

TM{data} — Specifies move time (modal)

F{data} — Specifies move speed (modal)

TA{data} — Specifies move acceleration time (modal)
TS{data} — Specifies acceleration S-curve time (modal)

Variable Assignment Commands

I{constant}={expression} — Assigns expression value to specified I-variable
P{constant}={expression} — Assigns expression value to specified P-variable(s)
Q{constant}={expression} — Assigns expression value to specified Q-variable(s)
M{constant}={expression} — Assigns expression value to specified M-variable(s)
M{constant}=={expression} — Assigns expression synchronous with start of next move
M{constant}&={expression} — M-variable ANDed with expression synchronously
M{constant} |={expression} — M-variable ORed with expression synchronously
M{constant}*={expression} — M-variable XORed with expression synchronously

Program Logic Control
N{constant} — Line label
O{constant} — Alternate line label, stored as N{constant}
GOTO{data} — Jump to specified N-label; no return
GOSUB{data}[{letter}{axis}...] — Jump to specified N-label and return

[with arguments]
CALL{data}[.{data}] [{letter}{axis}...] —Jump to specified program

[and label] [with arguments] and return.

RETURN — Return program operation to most recent GOSUB or CALL

PMAC Command and Variable Summary

PMAC/PMAC?2 Software Reference Manual

READ ({letter} [,{letter}...]) — Allows subprogram or subroutine to take arguments
G{data} — Gnn[.mmm] interpreted as CALL 1000 .nnmmm

(PROG 1000 provides subroutines for desired G-Code actions.)
M{data} —Mnn[.mmm] interpreted as CALL 1001 .nnmmm

(PROG 1001 provides subroutines for desired M-Code actions.)
T{data} — Tnn[.mmm] interpreted as CALL 1002 .nnmmm

(PROG 1002 provides subroutines for desired T-Code actions.)
D{data} —Dnn[.mmm] interpreted as CALL 1003 .nnmmm

(PROG 1003 provides subroutines for desired D-Code actions.)
S{data} — Sets Q127 to value of {data}
PRELUDE1l{call command} — For modal execution of call cmd. before subsequent moves
PRELUDEO — De-activates modal PRELUDE calls
IF ({condition}) {action} — Conditionally execute action
IF ({condition}) — Conditionally execute following statements
ELSE {action} — Execute action on previous false condition
ELSE — Execute following statements on previous false condition
ENDIF — Follows last of conditionally executed statements
WHILE ({condition}) {action} — Do action as long as condition true
WHILE ({condition}) — Do following statements as long as true
ENDWHILE — Follows last of conditionally executed statements
BLOCKSTART — So all commands until BLOCKSTOP to execute on Step
BLOCKSTOP — End of stepped statements starting on BLOCKSTART
STOP — Halts program execution; ready to resume
WAIT — Used with WHILE to halt execution while condition true

Miscellaneous Commands

COMMAND " {command}" — Issue command as if it came from host

COMMAND” { letter} — Issue control character command

SEND" {message}" — Transmit message over host interface

SENDS" {message} " — Transmit message over serial interface

SENDP" {message}" — Transmit message over parallel interface

DISPLAY [{constant}] "{message}" —Send message to LCD display [starting
at specified location]

DISPLAY {constant}, {constant}.{constant}, {variable} — Send variable
value to LCD using specified location and format

ENABLE PLC{constant} [, {constant}...] — Enable operation of specified
interpreted PLC program(s]

DISABLE PLC{constant}[, {constant}...] — Disable operation of specified
interpreted PLC program(s]

PAUSE PLC{constant}[, {constant}...] — Suspend operation of specified
interpreted PLC program[s] at present point

RESUME PLC{constant} [, {constant}...] — Continue operation of specified
interpreted PLC program(s] at paused point

ENABLE PLCC{constant}[, {constant}...] — Enable operation of specified
compiled PLC program|[s]

DISABLE PLCC{constant}[, {constant}...] — Disable operation of specified
compiled PLC program(s]

8 PMAC Command and Variable Summary

PMAC/PMAC2 Software Reference Manual

PLC Program Commands

Conditions

IF ({condition}) — Evaluates condition to determine which branch to enter

WHILE ({condition}) — Conditional loop start; if true, holds up operation of PLC in
the WHILE loop

AND ({condition}) — Forms compound condition w/ IF or WHILE

OR ({condition}) — Forms compound condition w/ IF or WHILE

ELSE — Starts false branch of IF

ENDIF — Closes out the actions dependent on an IF statement; used after, not before,
an ELSE statement.

ENDWHILE — Closes out the actions dependent on a WHILE statement

Actions

{variable}={expression} — Expression value given to variable

MACROSLVREAD — Copy Type | MACRO slave variable to PMAC variable

MACROSLVWRITE — Copy PMAC variable value to Type 1 MACRO slave variable

COMMAND " {command}" — Issue command as if from host

COMMAND” { letter} — Issue control character command

SEND" {message} " — Send message to active host interface (serial or parallel)

SENDS" {message}" — Send message to serial interface

SENDP " {message}" — Send message to parallel (bus) interface

DISPLAY [{constant}] "{message}" — Display message on LCD display, starting at

specified character

DISPLAY {constant}, {constant}.{constant}, {variable} — Send variable
value to LCD using specified location and format.

ENABLE PLC{constant}[, {constant}...] — Enable operation of specified
PLC program(s]

DISABLE PLC{constant}[, {constant}...] — Disable operation of specified
PLC program([s]

PAUSE PLC{constant}[, {constant}...] — Suspend operation of specified
interpreted PLC program[s] at present point

RESUME PLC{constant} [, {constant}...] — Continue operation of specified
interpreted PLC program|[s] at paused point

ENABLE PLCC{constant}[, {constant}...] — Enable operation of specified
compiled PLC program(s]

DISABLE PLCC{constant}[, {constant}...] — Disable operation of specified
compiled PLC program(s]

PMAC Command and Variable Summary

PMAC/PMAC?2 Software Reference Manual

PMAC I-Variable Summary

General Divisions

10 -199 ... General card setup (global)

1100 - 1186 Motor #1 setup

1187 — 1199Coordinate System 1 setup

1200 - 1286 Motor #2 setup

1287 — 1299Coordinate System 2 setup

1800 — 1886 Motor #8 setup

1887 — 1899Coordinate System 8 setup

1900 - 1979 Encoder 1 - 16 setup (in groups of 5)

1980 — 11023 ...Reserved for future use
Global I-Variables

(1 Serial Addressing Card Number {PMAC(1) w/Flex CPU, PMAC2 only}
| § I Serial Port Communications Mode
2. Control Panel Disable

I3 I/O Handshake Mode

4. Communications Checksum Enable
IS, PLC Programs On/Off

I6.....cees Error Reporting Mode

17 In-Position Number of Cycles

I8..oiie. Real Time Interrupt Period

9., Full/Abbreviated Program Listing Form
0. Servo Interrupt Time

nmi............ Programmed Move Calculation Time
M2, Jog-to-Position Calculation Time
M3, Programmed Move Segmentation Time
Mm4................ Auto Position Match on Run

ns........c.c..o. Degree/Radian Control For User Trig Functions
I16.................... Rotary Buffer Request On Point
7. Rotary Buffer Request Off Point
8. Fixed Buffer Full Warning Point

| § £ Data Gathering Period (in Servo Cycles)
120.....ccnvene. Data Gathering Selection Mask

121-144 Data Gathering Source 1-24 Address
M45..... Data Gathering Buffer Location and Mode
I46.................... CPU Frequency Control {Flex CPU only}

147 ... Address of Pointer to <CTRL-W> Command
I48.....ccoeeee. DPRAM Servo Data Enable

149.......coove. DPRAM Background Data Enable
I150......eeee. Rapid Move Velocity Mode

IS, Compensation Table Enable

I52... ‘\” Program Hold Slew Rate

I53.n. Program Step Mode Control

I54.................... Serial Baud Rate Control {PMAC(1) w/Flex CPU, PMAC?2 only}
IS5..i, DPRAM Background Buffer Control
I56.................... DPRAM ASCII Communications Interrupt Enable
I57 .o DPRAM Binary Rotary Buffer Enable
IS8..coiie. DPRAM ASCII Communications Enable

10 PMAC Command and Variable Summary

PMAC/PMAC2 Software Reference Manual

159 DPRAM Buffer Maximum Motor/C.S. Number
160.................... Auto-Converted ADC Register Address {PMAC(1) only}
Iel.................... Number of Auto-Converted ADC Registers {PMAC(1) only}
162 Internal Message Carriage Return Control
163...ccciiiees Control-X Echo Enable

I64.................... Internal Response Tag Enable

I65.................... User Configuration Variable

I66................. Servo-Channel ADC Auto-Copy Disable {PMAC2 only}
167 ..o Modbus TCP Buffer Start Address

I68.................... Alternate TWS Input Format

169......cove Modbus TCP Software Control Panel Start Address
170-177 Analog Table Setup Lines {PMAC2 Only}
I8X..ooviiiiee. Motor x Third-Resolver Gear Ratio

I89....cccvvn Cutter Comp Outside Angle Break Point

190......ccccooenee. Minimum Arc Angle

| L) S Motor x Second-Resolver Gear Ratio

199......oeeeee Backlash Hysteresis

Motor I-Variables x = Motor Number (#x, x =1 to 8}

Motor Definition I-Variables

Ix00.................. Motor x Activate

Ix01.................. Motor x PMAC-Commutate Enable
Ix02.......oceee Motor x Command Output (DAC) Address
Ix03.................. Motor x Position-Loop Feedback Address
Ix04.............. Motor x Velocity-Loop Feedback Address
Ix05.................. Motor x Master (Handwheel) Position Address
Ix06.................. Motor x Master (Handwheel) Following Enable
Ix07.......c......... Motor x Master (Handwheel) Scale Factor
Ix08.................. Motor x Position-Loop Scale Factor
Ix09.................. Motor x Velocity-Loop Scale Factor
Ix10.................. Motor x Power-On Servo Position Address

Motor Safety I-Variables

Ix11............c... Motor x Fatal (Shutdown) Following Error Limit
IX12..., Motor x Warning Following Error Limit
Ix13...cee Motor x Positive Software Position Limit
Ixl4............. Motor x Negative Software Position Limit
Ix15.................. Motor x Deceleration Rate on Position Limit or Abort
Ix16.................. Motor x Maximum Permitted Program Velocity
Ix17..cenne Motor x Maximum Permitted Programm Accel.
Ix19....cceeeee. Motor x Maximum Permitted Jog Accel.

Motor Movement I-Variables

Ix20.......c.....e. Motor x (Jogging and Homing) Acceleration Time
Ix21.................. Motor x (Jogging and Homing) S-Curve Time
Ix22....oee. Motor x Jog Speed

Ix23....ccve. Motor x Homing Speed and Direction
Ix25.....cooee Motor x Limit/Home Flag/Amp Flag Address
Ix26....cccvenneee Motor x Home Offset

Ix27 oo, Motor x Position Rollover Range

Ix28....ccoenee. Motor x In-position Band

PMAC Command and Variable Summary

11

PMAC/PMAC?2 Software Reference Manual

Ix29........ce.. Motor x Output - or First Phase — Bias

Motor Servo Control I-Variables {Standard PID Algorithm}

Ix30....cocoeeeee Motor x PID Proportional Gain

Ix31..oooeennnnns Motor x PID Derivative Gain

Ix32..e Motor x PID Velocity Feedforward Gain
Ix33..oie Motor x PID Integral Gain

Ix34........c..c.... Motor x PID Integration Mode

IX35..iiin, Motor x PID Acceleration Feedforward Gain
Ix36.....ccc.n.... Motor x Notch Filter Coefficient N1

| 5’ Jr AT Motor x Notch Filter Coefficient N2
Ix38..ooviis Motor x Notch Filter Coefficient D1
Ix39....ooeennn. Motor x Notch Filter Coefficient D2
Ix40.................. Motor x Net Desired Position Filter Gain {Opt 6L Lookahead firmware only}
| ' I Motor x Continuous Current Limit
Ix58......oooee Motor x Integrated Current Fault Level
Ix59....ooee Motor x User-Written Servo Enable
Ix60.................. Motor x Servo Cycle Extension Period
Ix61.................. Motor x Current-Loop Integral Gain {PMAC?2 only}
Ix62.................. Motor x Forward-Path Current Loop Proportional Gain {PMAC?2 only}
Ix63.................. Motor x Integration Limit

Ix64.................. Motor x “Deadband Gain Factor”
Ix65.................. Motor x Deadband Size

Ix66.................. Motor x PWM Scale Factor

Ix67.......ccnen.. Motor x Linear Position Error (“Big Step””) Limit
Ix68.................. Motor x Friction Feedforward Gain
Ix69.................. Motor x Output Command (DAC) Limit

Motor Servo Control I-Variables {Option 6 Extended Servo Algorithm only}
Ix30.................. Motor x ESA s0 Gain

Ix31..coooons Motor x ESA sl Gain

Ix32..iiiis Motor x ESA f0 Gain

Ix33..ccooiis Motor x ESA f1 Gain

Ix34................. Motor x ESA h0 Gain

IX35..iiis Motor x ESA hl Gain

Ix36.................. Motor x ESA r1 Gain

| B’ Iy A Motor x ESA 12 Gain

Ix38..oooviinns Motor x ESA r3 Gain

Ix39...oovvvns Motor x ESA r4 Gain

Ix40.................. Motor x ESA t0 Gain

Ix41.................. Motor x ESA tl1 Gain

Ix42.......con. Motor x ESA t2 Gain

Ix43 ... Motor x ESA t3 Gain

Ix44................. Motor x ESA t4 Gain

Ix45.......coe. Motor x ESA TS Gain

Ixd6.................. Motor x ESA L1 Gain

| B'C i Motor x ESA L2 Gain

Ix48................. Motor x ESA L3 Gain

Ix49.................. Motor x ESA kO Gain

Ix50.................. Motor x ESA k1 Gain

IxS1............... Motor x ESA k2 Gain

12 PMAC Command and Variable Summary

PMAC/PMAC2 Software Reference Manual

Ix52...coie, Motor x ESA k3 Gain

IxX53...cooii Motor x ESA KS Gain

Ix54...........c..... Motor x ESA d1 Gain

IX55...cees Motor x ESA d2 Gain

Ix56.......ccc.ce. Motor x ESA g0 Gain

IX57 .o, Motor x ESA g1 Gain

Ix58....ccoeene. Motor x ESA GS Gain

Ix60.................. Motor x Servo Cycle Extension Period

Ix61................. Motor x Current-Loop Integral Gain {PMAC?2 only}
Ix62.......ccu. Motor x Forward-Path Current Loop Proportional Gain {PMAC?2 only}
Ix68.................. Motor x Friction Feedforward Gain

Ix69.................. Motor x Output Command (DAC) Scale Factor

Motor Commutation I-Variables

Ix70.......ccec.. Motor x Number of Commutation Cycles (N) for Cycle Size Definition
Ix71...ccneeee. Motor x Encoder Counts per N Commutation Cycles
IX72.ii, Motor x Commutation Phase Angle

IX73 . Motor x Phase Finding Output (DAC) Value
Ix74........c..c..... Motor x Phase Finding Time

IX75.s Motor x Phasing Offset

IX76....cceene. Motor x Velocity Phase Advance Gain {PMAC(1) only}
IX76.......cccc.... Motor x Current-Loop Back-Path Proportional Gain {PMAC?2 only}
IX77 oo, Motor x Induction Motor Magnetization Current
IX78..iine Motor x Induction Motor Slip Gain

IX79 .. Motor x Second Phase Bias

Ix80.........c......... Motor x Power-Up Mode

Ix81......cceee. Motor x Power-On Phase Position Address
Ix82....ocvees Motor x Current Loop Feedback Address {PMAC2 only}
Ix83....cccoeee. Motor x Ongoing Phasing Position Address
Ix84.................. Motor x Current Loop Mask Word {PMAC?2 only}
Further Motor I-Variables

Ix85.....cccee.. Motor x Backlash Take-up Rate

Ix86.................. Motor x Backlash Size

Coordinate System I-Variables

x = Coordinate System Number (&x, x =1 to 8)

Ix87 ..o, Coordinate System x Default Program Acceleration Time
Ix88.................. Coordinate System x Default Program S-Curve Time
Ix89........c.e.. Coordinate System x Default Program Feedrate
Ix90................. Coordinate System x Feedrate Time Units
IxX91.......cc.eoc. Coordinate System x Default Working Program Number
Ix92................. Coordinate System x Move Blend Disable
Ix93.......cce. Coordinate System x Time Base Control Register Address
Ix94................. Coordinate System x Time Base Slew Rate
Ix95.....coee Coordinate System x Feed Hold Slew Rate
Ix96.................. Coordinate System x Maximum Circle Error Limit
Ix98.................. Coordinate System x Maximum Feedrate

PMAC Command and Variable Summary

13

PMAC/PMAC?2 Software Reference Manual

PMAC(1) Servo Interface Setup I-Variables

For Encodern (n=1 to 16)

1900 - 1904 — Encoder 1
1905 - 1909 — Encoder 2
1910 - 1914 — Encoder 3
1915 - 1919 — Encoder 4

1970 - 1974 — Encoder 15
1975 -1979 — Encoder 16

1900, 1905, 1910, 1915, 1920, 1925, 1930, 1935,
1940, 1945, 1950, 1955, 1960, 1965, 1970, 1975 (Encoder I-Variable 0) Encoder n Decode Control

1901, 1906, 1911, 1916, 1921, 1926, 1931, 1936,
1941, 1946, 1951, 1956, 1961, 1966, 1971, 1976 (Encoder I-Variable 1) Encoder n Filter Disable

1902, 1907, 1912, 1917, 1922, 1927, 1932, 1937,
1942, 1947, 1952, 1957, 1962, 1967, 1972, 1977 (Encoder I-Variable 2) Encoder n Position Capture
Control

1903, 1908, 1913, 1918, 1923, 1928, 1933, 1938,
1943, 1948, 1953, 1958, 1963, 1968, 1973, 1978 (Encoder I-Variable 3) Encoder n Flag Select Control

PMAC2 Servo Interface Setup I-Variables

Global Hardware Setup I-Variables

1900.................. MaxPhase and PWM 1-4 Frequency Control
901................. Phase Clock Frequency Control
1902.................. Servo Clock Frequency Control
1903................. Hardware Clock 1-4 Frequency Control
1904.................. PWM 1-4 Deadtime/PFM 1-4 Pulse-Width Control
1905.................. DAC 1-4 Strobe Word Control
1906.................. PWM 5-8 Frequency Control
1907......ccoeee. Hardware Clock 5-8 Frequency Control
1908.................. PWM 5-8 / PFM 5-8 Pulse-Width Control
1909.................. DAC 5-8 Strobe Word Control

Channel n Hardware Setup I-Variables
9no................. Encoder/Timer n Decode Control
Ynl................ Position Compare n Channel Select
9n2.................. Encoder n Capture Control

I9n3................. Flag n Capture Select

On4............... Encoder n Gated Index Select
9nS.................. Encoder n Index Gate State

9n6.................. Output n Mode Select

I9n7................ Output n Invert Control

9ns.................. PFM n Direction Invert Control
9n9................ Encoder n Hardware 1/T Control
Ultra-Lite/Supplemental Channel Hardware Setup I-Variables
1990.................. Handwheel 1 Decode Control
1991.................. Handwheel 2 Decode Control
1992................ Ultralite MaxPhase Frequency Control

14 PMAC Command and Variable Summary

PMAC/PMAC2 Software Reference Manual

1993................. Supplemental Hardware Clock Control
1994.................. Supplemental Deadtime/Pulse-Width Control
1995........cee.. MACRO Ring Master/Slave Control
1996.................. MACRO Node Activation Control

1997 ... Ultralite Phase Clock Frequency Control
1998.................. Ultralite Servo Clock Frequency Control
MACRO Support I-Variables

11000................ MACRO Node Auxiliary Register Enable
11001................ MACRO Ring Check Time Period
11002................ MACRO Node Protocol Type Control
11003................ MACRO Type 1 Master/Slave Communications Timeout
11004................ MACRO Ring Error Shutdown Count
11005................ MACRO Ring Sync Packet Shutdown Count
11010................ Resolver Excitation Phase Offset
noit.............. Resolver Excitation Gain

o12............. Resolver Excitation Frequency Divider
1oi3............... Motor Temperature Check Enable
1ois............ SSI Clock Frequency Control
11016................ SSI Channel 1 Mode Control

1o17................ SSI Channel 1 Word Length Control
11018................ SSI Channel 2 Mode Control

11o19................ SSI Channel 2 Word Length Control
11020................ Lookahead Length (Option 6L firmware only)
11021................ Lookahead State Control (Option 6L firmware only)

PMAC Command and Variable Summary

15

PMAC/PMAC?2 Software Reference Manual

PMAC Error Code Summary

PMAC can report the following error messages in response to commands:

Error Problem Solution

ERRO01 | Command not allowed during program | (should halt program execution before issuing
execution command)

ERR002 | Password error (should enter the proper password)

ERRO03 | Data error or unrecognized command (should correct syntax of command)

ERR004 | Illegal character: bad value (>127 (should correct the character and or check for
ASCII) or serial parity/framing error noise on the serial cable)

ERRO05 | Command not allowed unless buffer is | (should open a buffer first)
open

ERR006 | No room in buffer for command (should allow more room for buffer - DELETE or

CLEAR other buffers)

ERRO07 | Buffer already in use (should CLOSE currently open buffer first)

ERR008 | MACRO auxiliary communications (should check MACRO ring hardware and
error software setup)

ERRO09 | Program structural error (¢.g. ENDIF (should correct structure of program)
without IF)

ERRO10 | Both overtravel limits set for a motor in | (should correct or disable limits)
the C.S.

ERRO11 | Previous move not completed (should Abort it or allow it to complete)

ERRO012 | A motor in the coordinate system is (should close the loop on the motor)
open-loop

ERRO13 | A motor in the coordinate system is not | (should set Ix00 to 1 or remove motor from C.S.)
activated

ERR014 | No motors in the coordinate system (should define at least one motor in C.S.)

ERRO15 | Not pointing to valid program buffer (should use B command first, or clear out

scrambled buffers)

ERRO016 | Running improperly structured (should correct structure of program)
program (e.g. missing ENDWHILE)

ERRO17 Trying to resume after / or \ with (should use J= to return motor[s] to stopped

motors out of stopped position

position)

Note

Variable 16 controls whether and how these error messages are sent

16

PMAC Command and Variable Summary

PMAC/PMAC2 Software Reference Manual

PMAC Syntax Notes

1. PMAC syntax is not case-sensitive. That is, it does not matter whether an upper-case or lower-case
letter is used in any command or statement. PMAC commands are shown in this document in all
upper-case letters to help distinguish them better from the explanatory text.

Example: X1000 and x1000 are identical statements to PMAC.

2. In syntax definitions, an item in squiggly brackets, such as {data}, means you can put what you
wish into that part of the syntax, subject to the defined limitations of that item.

Example: If the syntax is X{data}, you can put X1000, X (P1), or X (P2*P3+50), because
1000, (P1), and (P2*P3+50) all fit in the defined limitations for {data}.

3. In syntax definitions, items contained within square brackets are optional to the syntax. If there is an

ellipsis (...) within the square brackets, items contained within the square brackets can be repeated.

Example: If the syntax definition is {axis} {data} [{axis}{data} ...],youcanput
X1000,xX1000Y1000, or x1000Y1000Z1000.

4. Spaces are not important in PMAC syntax, except where specifically noted.

PMAC Command and Variable Summary

17

PMAC 2 Software Reference

18

PMAC Command and Variable Summary

PMAC 2 Software Reference

PMAC I-VARIABLE SPECIFICATION

On PMAC, I-variables (Initialization, or Set-up, Variables) determine the “personality” of the
controller for a given application. They are at fixed locations in memory and have pre-defined
meanings. Most are integer values, and their range varies depending on the particular variable.
There are 1024 I- variables, from 10 to 11023, and they are organized as follows:

I-Variable Function

10 —199 General card setup (global)
1100 — 1186 Motor #1 setup
1187 - 1199 Coordinate System 1 setup
1200 — 1286 Motor #2 setup
1287 — 1299 Coordinate System 2 setup

1800 — 1886 Motor #8 setup

1887 — 1899 Coordinate System 8 setup

1900 — 1999 Hardware Channel setup
11000 — 11023 MACRO and reserved

Global I-Variables

0 Serial Addressing Card Number {PMAC(1) w/Flex CPU, PMAC2 only}

Range
Units
Default

Remarks

$0 to $F (0 to 15)
none
0

10 controls the card number for software addressing purposes on a multi-drop serial
communications cable for all PMAC2 boards and for PMAC(1) boards with an Option 5xF
“Flex” CPU. (On other PMAC(1) boards, the card number is determined by the settings of
jumpers E40 — E43.)

If 12 is set to 2, the PMAC must be addressed with the @n command, where n matches the
value of 10 on the board, before it will respond. If the PMAC receives the @n command,
where n does not match 10 on the board, it will stop responding to commands on the serial
port. No two boards on the same serial cable may have the same value of I0.

If the @@ command is sent over the serial port, all boards on the cable will respond to
action commands. However, only the board with 10 set to 0 will respond to the host with
handshake characters and/or data responses. All boards on the cable will respond to
control-character action commands such as <CTRL-R>, regardless of the current
addressing.

Note:

RS-422 serial interfaces must be used on all PMAC boards for
multi-drop serial communications; this will not work with RS-232
interfaces. If the RS-422 interface is not present as a standard
feature on the PMAC board, the Option 9L serial converter module
must be purchased. It is possible to use an RS-232 interface on the
host computer, connected to the RS-422 ports on the PMAC2
boards.

PMAC I-Variable Specification 19

PMAC 2 Software Reference

Typically multiple PMAC?2 boards on the same serial cable will share servo and phase
clock signals over the serial port cable for tight synchronization. If the servo and phase
clock lines are connected between multiple PMACs, only one of the PMAC boards can be
set up to output these clocks (E40 — E43 all ON for a PMAC(1), E1 jumper OFF for a
PMAC?2). All of the other boards in the chain must be set up to input these clocks (one or
more of the jumpers E40 — E43 OFF for a PMAC(1), E1 jumper ON for a PMAC?2).

Note:

Any PMAC(1) board with one or more of E40 — E43 OFF, or any
PMAC?2 board with jumper E1 ON, is expecting its SERVO and
PHASE clock signals externally from a Card 0. If it does not
receive these clock signals, the watchdog timer will immediately
shut down the board and the red LED will light.

If the PMAC?2 has E1 ON to receive external SERVO and PHASE clock signals for
synchronization purposes, but is not using multi-drop serial communications, 10 does not
need to be changed from 0.

To set up a board to communicate as Card 1 to Card 15 on a multi-drop serial cable, first
communicate with the board as Card 0. Set 10 to specify the card number (software
address) that the board will have on the multi-drop cable. Also, set I1 to 2 to enable the
serial software addressing. Store these values to the non-volatile flash memory with the
SAVE command. Then turn off power; if the board is to input its clocks, put a jumper on
E1; connect the multi-drop cable; restore power to the system.

1 Serial Port Mode

Range
Units
Default

Remarks

0.3
none
0

I1 controls two aspects of how PMAC uses its serial port. The first aspect is whether
PMAC uses the CS (CTS) handshake line to decide if it can send a character out the serial
port. The second aspect is whether PMAC will require software card addressing,
permitting multiple cards to be daisychained on a single serial line.

There are four possible values of 11, covering all the possible combinations:

Setting Meaning
0 CS handshake used; no software card address required
1 CS handshake not used; no software card address required
2 CS handshake used; software card address required
3 CS handshake not used; software card address required

When CS handshaking is used (I1 is 0 or 2), PMAC waits for CS to go true before it will
send a character. This is the normal setting for real serial communications to a host; it
allows the host to hold off PMAC messages until it is ready.

When CS handshaking is not used (I1 is 1 or 3), PMAC disregards the state of the CS input
and always sends the character immediately. This mode permits PMAC to “output”
messages, values, and acknowledgments over the serial port even when there is nothing
connected, which can be valuable in stand-alone and PLC-based applications where there
are SEND and CMD statements in the program. If these strings cannot be sent out the
serial port, they can “back up”, stopping program execution.

20

PMAC I-Variable Specifiation

PMAC 2 Software Reference

See Also

When software addressing is not used (I1 is 0 or 1), PMAC assumes that it is the only card
on the serial line, so it always acts on received commands, sending responses back over the
line as appropriate.

When software addressing is used (I1 is 2 or 3), PMAC assumes that there are other cards
on the line, so it requires that it be addressed (with the @ {card command) before it
responds to commands. The {card} number in the command must match the card
number set up in hardware on the card with jumpers or DIP-switches.

Serial Port, Multiple-Card Applications (Talking to PMAC)
I-variable 16

Program Commands SEND, CMD

Connectors J4 (PMAC-PC, -Lite, -VME), J1, J3 (PMAC-STD)
Jumpers E40-E43 (PMAC-PC, -Lite, -VME)

DIP-switches SW1-1—-SW1-4 (PMAC-STD)

12 Control Panel Disable

Range
Units
Default

Remarks

See Also

0.3
none
0

12 allows the enabling and disabling of the control panel discrete inputs (on the JPAN
connector). 12=0 enables these control panel functions; 12=1 disables them. When
disabled, these inputs can be used as general purpose I/O. The reset, handwheel, and wiper
inputs on the JPAN connector are not affected by 12.

When 12=0, the IPOS, EROR and F1ER status lines to JPAN and the Programmable
Interrupt Controller (PIC), and the BREQ status line to the PIC, reflect the hardware-
selected coordinate system (by BCD-coded lines FPDn/ on JPAN); when 12=1, they reflect
the software-addressed coordinate system (&n).

When 12=3, the discrete inputs on the JPAN connector are disabled, and the dual-ported
RAM control panel functions are enabled. Refer to the descriptions of DPRAM functions
for more detail.

Using Interrupts (Writing a Host Communications Program)
I-variables 116-118

Custom Inputs Example (JOGSWTCH.PMC)

Connector JPAN (J2)

DPRAM Control Panel Functions

13 I/0 Handshake Control

Range
Units
Default

Remarks

0.3
none
1

I3 controls what characters, if any, are used by PMAC to delimit a transmitted line, and
whether PMAC issues an acknowledgment (handshake) of a command.

Note:

With checksum enabled (I14=1), checksum bytes are added after the
handshake character bytes.

PMAC I-Variable Specification 21

PMAC 2 Software Reference

Valid values of I3 and the modes they represent are:

0: PMAC does not acknowledge receipt of a valid command. It returns a <BELL>
character on receipt of an invalid command. Messages are sent without beginning or
terminating <LF> (line feed); simply as DATA <CR> (carriage return).

1: PMAC acknowledges receipt of a valid <CR>-terminated command with a <LF>; of an
invalid command with a <BELL> character. Messages are sent as <LF> DATA <CR>

[<LF> DATA <CR> ...] <LF>. (The final <LF> is the acknowledgment of the

host command; it does not get sent with a message initiated from a PMAC program [SEND
or CMD]). This setting is good for communicating with terminal display programs, such as
the PMAC Executive program.

2: PMAC acknowledges receipt of a valid <CR>-terminated command with an <ACK>; of
an invalid command with a <BELL> character. Messages are sent as DATA <CR> [
DATA <CR> ...] <ACK>. (The final <ACK> is the acknowledgment of the host
command; it does not get sent with a message initiated from a PMAC program [SEND or
CMD]). This is probably the best setting for fast communications with a host program
without terminal display.

3: PMAC acknowledges receipt of a valid <CR>-terminated command with an <ACK>; of
an invalid command with a <BELL> character. Messages are sent as <LF> DATA <CR>
[<LF> DATA <CR> ...] <ACK>. (The final <ACK> is the acknowledgment of
the host command; it does not get sent with a message initiated from a PMAC program
[SEND or CMD]).

Note:

When 158=1 to enable DPRAM ASCII communications, I3 is
forced to 0 or 2 from 1 or 3, respectively.

Example With I3=0:
#1J+<CR>......... ; Valid command not requiring data response
............................ ; No acknowledging character
UUU<CR> ; Invalid command
<BELL>.....cceu.... ; PMAC reports error
P1l..3<CR>..... ; Valid command requiring data response
25<CR>50<CR>75<CR> ; PMAC responds with requested data
With 13=1:
#1J+<CR>......... ; Valid command not requiring data response
SLE> i ; Acknowledging character
UUU<LCR>........... ; Invalid command
<BELL>.............. ; PMAC reports error
P1l..3<CR>...... ; Valid command requiring data response
<LF>25<CR><LF>50<CR><LF>75<CR><LF>
............................ ; PMAC responds with requested data
With [3=2:
#1J+<CR>......... ; Valid command not requiring data response
<ACK>...... ; Acknowledging character
UUU<ZCR> ; Invalid command
<BELL>.............. ; PMAC reports error
P1l..3<CR>...... ; Valid command requiring data response
25<CR>50<CR>75<CR><ACK>

22 PMAC I-Variable Specifiation

PMAC 2 Software Reference

See Also

............................ ; PMAC responds with requested data

With 13=3:

#1J+<CR>......... ; Valid command not requiring data response
<ACK> ..o ; Acknowledging character

UUU<CR> ; Invalid command

<BELL>....ccuu.... ; PMAC reports error

P1l..3<CR>..... ; Valid command requiring data response

<LF>25<CR><LF>50<CR><LF>75<CR><ACK>

............................ ; PMAC responds with requested data
Talking to PMAC

Writing a Host Communications Program

I-variables 14, 16, 158

14 Communications Integrity Mode

Range
Units
Default

Remarks

0.3
none
0

14 permits PMAC to compute checksums of the communications bytes (characters) sent
either way between the host and PMAC, and also controls how PMAC reacts to serial
character errors (parity and framing), if found. Parity checking is only enabled if jumper
E49 is OFF for PMAC-PC, -Lite, -VME; or ON for PMAC-STD.

The possible settings of 14 are:

Setting Meaning
0 Checksum disabled, serial errors reported immediately
1 Checksum enabled, serial errors reported immediately
2 Checksum disabled, serial errors reported at end of line
3 Checksum enabled, serial errors reported at end of line

Communications Checksum: With [4=1 or 3, PMAC computes the checksum for
communications in either direction and sends the checksum to the host. It is up to the host
to do the comparison between PMAC’s checksum and the checksum it computed itself.
PMAC does not do this comparison. The host should never send a checksum byte to
PMAC.

Host-to-PMAC Checksum: PMAC will compute the checksum of a communications line
sent from the host to PMAC. The checksum does not include any control characters sent
(not even the final Carriage-Return). The checksum is sent to the host immediately
following the acknowledging handshake character (KLE> or <ACK>), if any. Note that
this acknowledging and handshake comes after any data response to the command (and its
checksum!). If PMAC detects an error in the line through its normal syntax checking, it
will respond with the <BELL> character, but will not follow this with a checksum byte.

Note:

The on-line command <CTRL-N> can be used to verify the
checksum of a command line before the <CR> has been sent. The
use of <CTRL-N> does not affect how 14 causes PMAC to report a
checksum after the <CR> has been sent.

PMAC I-Variable Specification 23

PMAC 2 Software Reference

See Also

PMAC-to-Host Checksum: PMAC will compute the checksum of any communications
line it sends to the host. This checksum includes control characters sent with the line,
including the final <carriage-return>. The checksum is sent immediately following
this <carriage-return>. On a multiple-line response, one checksum is sent for each
line. Note that this checksum is sent before the checksum of the command line that caused
the response.

For more details on checksum, refer to the Writing a Host Communications Program
section of the manual.

Serial character errors: If PMAC detects a serial character error, it will set a flag so that
the entire command line will be rejected as having a syntax error after the <CR> is sent.
With 14=0 or 1, it will also send a <BELL> character to the host immediately on detecting
the character error. Note that this mode will catch a character error on the <CR> as well,
whereas in the I14=2 or 3 mode, the host would have to catch an error on the <CR>
character by the fact that PMAC would not respond (because it never saw a <CR>).

Communications Checksum (Writing a Host Communications Program)
I-variables 13, 16

On-line command <CTRL-N>

Jumper E49

15 PLC Programs On/Off

Range
Units
Default

Remarks

See Also

0.3
none
0

I5 controls which PLC programs may be enabled. There are two types of PLC programs:
the foreground programs (interpreted PLC 0 and compiled PLCC 0), which operate at the
end of servo interrupt calculations, with a repetition rate determined by I8 (PLC 0 should
be used only for time-critical tasks and should be short); and the background programs
(interpreted PLC 1 to PLC 31 and compiled PLCCI1 to PLCC 31) which cycle repeatedly
in background as time allows. I5 controls these as follows:

Setting Meaning

0 Foreground PLCs off; background PLCs off
1 Foreground PLCs on; background PLCs off
2 Foreground PLCs off; background PLCs on
3 Foreground PLCs on; background PLCs on

Note that an individual PLC program still needs to be enabled to run — a proper value of 15
merely permits it to be run. Any PLC program that exists at power-up or reset is
automatically enabled (even if the saved value of IS does not permit it to run immediately);
also, the ENABLE PLC n or ENABLE PLCC n command enables the specified
program(s). A PLC program is disabled either by the DISABLE PLC n or DISABLE
PLCC n command, or by the OPEN PLC n command. A CLOSE command does not
automatically re-enable an interpreted PLC program — it must be done explicitly. When
the compiled code for PLCC programs is downloaded to the PMAC, they are automatically
enabled if permitted by 15.

Running PLC Programs (Writing a PLC Program)
On line commands ENABLE PLC n, DISABLE PLC n, ENABLE PLCC n, DISABLE
PLCC n, OPEN PLC n, CLOSE, <CTRL-D>, $$$.

24

PMAC I-Variable Specifiation

PMAC 2 Software Reference

16 Error Reporting Mode

Range 0.3
Units none
Default 3

Remarks 16 controls how PMAC reports errors in command lines. When 16 is set to 0 or 2, PMAC
reports any error only with a <BELL> character. When 16 is 0, the <BELL> character is
given for invalid commands issued both from the host and from PMAC programs (using
CMD” {command}”). When 16 is 2, the <BELL> character is given only for invalid
commands from the host; there is no response to invalid commands issued from PMAC
programs. (In no mode is there a response to valid commands issued from PMAC

programs.)

When 16 is set to 1 or 3, an error number message can be reported along with the <BELL>
character. The message comes in the form of ERRnnn<CR>, where nnn represents the
three-digit error number. If 13 is set to 1 or 3, there is a <LF> character in front of the

message.

When 16 is set to 1, the form of the error message is <BELL>{error message}. This
setting is the best for interfacing with host-computer driver routines. When 16 is set to 3,
the form of the error message is <BELL><CR>{error message}. This setting is
appropriate for use with the PMAC Executive Program in terminal mode.

Currently, the following error messages can be reported:

Error

Problem

Solution

ERROO1

Command not allowed during
program execution

(should halt program execution before
issuing command)

ERR002

Password error

(should enter the proper password)

ERRO03

Data error or unrecognized
command

(should correct syntax of command)

ERR004

Illegal character: bad value (>127
ASCII) or serial parity/framing
error

(should correct the character and or check
for noise on the serial cable)

ERROO5

Command not allowed unless
buffer is open

(should open a buffer first)

ERR0O06

No room in buffer for command

(should allow more room for buffer —
DELETE or CLEAR other buffers)

ERROO7

Buffer already in use

(should CLOSE currently open buffer first)

ERR0O08

MACRO ring auxiliary
communications error

(should correct MACRO communications
or connections)

ERROO09

Program structural error (e.g.
ENDIF without IF)

(should correct structure of program)

ERRO10

Both overtravel limits set for a
motor in the C.S.

(should correct or disable limits)

ERRO11

Previous move not completed

(should Abort it or allow it to complete)

ERR012

A motor in the coordinate system is
open-loop

(should close the loop on the motor)

ERRO13

A motor in the coordinate system is
not activated

(should set Ix00 to 1 or remove motor
from C.S.)

ERRO014

No motors in the coordinate system

(should define at least one motor in C.S.)

ERRO15

Not pointing to valid program
buffer

(should use B command first, or clear out
scrambled buffers)

ERRO16

Running improperly structured
program (e.g. missing ENDWHILE)

(should correct structure of program)

PMAC I-Variable Specification

25

PMAC 2 Software Reference

See Also

ERRO17 | Motor(s) in C.S. not at halted (should move motor(s) back to halted
position to restart after / or \ position with J=)
command
Talking to PMAC

Writing a Host Communications Program
I-variables 13, 14
On-line commands R, S

17 In-Position Number of Cycles

Range
Units
Default
Remarks

See Also

0..255
Background computation cycles (minus one)
0

17 permits the user to define the number of consecutive scans that PMAC motors must
satisfy all “in-position” conditions before the motor in-position bit is set true. This permits
the user to ensure that the motor is truly settled in the end position before executing the
next operation, on or off PMAC. 17 + 1 consecutive scans are required.

PMAC scans for the in-position condition of each active motor during the “housekeeping”
part of every background cycle, which occurs between each scan of each enabled
uncompiled background PLC (PLC 1-31). All motors in a coordinate system must have
true in-position bits for the coordinate-system in-position bit to be set true.

Control Panel Port (Connecting PMAC to the Machine)

Using Interrupts (Writing a Host Communications Program)
I-variable 1x28

On-line commands ?,??

Suggested M-variable definitions Mx40

Memory registers Y:$0814, Y:$08D4, etc., Y:$0817, Y:$08D7, etc.
DPRAM Control Panel Functions

JPAN connector

18 Real Time Interrupt Period

Range
Units
Default
Remarks

0..255
Servo Interrupt Cycles
2

I8 controls how often certain time-critical tasks, such as PLC 0 and checking for motion
program move planning, are performed. A value of 2 means that they are performed after
every third servo interrupt, 3 means every fourth interrupt, and so on. The vast majority of
users can leave this at the default value. In some advanced applications that push PMAC’s
speed capabilities, tradeoffs between performance of these tasks and the calculation time
they take may have to be evaluated in setting this parameter.

Note:

A large PLC 0 with a small value of I8 can cause severe problems,
because PMAC will attempt to execute the PLC program every I8
cycle. This can starve background tasks, including
communications, background PLCs, and even updating of the
watchdog timer, for time, leading to erratic performance or possibly
even shutdown.

26

PMAC I-Variable Specifiation

PMAC 2 Software Reference

In multiple-card PMAC applications where it is very important that motion programs on
the two cards start as closely together as possible, I8 should be set to 0. In this case, no
PLC 0 should be running when the cards are awaiting a Run command. At other times I8
may be set greater than 0 and PLC 0 re-enabled.

See Also How PMAC Executes a Motion Program (Writing a Motion Program)
PLC 0 (Writing a PLC Program)

19 Full/Abbreviated Program Listing Form

Range 0.3

Units none

Default 2

Remarks 19 controls aspects of how PMAC reports program listings and variable values. The

following table shows the values of [9 and what they represent:

Setting Meaning
0 Short form, decimal address I-variable return
1 Long form, decimal address I-variable return
2 Short form, hex address I-variable return
3 Long form, hex address I-variable return

When this parameter is 0 or 2, programs are sent back in abbreviated form for maximum
compactness, and when I-variable values or M-variable definitions are requested, only the
values or definitions are returned, not the full statements. When this parameter is 1 or 3,
programs are sent back in full form for maximum readability. Also, I-variable values and
M-variable definitions are returned as full command statements, which is useful for
archiving and later downloading.

When this parameter is O or 1, [-variable values that specify PMAC addresses are returned
in decimal form. When it is 2 or 3, these values are returned in hexadecimal form (with
the ‘$’ prefix). You are always free to send any I-variable values to PMAC either in hex
or decimal, regardless of the 19 setting. This does not affect how I-variable assignment
statements inside PMAC motion and PLC programs are reported when the program is

listed.

Example With 19=0:
I125.....nee.e. ; Request address I-variable value
49152 ; PMAC reports just value, in decimal
M101->........... ; Request M-variable definition
X:5Cc001,24,S ; PMAC reports just definition
LIST PROG 1.. ; Request listing of program
LIN.oiioiioiennne ; PMAC reports program short form
X10
DWE1000
RET
With 19=1:
I125.......ee.e. ; Request address I-variable value
I125=49152.... ; PMAC reports whole statement, in decimal
M101->............ ; Request M-variable definition
M101->X:5C001,24,S ; PMAC reports whole statement
LIST PROG 1. ; Request listing of program
LINEAR.............. ; PMAC reports program long form
X10

PMAC I-Variable Specification 27

PMAC 2 Software Reference

See Also

DWELL1000
RETURN

With 19=2:
; Request address I-variable value
; PMAC reports just value, in hexadecimal

; Request address I-variable value

I125=$C000 ; PMAC reports whole statement, in hexadecimal

Talking to PMAC
On-line commands I {constant}, M{constant}->, LIST
I-Variables 119-144, 147, 1x02-1x05, Ix25, Ix83, x93

10 Servo Interrupt Time

Range
Units
Default

Remarks

0..8,388,607
1/ 8,388,608 msec
3,713,707

110 tells PMAC how much time there is between servo interrupts (which is controlled by
hardware circuitry), so that the interpolation software knows how much time to increment
each servo interrupt.

The fundamental equation for 110 is:

110 = 8,388,608 — 8,388,608 * ServoTime(m sec)

ServoFrequency(kHz)

On PMAC(1), the servo interrupt time is determined by the settings of hardware jumpers
E98, E29-E33, and E3-E6. The proper value of 110 can be determined from the settings of
these jumpers by the formula:

110 = 232,107 * E98JumperFactor * PhaseJumperFactor * ServoJumperFactor
where the factors can be taken from the following:

E98 Setting 1-2 2-3
E98JumperFactor 1 2

Phase Jumper ON E29 E30 E31 E32 E33
PhaseJumperFactor 16 8 4 2 1

ServoJumperFactor =1+ E3+(2*E4)+(4*E5)+(8*E6)
in which E£n = 0 if the jumper is ON, and En = 1 if the jumper is OFF.

On PMAC2, the servo interrupt time is determined on PMAC2 Ultralite boards by
MACRO IC I-variables 1992, 1997, and 1998; on non-Ultralite boards by Servo IC I-
variables 1900, 1901, and 1902; The proper setting of 110 can be determined from Servo IC
variables by the formula:

110

= %(2 *1900+ 3Y1901+1)1902+1)

The proper setting of 110 can be determined from MACRO IC variables by the formula:

28

PMAC I-Variable Specifiation

PMAC 2 Software Reference

See Also

Uozﬂ(
9

2%1992+ 31997 +1\1998+1)

110 is used to provide the “delta-time” value in the position update calculations, scaled
such that 2% — 8,388,608 — means one millisecond. Delta-time in these equations is
110*(%value/100). The % (feedrate override) value can be controlled in any of several
ways: with the on-line ‘%’ command, with a direct write to the command ‘%’ register,
with an analog voltage input, or with a digital input frequency. The default % value is 100,
and many applications can always leave it at 100.

Note:

Even if [x60 (servo cycle extension) has been changed from its
default value of 0 for any or all motors, the value of I10 should
reflect the time between servo interrupts, not between consecutive
servo cycle calculations.

Setting the Servo Update Time (Servo Features)

Jumpers E3-E6, E29-E33, E98

Connector J4 Pins 21-24 (PMAC-PC, -VME), J4 Pins 1 & 8 (PMAC-Lite), J3 Pins 5-8
(PMAC-STD).

11 Programmed Move Calculation Time

Range
Units
Default

Remarks

See Also

0..8,388,607
msec
0

111 controls the delay from when the run signal is taken (or the move sent if executing
immediately) and when the first programmed move starts. If several PMACs need to be
run synchronously, 111 should be set the same on all of the cards. If 11 is set to zero, the
first programmed move starts as soon as the calculation is complete.

This calculation time delay is also used after any break in the continuous motion of a
motion program: a DWELL, a PSET, a WAIT, or each move if [x92=1 (a DELAY is
technically a zero-distance move, and so does not constitute a break).

The actual delay time varies with the time base (e.g. at a value of 50, the actual delay time
will be twice the number defined here), which keeps it as a fixed distance of the master in

an external time base application. If it is desired to have the slave coordinate system start

up immediately with the master, 111 should be set to zero, and the program commanded to
run before the master starts to move.

Note:

If 111 is greater than zero, defining a definite time for calculations,
and PMAC cannot complete the calculations for the first move of a
sequence by the end of the I11 time, PMAC will terminate the
running of the program with a run-time error.

External Time Base (Synchronizing PMAC to External Events)
I-variables 112, 113
Program commands DWELL, DELAY

PMAC I-Variable Specification 29

PMAC 2 Software Reference

12 Jog-to-Position Calculation Time

Range
Units
Default

Remarks

See Also

1..8,388,607
msec
10

112 controls how much time is allotted to calculate an on-line jog or homing-search move
or a motion program RAPID move, including the “post-trigger” portions of triggered
moves (homing search, move until trigger). If a motor is currently moving, it will continue
on its present course during that time. If it is currently sitting still, it will continue to sit for
this time.

This parameter should rarely need to be changed from the default. It should not be set to 0
for any reason, or PMAC will not be able to perform any of these types of moves. The
minimum practical value for this parameter is 2 or 3.

I-variables I11, 113
Program command RAPID
On-line commands J=, J={constant}, J/, J*{constant}, J: {constant}

13 Programmed Move Segmentation Time

Range 0..8,388,607

Units msec

Default 0

Remarks 113 controls how PMAC performs its interpolation calculations for LINEAR and CIRCLE
mode moves. If 113 is set to 0, PMAC interpolates directly from the starting point of the
programmed move to the ending point. This mode creates satisfactory linear interpolation
in Cartesian systems, but cannot generate circular paths.
When 113 is set greater than 0, this puts PMAC into a mode (“segmentation mode”) where
all LINEAR and CIRCLE moves are done as a continuous cubic spline in which the move
segments are of the time length specified by the parameter in this variable (this is not the
same thing as SPLINE mode moves). This mode is required for applications using
CIRCLE mode moves.
Segmentation mode (113 greater than 0) is required to support any of the following PMAC
features:
e Circular interpolation
e (Cutter radius compensation
e / Program stop command
e \ Program hold command
e Rotary buffer blend on-the-fly
e Special multiple-move lookahead (Option 6L firmware)
If none of these features is required, it is usually best to leave 113 at 0, for more efficient
computation.
Typical values of 113 for segmentation mode are 5 to 10 msec. The smaller the value, the
tighter the fit to the true curve, but the more computation is required for the moves, and the
less is available for background tasks. If I13 is set too low, PMAC will not be able to do
all of its move calculations in the time allotted, and it will stop the motion program with a
run-time error.

30 PMAC I-Variable Specifiation

PMAC 2 Software Reference

Note:

When 113=0, moves are done without this ongoing spline technique,
and CIRCLE mode moves are done as LINEAR mode moves.

See Also Circular Interpolation, Cutter Radius Compensation (Writing a Motion Program)
On-line commands /, \
Program commands {axis} {data}{vector}{data}, CIRCLE1l, CIRCLE2,
Cco, CcCl, cc2

114 Auto Position Match on Run Enable

Range 0.1

Units none

Default 1

Remarks 114, when set to 1, performs an automatic re-matching of motor and axis starting position

registers to current motor commanded positions whenever a motion program is started. A
mismatch can occur whenever a motor move (jog, open-loop, abort, or limit) changes the
motor’s target position without letting the axis position “know” of the change, or on
power-up when an absolute position sensor starts up with a position other than zero.

With 114=1, PMAC will execute the PMATCH function on any Run or Step command to
make sure that the axes in the motion program have the proper starting-position
information. The only users who would not want this function, setting 114 to 0, are those
who cannot afford the extra millisecond (approximately) of calculation time this requires.

With 114=0, PMAC uses the last motion program target position as the starting point for
the calculations of the next move, even if these do not match the positions currently
commanded for the motors assigned to the axes.

See Also Axis-Motor Position Re-Matching (Setting Up a Coordinate System)
On-line command PMATCH
Suggested M-variable definitions Mx61, Mx63, Mx64 Mx65

115 Degree/Radian Control for User Trig Functions

Range 0..1

Units none

Default 0 (degrees)

Remarks I15 controls whether the angle values for trigonometric functions in user programs (motion
and PLC) and on-line commands are expressed in degrees (I115=0) or radians (I15=1).

See Also SIN, COS, TAN, ASIN, ACOS, ATAN, ATAN2 (Computational Features)

16 Rotary Buffer Request On Point

Range 0..8,388,607

Units Command lines.

Default 5

Remarks 116 controls the point at which an executing rotary program will signal that it is ready to

take more command lines (BREQ line taken high, coordinate system Rotary Buffer Full
status bit — Y:$0817 bit 11 — taken low).

This occurs when the executing point in the program has caught up to within fewer lines
behind the last line sent to PMAC than the value in this parameter. This can be detected as
an interrupt to the host or be checked by the host on a polled basis.

PMAC I-Variable Specification 31

PMAC 2 Software Reference

Note:

The BREQ line to the interrupt controller reflects the status of the
hardware-selected coordinate system (by JPAN pins FPDn/) if the
control-panel inputs are enabled (I2=0); it represents the status of
the software-host-addressed coordinate system if the control-panel
inputs are disabled (I12=1). In virtually all applications using this
feature, the user will want to set 12 to 1 so the BREQ line reflects
the status of the coordinate system to which he is currently talking.

Example With I[17=10 and 116=5, as program lines are sent to PMAC, PMAC will keep requesting
more lines (BREQ goes high, Rotary Buffer Full bit stays 0) until there are 10 lines in the
buffer ahead of the executing line. BREQ will then be held low and Rotary Buffer Full bit
stays 1 until enough program lines have executed so that there are less than 5 lines in the
buffer ahead of the execution point. At this time, BREQ will be set high again, and Rotary
Buffer Full will become 0.

See Also Using Interrupts (Writing a Host Communications Program)

Rotary Motion Program Buffers (Writing a Motion Program)
Coordinate-system Rotary Buffer Full status bit (Y:$0817, etc., bit 16)
On-line commands PR, ??

I-variables 12, 117, 118

17 Rotary Buffer Request Off Point

Range 0.. 8,388,607

Units Program lines

Default 10

Remarks 117 controls how many lines ahead of the executing line the host can provide a PMAC

rotary motion program buffer before it signals that it is not ready for more lines (BREQ
line held low, coordinate system status bit Rotary Buffer Full becomes 1). This status
information can be detected either by polling (? ?or PR) or by using the interrupt line to
the host.

If you send a program line to the rotary buffer, the BREQ line will be taken low (at least
momentarily). If there are still fewer than 117 number of lines in the buffer ahead of the
executing line, the BREQ line will be taken high again (giving the ability to generate an
interrupt), and the Rotary Buffer Full status bit will stay 0. If there are greater than or
equal to I17 lines in the buffer ahead of the executing line, the BREQ line will be left low,
and the Rotary Buffer Full status bit will become 1.

Normally at this point, the host will stop sending program lines (although this is not
required) and wait for program execution to catch up to within 116 lines and take BREQ
high again.

Note:

The BREQ line to the interrupt controller reflects the status of the
hardware-selected coordinate system (by JPAN pins FPDn/) if the
control-panel inputs are enabled (12=0); it represents the status of
the software-host-addressed coordinate system if the control-panel
inputs are disabled (I12=1). In virtually all applications using this
feature, the user will want to set 12 to 1 so the BREQ line reflects
the status of the coordinate system to which he is currently talking.

32 PMAC I-Variable Specifiation

PMAC 2 Software Reference

See Also

Program Using Interrupts (Writing a Host Communications Program)
Rotary Motion Program Buffers (Writing a Motion Program)
Coordinate-system “buffer-full” status bit (Y:$0817, etc., bit 16)
On-line commands PR, ??

I-variables 12, 116, 118

118 Fixed Buffer Full Warning Point

Range
Units
Default

Remarks

See Also

0 .. 8,388,607
Long Memory Words
10

118 sets the level of open memory below which BREQ (Buffer Request) will not go true
(global status bit Fixed Buffer Full will become 0) during the entry of a fixed (non-rotary)
buffer.

Every time a command line is downloaded to an open fixed buffer (PROG or PLC), the
BREQ line will be taken low (at least momentarily). If there are more than I18 words of
open memory left, the BREQ line will be taken high again (giving the ability to generate
an interrupt), and Fixed Buffer Full will stay at 0. If there are 118 words or less, the BREQ
line will be left low, and Fixed Buffer Full will become 1.

The number of available words of memory can be found using the SIZE command.

Using Interrupts (Writing a Host Communications Program)
Global Fixed Buffer Full status bit (Y:$0003 bit 11),
I-variables 116, 117.

On-line command SIZE

Data Gathering I-Variables

119 Data Gathering Period (in Servo Cycles)

Range
Units
Default

Remarks

See Also

0..8,388,607
Servo Interrupt Cycles
0

119 controls how often data gathering is performed, in numbers of servo interrupt cycles.
If 119 is 0, data gathering is performed only once per command.

Note:

Normally this parameter is controlled automatically by the PMAC
Executive Program’s Gathering and Tuning routines.

Data Gathering (Analysis Features)
I-variables; 120-144.
On-line commands GATHER, ENDGATHER

PMAC I-Variable Specification 33

PMAC 2 Software Reference

120 Data Gathering Selection Mask

Range
Units
Default

Remarks

Example

See Also

$000000 .. SFFFFFF (0 .. 16,777,215)
none
0

120 is a 24-bit variable that controls which of the 24 potential data sources (as specified by
121 to 144) will be gathered when gathering is performed. If bit 0 (least significant bit) is
1, the 1st source (specified by 121) will be gathered; if it is 0, it will not be. Bit 1 controls
the 2nd source (122), and so on, to bit 23, which controls the 24th source (144).

With 19 at 2 or 3, the value of this variable will be reported back to the host in hexadecimal
form, which is the more convenient form for understanding the value.

Note:

Normally this parameter is controlled automatically by the PMAC
Executive Program’s Gathering and Tuning routines.

With 120=7, only the addresses specified by 121, 122, & 123 will be gathered

With 120=$FF (255), the addresses specified by 121-128 will be gathered

With 120=$300 (768), the addresses specified by 129 and 130 will be gathered

With 120=$FFFFFF (8,388,607), the addresses specified by 121-144 will be gathered

Data Gathering (Analysis Features)
On-line commands GATHER, ENDGATHER, <CTRL-E>
I-variables; 119, 121-144.

121 Data Gathering Source 1 Address

Range
Units
Default
Remarks

$000000 .. SFFFFFF (0 .. 16,777,215)
Modified PMAC addresses
0

121 specifies the address of the first data item to be gathered. This address is usually given
in hexadecimal (i.e. preceded by a ‘$”).

The specification is twenty-four bits — six hex digits. The lowest 16 bits — 4 hex digits —
represent the actual word address in PMAC’s memory and I/O space.

The highest two bits specify which part of the double word at that address is to be gathered
(the Motorola DSP56000 has a double memory space — X and Y — to supply its dual data
buses). Ifboth of these bits are 0 — first hex digit is 0 — the Y word will be gathered; if the
higher bit is 0 and the second bit is 1 — first hex digit is 4 — the X word will be gathered; if
the higher bit is 1 — first hex digit is 8 or greater — both the X and Y words will be gathered
as a long (double) word. In the case of a long word, it does not matter to PMAC what the
second bit is, but the PMAC PC-Executive Program uses this bit to note whether this word
is a fixed-point (0) or floating-point (1) value.

With 19 at 2 or 3, the value of this variable will be reported back to the host in hexadecimal
form, which is the more convenient form for understanding the value.

Note:

Normally this parameter is controlled automatically by the PMAC
Executive Program’s Gathering and Tuning routines.

34

PMAC I-Variable Specifiation

PMAC 2 Software Reference

Example

See Also

If the word address were $0720 (1824 decimal), 121=$000720 would denote gathering of
the Y word; 121=$400720 would denote gathering of the X word; 121=$800720 or
121=$C00720 would cause gathering of both words. (You may specify this parameter in
decimal form, but it is much more tricky.)

Data Gathering (Analysis Features)
On-line commands GATHER, ENDGATHER, <CTRL-E>
I-variables 119, 121-144.

122-144 Data Gathering Source 2 thru 24 Addresses

Range
Units
Default

Remarks

See Also

$000000 .. SFFFFFF (0 .. 16,777,215)
Modified PMAC addresses
0

122 — 144 control the addresses of the second thru twenty-fourth data items to be gathered.
See 121 for more details.

Note:

Normally these parameters are controlled automatically by the
PMAC Executive Program’s Gathering and Tuning routines.

Data Gathering (Analysis Features)
On-line commands GATHER, ENDGATHER, <CTRL-E>
I-variables 119, 121-144.

145 Data Gathering Buffer Location and Mode

Range
Units
Default
Remarks

0.3
none
0

145 controls where the data gathering buffer will be located when it is defined, and whether
it will wrap around when it is filled. It can take the following values:

0 e Locate buffer in regular RAM. Do not permit wrap-
around (stop gathering when end of buffer is reached).

| R Locate buffer in regular RAM. Permit wraparound upon
.......................... reaching end of buffer. Note: Wraparound feature not
.......................... supported by PMAC Executive program data gathering and
.......................... tuning routines.

2 e Locate buffer in dual-ported RAM (PMAC Option 2
.......................... required). Do not permit wraparound. Not very useful.
K TS Locate buffer in dual-ported RAM (PMAC Option 2

.......................... required). Permit wraparound upon reaching end of

.......................... buffer (usual mode for dual-ported RAM).

When 145 is set to 2 or 3, the gather buffer starts at PMAC address $D240 — host address
[base + $0900] — and occupies the number of PMAC addresses specified in the DEFINE
GATHER command.

PMAC I-Variable Specification 35

PMAC 2 Software Reference

See Also

The DPRAM locations used by PMAC for gathering are as follows;

Address Description

0x08FC Data Gather Buffer Size.
(Y:$D23F)

0x08FC PMAC Data Gather Buffer Storage Address. If 145 =2 and the
(X:$D23F) buffer’s end has been reached (this index is greater

than or equal to the size), the DEFINE GATHER
command must be issued again to allow gathering
to restart.

0x0900 Start of Data Gather Buffer (not changeable).

($D240)

Note:

In firmware version 1.16B and older, these addresses were 0x0100
($0040) lower.

Data Gathering (Analysis Features)

Option 2 Dual-Ported RAM

On-line commands DEFINE GATHER, GATHER, ENDGATHER, DELETE GATHER,
LIST GATHER

146 CPU Frequency Control {PMAC w/Flex CPU only}

Range
Units
Default
Remarks

0..15
Multiplication Factor
0 (jumper-set frequency)

146 can control the operational clock frequency of the CPU in an Option 5xF “Flex” CPU
by controlling the multiplication factor of the phase-locked loop (PLL) inside the CPU.
The PLL circuit multiplies the input 10 MHz (actually 9.83 MHz) clock frequency by a
factor of (I46 + 1) to create the clock frequency for the CPU. Formally, this is expressed
in the equation:

CPU Frequency (MHz) = 10 * (146 + 1)
If 146 is set to 0, or an older style of CPU (not “Flex”) is used, the CPU frequency is set by
jumpers (E48 on a PMAC(1); E2 and E4 on a PMAC?2).

146 should usually be set to create the highest CPU frequency for which the CPU is rated.
For the Option SAF 40 MHz CPU, it should be set to 3; for the Option SCF 80 MHz CPU,
it should be set to 7; for the Option SEF 160 MHz CPU, it should be set to 15. With any of
the Flex CPU options (5xF), the PMAC will not permit the CPU to run at higher than the
rated frequency, and it will reduce 146 to the matching value..

146 is actually used at power-on/reset only, so to make a change in the CPU frequency
with 146, change the value of 146, store this new value to non-volatile flash memory with
the SAVE command, and reset the card with the $$$ command.

147 Address of Pointer for Control-W Command

Range $0000 .. SFFFF (0 .. 65,535)

Units Legal PMAC ‘Y’ addresses

Default 0

Remarks 147 specifies the address of the register that tells the <CONTROL-W> command where to
pick up its command string.

36 PMAC I-Variable Specifiation

PMAC 2 Software Reference

The <CONTROL-W> command permits the host to load command strings into dual-ported
RAM (Option 2 required), instead of the normal command interface, then cause the
command to be accepted by sending a single byte (ASCII 23D is <CTRL-W>) to the
command interface.

Note:

The <CONTROL-W> function is now effectively obsolete. The
newer bidirectional DPRAM ASCII communications feature
enabled by I58 is superior and should be used instead.

Example For instance, if 147 is set to $D200, PMAC will look to its memory register Y:$D200
(wherever it sits in the host memory space) on receipt of a <CTRL-W> to see where to
look for the command string. If Y:$D200 holds a value of $D700, PMAC will take the
command string starting at register Y:$D700, incrementing addresses until it finds the null
character (value 0).

See Also Option 2 Dual-Ported RAM Manual
Memory-map registers $D000-$DFFF.
I-variables 156, 158
On-line command <CONTROL-W>

148 DPRAM Servo Data Enable

Range 0..1
Units none
Default 0

Remarks 148 enables or disables the dual-ported RAM (DPRAM) servo data reporting function.
When [48=1 and the GATHER command has been issued, PMAC copies key data from the
servo control registers to fixed registers in the DPRAM every 119 servo cycles for easy
access by the host computer. Servo data for motors up to the number specified by [59 are
reported.

When 148=0, the DPRAM servo data reporting function is disabled. Regular data
gathering can be enabled in this mode.

Refer to the description of DPRAM functions for more information.

See Also DPRAM Servo Data Reporting (Option 2 DPRAM Manual)
I-variables 119, 149, 159
On-line commands GATHER, ENDGATHER

149 DPRAM Background Data Enable

Range 0.1
Units none
Default 0

Remarks 149 enables or disables the dual-ported RAM (DPRAM) background data reporting
function. When [49=1, PMAC copies key data from the background information registers
to fixed registers in the DPRAM for easy access by the host computer. Each time the host
computer reads these registers and signals it is done, PMAC will copy the data again. Data
for motors and coordinate systems up to the number specified by 159 are reported.

When 149=0, the DPRAM background data reporting function is disabled.

Refer to the description of DPRAM functions for more information.

PMAC I-Variable Specification 37

PMAC 2 Software Reference

See Also DPRAM Background Data Reporting (Option 2 DPRAM Manual)
I-variables 148, 159

I50 Rapid Move Mode Control

Range 0..1

Units none

Default 1

Remarks 150 determines which variables are used for speed of RAPID mode moves. When 150 is

set to 0, the jog parameter for each motor (Ix22) is used. When 150 is set to 1, the
maximum velocity parameter for each motor (Ix16) is used instead. Regardless of the
setting of 150, the jog acceleration parameters Ix19-1x21 control the acceleration.

See Also RAPID mode moves (Writing a Motion Program)
I-variables Ix16, Ix19-Ix22
Program command RAPID.

151 Compensation Table Enable

Range 0.1

Units none

Default 0

Remarks I51 permits the enabling and disabling of the PMAC’s compensationtables — leadscrew
(position) compensation tables, torque compensation tables, and backlash compensation
tables. When I51 is 0, all tables are disabled and there is no correction performed. When
I51 is 1, all existing tables are enabled and corrections are performed as specified in the
tables.

See Also Leadscrew Compensation (Setting Up a Motor)
On-line commands DEFINE COMP, DELETE COMP, LIST COMP DEF.
Position-compensation registers (D:$46, etc.)
Torque compensation registers (Y:$45, etc.)
Suggested M-variables Mx69

152 \ Program Hold Slew Rate

Range 0..8,388,607

Units 110 units / segmentation period

Default 37,137

Remarks 152 controls the slew rate to a stop on a \ program hold command, and the slew rate back

up to speed on a subsequent R command, for all coordinate systems, provided PMAC is in
a segmented move (LINEAR or CIRCLE mode with [13>0). [f PMAC isnotin a
segmented move (113=0, or other move mode), the \ command acts just like an H feed
hold command, with Ix95 controlling the slew rate.

The units of [52 are the units of [10 (1/8,388,608 msec) per segmentation period (113
msec). To calculate how long it takes to stop on a \ command, and to restart on the next R
command, use the formula

T (msec) =110 *113 /152
To calculate the value of 152 for a given start/stop time, use the formula
152 =110 *113 /T (msec).

38 PMAC I-Variable Specifiation

PMAC 2 Software Reference

Example To execute a full stop in one second with the default servo update time (110 = 3,713,707)
and a move segmentation time of 10 msec, 152 should set to 3,713,707 * 10/ 1000 =
37,137.

See Also Stop Commands (Making Your Application Safe)
I-variables 113, Ix95
On-line commands \, H

153 Program Step Mode Control

Range 0..1

Units none

Default 0

Remarks 153 controls the action of a Step (S) command in any coordinate system on PMAC. At the

default 153 value of zero, a Step command causes program execution through the next
move, DELAY, or DNELL command in the program, even if this takes multiple program
lines.

When 53 is set to 1, a Step command causes program execution of only a single program
line, even if there is no move or DWELL command on that line. If there is more than one
DWELL or DELAY command on a program line, a single Step command will only execute
one of the DWELL or DELAY commands.

Regardless of the setting of 153, if program execution on a Step command encounters a
BLOCKSTART statement in the program, execution will continue until a BLOCKSTOP
statement is encountered.

See Also Control Panel Port STEP/ Input (Connecting PMAC to the Machine)
On-line commands <CTRL-R>, <CTRL-S>, Q, R, S
Program commands BLOCKSTART, BLOCKSTOP

I54 Serial Baud Rate {PMAC(1) w/Flex CPU or PMAC2 only}
Range 0..15

Units none
Default 8 (9600 baud) PMAC(1)
12 (38400 baud) PMAC2

Remarks 154 controls the baud rate for communications on the serial port for all PMAC2 boards, and for
PMAC(1) boards with an ACC-5xF Flex CPU. PMAC?2 uses 154 only at power-up/reset to set
up the frequency of the clocking circuit for the serial port.

To change the baud rate, it is necessary to change the value of 154, store this value to non-
volatile flash memory with the SAVE command, and reset the card. At this time, PMAC2 will
establish the new baud rate.

The possible settings of 154 and the baud rates they define are:

PMAC I-Variable Specification 39

PMAC 2 Software Reference

154 Baud Error with Error with Error with Error with
Rate CPU at 40 CPU at 60 CPU CPU
MHz MHz at 80 MHz at 160 MHz
0 600 0 (Disabled) 0 0
1 900 -0.05% 0 -0.03% -0.01%
2 1200 0 0 0 0
3 1800 -0.1% 0 -0.05% -0.03%
4 2400 0 0 0 0
5 3600 -0.19% 0 -0.10% -0.05%
6 4800 0 0 0 0
7 7200 -0.38% 0 -0.19% -0.10%
8 9600 0 0 0 0
9 14,400 -0.75% 0 -0.38% -0.19%
10 19,200 0 0 0 0
11 28,800 -1.5% 0 -0.75% -0.38%
12 38,400 0 0 0 0
13 57,600 -3.0% 0 -1.5% -0.75%
14 76,300 0 0 0 0
15 115,200 (Disabled) 0 -3.0% -1.5%

CPUs run at 30 MHz, 90 MHz, 120 MHz, or 150 MHz, as well as 60 MHz, also have zero baud
rate errors at all of these baud rates. Some users may want to slow down their CPU frequencies
from the maximum rated frequency in order to get accurate high baud rates.

Because of the nature of the clock generation circuitry, odd values of 154 on a PMAC2 with a
CPU operating at 40 MHz (Jumper E2 OFF) produce non-exact baud rates. The error in baud
rate is small enough that communications should still be valid.

If your host computer baud rate cannot be made to match the PMAC2’s baud rate, either
PMAC?2’s baud rate must be changed through the bus communications port, or the PMAC2
must be re-initialized by resetting or powering up with the E3 jumper ON. This forces the
PMAC?2 to the default baud rate of 38,400.

155 DPRAM Background Variable Buffers Enable

Range 0..1

Units none

Default 0

Remarks I55 enables or disables the dual-ported RAM (DPRAM) background variable read and
write buffer function. When 155 is 0, this function is disabled. When 155 is 1, this
function is enabled. When enabled, the user can specify up to 128 PMAC registers to be
copied into DPRAM each background cycle to be read by the host (background variable
read) and up to 128 PMAC registers to be copied each background cycle from values
written into the DPRAM by the host (background variable write).

See Also DPRAM Background Variable Read Buffer (Option 2 DPRAM Manual)
DPRAM Background Variable Write Buffer (Option 2 DPRAM Manual)

40 PMAC I-Variable Specifiation

PMAC 2 Software Reference

I56 DPRAM ASCIl Communications Interrupt Enable

Range 0..1
Units none
Default 0

Remarks 156 enables or disables the interrupt feature for the dual-ported RAM (DPRAM) ASCII
communications function that is enabled with 158=1. When [156=1, PMAC will generate
an interrupt to the host computer each time it loads a line into the DPRAM ASCII buffer
for the host to read. When [56=0, it will not generate this interrupt.

For PMAC(1)-PC, PMAC(1)-Lite, PMAC(1)-PCI, and PMAC(1)-PCI-Lite, the interrupt
line used is the EQU4 interrupt. For this to reach the host, the ES5 jumper must be ON,
and E54, E56, and E57 must be OFF (E54 and E56 do not exist on PMAC-Lite). When
using this feature, do not use the EQU4 line for any other purpose, including position
compare.

For the regular (non-Ultralite) ISA-bus and PCI-bus versions of PMAC2 (PMAC2-PC,
PMAC?2-Lite, Mini-PMAC2, PMAC2-PCI, PMAC2-PCI-Lite), the interrupt line used is
the EQUI interrupt. When using this feature, do not use the EQU1 line for any other
purpose, including position compare.

For the PMAC2-PC Ultralite and PMAC2-PCI Ultralite, the interrupt line used is the
CTRLO line, which has no other functions.

For the VME-bus versions (PMAC(1)-VME, PMAC2-VME, PMAC2-VME Ultralite), the
interrupt line used is the normal communications interrupt (the only interrupt available).
This line — IRQn on the VME bus, is determined by the VME setup value in register
X:$0788. The interrupt vector provided to the host is one greater than the value in setup
register X:$0789. For example, if the value in X:$0789 is the default of $A1, this interrupt
will provide an interrupt vector of $A2.

See Also DPRAM ASCII Communications (Option 2 DPRAM Manual)
I-variables 148, 149, 155, 157, 158, 159

I57 DPRAM Binary Rotary Buffer Enable

Range 0..1
Units none
Default 0

Remarks 157 enables or disables the dual-ported RAM (DPRAM) binary rotary buffer function.
When 157=1, this function is enabled and the host computer can download motion program
data to the PMAC through the DPRAM in binary form for maximum possible throughput.
When 157=0, this function is disabled.

See Also DPRAM Binary Rotary Buffer (Binary Rotary Buffer)
I-variables 148, 149, 155, 156, 158, 159

PMAC I-Variable Specification 41

PMAC 2 Software Reference

158 DPRAM ASCII Communications Enable

Range 0..1
Units none
Default 0

Remarks I58 enables or disables the dual-ported RAM (DPRAM) ASCII communications function.
When 158=1, this function is enabled and the host computer can send ASCII command
lines to the PMAC through the DPRAM and receive ASCII responses from PMAC
through the DPRAM. When 158=0, this function is disabled.

With I58=1, PMAC’s response port on the bus will be whichever port (normal I/O-mapped
bus port, or DPRAM) has received the most recent command.

The <CTRL-2Z> command, which causes PMAC’s response port to revert to the serial
port, automatically sets I58 to 0.

When 158 is set to 1, I3 is automatically forced to 0 or 2, if it has been at 1 or 3,
respectively.

If 156 is also equal to 1, PMAC will provide an interrupt to the host computer when it
provides a response string.

See Also DPRAM ASCII Communications (Option 2 DPRAM Manual)

I-variables I3, 148, 149, 155, 156, 157, 159
On-line command <CTRL-Z>

159 DPRAM Buffer Maximum Motor/C.S. Number

Range 0.8

Units none

Default 0

Remarks 159 determines the highest-numbered motor and/or coordinate system for which servo data

is reported in the DPRAM when servo data reporting is active (148=1) and/or background
data reporting is active (I149=1). If [59=0, no data is reported even if one or both reporting
functions are active. If 159>0, data for both motor and coordinate system of numbers up to
the value of [59 are reported — there is not separate control of maximum motor and
coordinate system numbers.

See Also DPRAM Servo Data Reporting, DPRAM Background Data Reporting
160 Auto-Converted ADC Register Address {PMAC(1) only}

Range 0, SFFDO .. SFFFE
Units PMAC “Y” addresses
Default 0

Remarks 160 permits the user to specify the address of one ACC-36 analog-to-digital converter
(ADC) board (or on-board Option 12 ADCs on PCI-bus PMACs) whose values will
automatically be copied into PMAC(1)’s memory at a high rate so that they can be used as
servo feedback. This can also be used to make user program access to these ADCs more
convenient, but it is not required for this purpose.

On a PMAC?2 board, this function is controlled by the more flexible structure of the analog
data table.

There are 24 legal addresses for an ACC-36 in PMAC’s memory and I/O space: even
values from $FFDO to $SFFFE. The Option 12 ADCs on a PCI-bus PMAC(1) are located at
address $FFC8. If you have more than one ACC-36 connected to PMAC, only one board
may be used in this manner. All other boards must be accessed in user programs.

42 PMAC I-Variable Specifiation

PMAC 2 Software Reference

Example

See Also

For the ACC-36 board automatically converted using 160 and 161, the board must never be
accessed in user programs, but user programs may read the memory registers in PMAC to
which the ADC values are copied.

If 160 is set to 0, no automatic conversion will take place. If the first two hex digits of 160
are set to anything except $FF, PMAC will automatically change them to $FF.

ADCs 1 to 8 are copied into the low 12 bits of registers Y:$0708 to Y:$070F, respectively.
ADCs 9 to 16, if they exist on the addressed board, are copied into the low 12 bits of
registers X:$0708 to X:$070F. These registers should be treated as signed registers.

Note:

It is easier to specify this parameter in hexadecimal form ($ prefix).
If 19 is set to 2 or 3, the value of this variable will be reported back
to the host in hexadecimal form.

A PMAC system has an ACC-14D at address $FFDO0, and an ACC-36 at address $SFFDS.
It is desired to automatically convert all 8 registers on the ACC-36. 160 is set to SFFDS,
and 161 is set to 7.

Parallel Position Feedback Conversion (Setting Up a Motor)
I-variables 161, Ix10

Memory and I/0O Map registers SFFDO to $SFFFE

ACC-36 User’s Manual

161 Number of Auto-Converted ADC Registers {PMAC(1) only}

Range
Units
Default

Remarks

Example

0.7
Number of registers minus 1
0

161 permits the user to specify the number of analog-to-digital converter (ADC) registers
on the ACC-36 specified by 160 that will be automatically converted and copied into
PMAC(1) memory. There are two 12-bit converters per 24-bit register. The number of
registers converted automatically is equal to 161 + 1.

On a PMAC?2 board, this function is controlled by the more flexible structure of the analog
data table.

Each phase cycle (9 kHz default), PMAC copies the contents of an ACC-36 register into
RAM, then selects the next register, so the conversion can start and the results will be
ready for the next phase cycle. PMAC will cycle through the first [61+1 registers on the
ACC-36 in this fashion. If161 is set to 0, PMAC will cycle through all 8 registers on the
ACC-36 (equivalent to 161=7).

If you have more than one ACC-36 connected to PMAC, only one board may be used in
this manner. All other boards must be accessed in user programs. For the ACC-36 board
automatically converted using 160 and 161, the board must never be accessed in user
programs, but user programs may read the memory registers in PMAC to which the ADC
values are copied.

ADCs 1 to 8 are copied into the low 12 bits of registers Y:$0708 to Y:$070F, respectively.
ADCs 9 to 16 are copied into the low 12 bits of registers X:$0708 to X:$070F. These
registers should be treated as signed values.

The system has 8 axes with analog feedback. There are 4 phase cycles per servo cycle,

PMAC I-Variable Specification 43

PMAC 2 Software Reference

See Also

and it is important to have new feedback values every servo cycle. Therefore an ACC-36
with Option 1 is ordered, so there are 2 ADCs per register, and 161 is set to 3 to convert
the first 4 registers in a cyclic fashion. ADCs 1 to 4 are copied into Y:$0708 to Y:$070B,
respectively; ADCs 9 to 12 are copied into X:$0708 to X:$070B, respectively.

Parallel Position Feedback Conversion (Setting Up a Motor)
I-variables 160, Ix10

Memory and I/0 Map registers SFFDO to $SFFFE

ACC-36 User’s Manual

162 Internal Message Carriage Return Control

Range
Units
Default

Remarks

Example

See Also

0..1
none
0

162 permits the user to control whether internally generated messages sent from PMAC to
the host computer are terminated with the carriage return (KCR>) character or not. It
affects only those messages generated by a CMD, SEND, SENDP, or SENDS statement in a
PMAC motion or PLC program. The ability to suppress the <CR> provides more
flexibility in controlling the format display of a terminal window or printer.

If 162 is set to the default value of 0, these messages are terminated with a <CR>. If 162 is
set to 1, the <CR> is suppressed. With 162 set to 1, if it desired for a PMAC program to
cause a <CR> to be sent, the SEND*M command must be used (the carriage return
character is <CTRL-M>).

Note:

Do not set 162 tol if using dual-ported RAM ASCII
communications (I58=1).

With program code:

I62=1............ ; Suppress <CR> on SEND

SEND “THE VALUE OF Pl IS “ ; String sent with no <CR>

CMD “P1” ... ; Response string follows on same line, no <CR>
SEND”M........... ; Send a <CR>

PMAC responds with:
THE VALUE OF P1 IS 42

Program Commands CMD, SEND, SENDS, SENDP

163 Control-X Echo Enable

Range
Units
Default

Remarks

0.1
None

0

163 permits the PMAC to echo the <CONTROL-X> character back to the host computer
when it is received. If 163 is set to 1, PMAC will send a <CONTROL~-X> character (ASCII
value 24 decimal) back to the host computer when it receives a <CONTROL-X> character.

If 163 is set to 0, PMAC will send nothing back to the host computer when it receives a
<CONTROL-X> character. This is equivalent to the action of older versions of PMAC
firmware without an [63 variable.

44

PMAC I-Variable Specifiation

PMAC 2 Software Reference

The host computer can use the <CONTROL-X> character to clear out PMAC’s
communications buffers and make sure that no unintended responses are received for the
next command. However, without an acknowledgement that the buffers have been
cleared, the host computer has to add a safe delay to ensure that the operation has been
done before the next command can be issued.

Setting 163 to 1 permits a more efficient clearing of the buffer, because the response
character lets the host computer know when the next command can safely be sent.

Versions of the PCOMM32 communications library 2.21 and higher (March 1999 and
newer) can take advantage of this feature for more efficient communications. 163 should
be set to 0 when using older versions of PCOMM32.

In battery-backed PMAC(1) boards with firmware versions 1.16F and 1.16G, the value of
163 is maintained by the battery through a power cycling or reset; a SAVE command is not
required. In 1.16H and newer (and in all revisions on flash-backed boards), the value is
maintained by storing it to non-volatile memory with a SAVE command.

164 Internal Response Tag Enable

Range
Units
Default

Remarks

Example

0.1
None
0

164 permits PMAC to tag ASCII text lines that it sends to the host computer as a result of
internal commands, so these can easily be distinguished from responses to host commands.

If 164 is set to 1, a line of text sent to the host computer as a result of an internal SEND or
CMD statement is preceded by a <CONTROL-B> (“start-transmission”) character. In the
case of an error report, the <CONTROL-B> character replaces the leading <CONTROL-G>
(“bell”) character. The text line is always terminated by a <CR> (carriage return)
character, regardless of the setting of 162.

If 164 is set to 0, a text line sent in response to an internal PMAC command is not preceded
by any special character. Reported errors are preceded by the <CONTROL-G> (“bell”)
character. This is equivalent to the action of older versions of PMAC firmware, before 164
was implemented.

Regardless of the setting of 164, if [6 = 2, errors on internal commands are not reported to
the host computer.

In battery-backed PMAC(1) boards with firmware versions 1.16F and 1.16G, the value of
164 is maintained by the battery through a power cycling or reset; a SAVE command is not
required. In 1.16H and newer (and in all revisions on flash-backed boards , the value is
maintained by storing it to non-volatile memory with a SAVE command.

With 164=0, lines sent from PMAC are:

Motion Stopped on Limit<CR>
<BELL>ERRO03<CR>

With 164=1, the same lines from PMAC are:
<CTRL-B>Motion Stopped on Limit<CR>
<CTRL-B>ERRO03<CR>

PMAC I-Variable Specification 45

PMAC 2 Software Reference

165 User-Configuration Variable

Range
Units
Default

Remarks

0-16,777,215
None
0

165 is an [-variable that has no automatic use on PMAC. The purpose of this variable is to
provide an easy way for the user to confirm that the application configuration has been
loaded into the PMAC. Since the factory default value for 165 is 0, setting 165 to a non-
zero value as part of the configuration permits an easy way to verify that the configuration
file has been downloaded.

By providing many different possible non-zero values of 165, different machine
configurations can be identified with 165. It is even possible for the user to utilize [65 as
an electronic serial number.

I66 Servo-Channel ADC Auto-Copy Disable {PMAC2 only}

Range
Units
Default

Remarks

0.1
None
0

166 permits the disabling of the PMAC?2 function that automatically copies the values in
the 16 A/D-converter registers (A and B registers of Channels 1 — 8) of the two
“DSPGATE1” Servo ICs into RAM every phase cycle. This auto-copying function was
implemented because in the early revisions of the DSPGATE] IC, the ADC registers
themselves could only be read reliably during phase-interrupt tasks.

Note:

This function is not to be confused with de-multiplexing of Option
12 or ACC-36 ADCs controlled by 160 and 161 on a PMAC(1) or
the analog table on a PMAC2.

Recent revisions of the DSPGATE]1 IC (“B” revision and newer), installed on virtually all
PMAC?2 boards starting in the year 2000, double buffer these registers so that they may be
read properly at any time. Therefore, this auto-copying function is not necessary in most
cases on newer boards.

If 166 is set to the default value of 0, at the beginning of each phase cycle, PMAC2 copies
the values found at these 16 addresses (whether physically present or not) into RAM
registers at X/Y:$0710 — X/Y:$0717.

If 166 is set to 1, PMAC?2 does not perform this copying function each phase cycle. The
user may want to disable the copying for two reasons. First, it saves significant amounts of
processor time. Second, the auto-copying process interferes with the operation of an ACC-
51P board that is mapped into Channels 1 — 4 or 5 — 8. (It does not interfere with an ACC-
51P board mapped into Channels 9 — 12 or 13 — 16.)

166 is used at power-up/reset only. To enable or disable the auto-copying function, change
the value of 166, issue the SAVE command, then reset the card. If you wish to temporarily
enable or disable this function, change the internal control bit at X:$0003 bit 15.

Note:

The P2Setup PC program, when used to set up digital current loop
operation for on-board servo channels (not through MACRO),

46

PMAC I-Variable Specifiation

PMAC 2 Software Reference

requires that the auto-copying function be enabled.

167 Modbus TCP Buffer Start Address

Range
Units
Default

Remarks

$0 — $9FFF
PMAC addresses
0

167 enables the Modbus TCP interface in PMAC software and reports the starting address
of the 256-word Modbus buffer in PMAC memory. To enable the Modbus TCP interface
on the PMAC’s Ethernet port, the following conditions must apply:

The Ethernet physical interface must be present

The Modbus TCP firmware for the Ethernet processor must be installed
V1.17C or newer PMAC firmware must be installed

A user buffer of 256 or more words must have been defined with the DEFINE
UBUFFER command

5. 167 must be set to a value greater than 0.

PO

The user can set [67 to any value greater than 0 to enable the Modbus TCP buffer. When
this is done, PMAC will automatically set 167 to the address of the start of the 256-word

Modbus buffer. In most PMAC configurations, this address will be $9F00, so the buffer
will occupy the addresses $9F00 - $9FFF.

A SAVE command must be issued with 167 at a non-zero value in order for the Modbus
TCP buffer to be active after subsequent power-up or reset operations.

168 Alternate TWS Input Format

Range
Units
Default

Remarks

0-1
None
0

168 controls how the PMAC interprets incoming data on a TWS-format M-variable read
from an ACC-34 or similar serial-interface I/0O board. If 168 is set to the default value of 0,
PMAC expects the serial input data on the DATO signal line. If 168 is set to 1, PMAC
expects the serial input data on the DAT7 signal line.

The DAT7 line is separated more from the output clock line on the same cable; the use of
DAT?7 by setting 168 to 1 and making the appropriate jumper setting on the I/O board
makes it possible to use a longer cable without too much coupling interference between
signals.

On the ACC-34AA, jumper E23 must be connect pins 1 and 2 to support the default setting
of 168 = 0; it must connect pins 2 and 3 to support the setting of [68 = 1. On the ACC-76
and ACC-77 “P-Brain” boards, jumper E1 should be ON to support the default setting of
168 = 0; jumper E8 should be ON to support the setting of 168 = 1. Older boards of this
class do not support settings of [68 = 1.

PMAC I-Variable Specification 47

PMAC 2 Software Reference

169 Modbus TCP Software Control Panel Start Address

Range
Units
Default

Remarks

170 - 177
Range

Units
Default

Remarks

$0 — SFFFF
PMAC addresses
0

169 enables and specifies the address of the start of the Modbus TCP software control
panel in PMAC. 169 permits a software control panel to be commanded over the Modbus
TCP link, typically from a PLC, using part of the user buffer created with the DEFINE
UBUFFER command and reserved for Modbus TCP use with 167. If 169 is set to a value
greater than 0, this software control panel is enabled. Typically, 169 is set to a value 128
($80) greater than the value of 167, so this control panel starts at an address 128 higher
than the beginning of the entire Modbus TCP buffer. For example, if the beginning of the
Modbus buffer were at $9F00, 169 could be set to $9F80.

The software control panel occupies 18 long words of PMAC memory. The structure
functions of the Modbus panel are equivalent to those for the DPRAM software control
panel, which are documented in the Memory and I/O Map chapter of the Software
Reference Manual at their default addresses of $D000 - $DO11.

The operation of the Modbus control panel is independent of that for the DPRAM control
panel (which is controlled by 12). One, neither, or both of these control panels may be
active at one time.

Analog Table Setup Lines
$000000 - SFFFFFF

none
$0

PMAC?2 firmware automatically selects and reads the channels of Option 12 and 12A A/D
converters in a round-robin fashion. This function is controlled by a data table in variables
170 — 177 which operates much like the encoder conversion table. The eight I-variables (X
registers) contain the channel-select information, and the eight Y-registers contain the A/D
results. Each X and Y word is split into two 12-bit halves, where the lower 12 bits work
with the first A/D converter set (Option 12), and the higher 12 bits work with the second
A/D converter set (Option 12A).

The data table looks like this:

Setup
I-Variable

I-Variable
Upper 12 Bits

I-Variable
Lower 12 Bits

Result
Address

Y Word
Upper 12 Bits

Y Word

Lower 12 Bits

170

CONFIG W2

CONFIG W1

Y:$0708

DATA W2

DATA W1

171

CONFIG W2

CONFIG W1

Y:$0709

DATA W2

DATA W1

172

CONFIG_W2

CONFIG W1

Y:$070A

DATA W2

DATA W1

173

CONFIG_W2

CONFIG W1

Y:$070B

DATA W2

DATA W1

174

CONFIG_W2

CONFIG W1

Y:$070C

DATA W2

DATA W1

175

CONFIG_W2

CONFIG W1

Y:$070D

DATA W2

DATA W1

176

CONFIG_W2

CONFIG W1

Y:$070E

DATA W2

DATA W1

177

CONFIG W2

CONFIG W1

Y:$070F

DATA W2

DATA W1

where:

48

PMAC I-Variable Specifiation

PMAC 2 Software Reference

CONFIG_W?2 is the selection word for the second A/D converter set (Option 12A)
CONFIG_W1 is the selection word for the first A/D converter set (Option 12)

DATA_ W2 is the matching A/D data from the second A/D converter set (Option
12A)

DATA_ W1 is the matching A/D data from the first A/D converter set (Option 12)

A value of 0-7 in CONFIG_WI1 tells PMAC?2 to read channel ANAIO0-07, respectively, as
a 0 to+5V input, resulting in an unsigned value.

A value of 8-15 in CONFIG_W1 tells PMAC?2 to read ANAI00-07, respectively, as a -2.5
to +2.5V input, resulting in a signed value.

A value of 0-7 in CONFIG_W?2 tells PMAC?2 to read channel ANAIO8-15, respectively, as
a 0 to+5V input, resulting in an unsigned value.

A value of 8-15 in CONFIG_W1 tells PMAC2 to read ANAIO8-15, respectively, as a -2.5
to +2.5V input, resulting in a signed value.

Each phase update (9 kHz default), PMAC?2 increments through one line of the table. It
copies the ADC reading(s) selected in the previous cycle into RAM, then writes the next
configuration words to the ADC(s). Typically, this will be used to cycle through all 8
ADC:s or pairs of ADCs. To cycle through all 8 pairs of ADCs in unsigned mode, the table

should look like this:
Setup X Word X Word Result Y Word Y Word
I-Variable | Upper 12 Bits | Lower 12 Bits Address Upper 12 Bits | Lower 12 Bits
170 0 0 Y:$0708 ANAIOS ANAIO0
171 1 1 Y:$0709 ANAIO9 ANAIO1
172 2 2 Y:$070A ANAIL0 ANAIO2
173 3 3 Y:$070B ANAI11 ANAIO3
174 4 4 Y:$070C ANAI12 ANAIO4
175 5 5 Y:$070D ANAI13 ANAIOS
176 6 6 Y:$070E ANAI14 ANAIO6
177 7 7 Y:$070F ANAI1S ANAIO7

If you wanted to set up all ADCs for a unipolar (unsigned) conversion, the following
commands could be issued

I70=$000000 ; Select ANAIOO and ANAIO8 (if present) unipolar
I71=5001001 Select ANAIOl and ANAIOY9 (if present) unipolar
I72=5002002 Select ANAIO2 and ANAI10 (if present) unipolar

)
)
)
I73=5003003 Select ANAIO3 and ANAI1ll (if present) unipolar
)
)
)
)

Ne Ne Ne Ne Ne Ne N

I174=5004004 Select ANAIO4 and ANAI1l2 (if present) unipolar
I75=$005005 Select ANAIO5 and ANAI13 (if present) unipolar
I176=5006006 Select ANAIO6 and ANAI14 (if present) unipolar
I77=5007007 Select ANAIO7 and ANAI15 (if present) unipolar

To set up the configuration words for bipolar analog inputs, the commands could look like
this:

I70=$008008
I71=$009009
I172=300A00A
I73=300B00B
I174=$00C00C

Select ANAIOO and ANAIO8 (if present) bipolar
Select ANAIOl and ANAIQY9 (if present) bipolar
Select ANAIO2 and ANAI10 (if present) bipolar
Select ANAIO3 and ANAIO8 (if present) bipolar
Select ANAIO4 and ANAIO8 (if present) bipolar

Ne Ne Ne Ne N

PMAC I-Variable Specification 49

PMAC 2 Software Reference

I75=3$00D00D ; Select ANAIO5 and ANAIO8 (if present) bipolar
I76=$00EOQOE ; Select ANAIO6 and ANAIO8 (if present) bipolar
I77=$00F00F ; Select ANAIO7 and ANAIO8 (if present) bipolar

Once this setup has been made, PMAC2 will automatically cycle through the analog
inputs, copying the converted digital values into RAM. These image registers can then be
read as if they were the actual A/D converters. For user program use, the image registers
would be accessed with M-variables. Suggested definitions for unipolar (unsigned) values

are:

M1000->Y:$0708,0,12,U ; ANAIOO image register; from Jl pin 1

M1001->Y:$0709,0,12,U ; ANAIOl image register; from Jl1 pin 2

M1002->Y:$070A,0,12,U0 ; ANAIO2 image register; from Jl pin 3

M1003->Y:$070B,0,12,U ; ANAIO3 image register; from Jl pin 4

M1004->Y:$070C,0,12,U0 ; ANAIO4 image register; from Jl pin 5

M1005->Y:$070D,0,12,U ; ANAIOS image register; from Jl pin 6

M1006->Y:$070E,0,12,U ; ANAIO6 image register; from Jl pin 7

M1007->Y:$070F,0,12,U0 ; ANAIO7 image register; from Jl pin 8

M1008->Y:5$0708,12,12,U ; ANAIO8 image register; from Jl1 pin 9

M1009->Y:$0709,12,12,U ; ANAIOY9 image register; from Jl1 pin 10
M1010->Y:$070A,12,12,U ; ANAI10 image register; from Jl pin 11
M1011->Y:$070B,12,12,U ; ANAIll image register; from Jl pin 12
M1012->Y:$070C,12,12,U ; ANAI12 image register; from Jl1 pin 13
M1013->Y:$070D,12,12,U ; ANAI13 image register; from Jl1 pin 14
M1014->Y:$070E,12,12,U ; ANAI14 image register; from Jl1 pin 15
M1015->Y:$070F,12,12,U ; ANAI1l5 image register; from Jl pin 16

For bipolar (signed), just change the U in each definition to S.

In firmware versions prior to V1.17C, the 8 setup registers did not have I-variables
assigned to them, but operated in the same way, accessed directly at addresses X:$0708 —
X:$070F.

I8x Motor x Third-Resolver Gear Ratio

Range 0..4095

Units Second-resolver turns per third-resolver turn

Default 0

Remarks 18x tells PMAC the gear ratio between the second (medium) and third (coarse) resolvers

for a triple-resolver setup for Motor x. It is expressed as the number of turns (electrical
cycles) the second resolver makes in one full turn (electrical cycle) of the third resolver.

This parameter is used only during PMAC’s power-up/reset cycle to establish absolute
power-on servo position. Therefore, the parameter must be set, the value stored in
EAROM with the SAVE command, and the card reset before it takes effect.

If there is no geared third resolver on Motor X, or if absolute power-on position is not
desired, I8x should be set to zero. If either Ix10 (for the primary resolver) or 19x (for the
secondary resolver) is set to zero, I8x is not used.

The third resolver must be connected to the next higher numbered R/D converter at the
same multiplexer address than the second resolver, which must be connected to the next
higher numbered converter at the same multiplexer address than the primary resolver.

50 PMAC I-Variable Specifiation

PMAC 2 Software Reference

Example

See Also

There can be up to eight R/D converters on two ACC-8D Option 7 boards at one
multiplexer address.

Motor 3 has a triple resolver, with each resolver geared down by a ratio of 16:1 from the
resolver before it. The fine resolver is connected to R/D converter 4 at multiplexer address
0 (the first R/D converter on the second ACC-8D Option 7 at address 0). The medium
resolver is connected to R/D converter 5 at this address, and the coarse resolver is
connected to R/D converter 6. The following I-variable values should be used:

1310=$040100 ; The 0100 in the low 16 bits specifies
............................ ; multiplexer address 0; the 4 in the high 8 bits
............................ ; specifies R/D converter 4 at this address.
193=16................ ; Specifies 16:1 ratio between medium and fine
183=16 ; Specifies 16:1 ratio between coarse and medium

Selecting the Position Loop Feedback (Setting Up a Motor)
I-Variables 19x, 1x03, Ix10, Ix81
ACC-8D Option 7 (R/D Converter) Manual

189 Cutter Comp Outside Corner Break Point

Range
Units
Default

Remarks

-1.0-0.99999
cos AO

0.99848 (cos 10)

189 controls the threshold between outside corner angles for which an extra arc move is
added in cutter compensation, and those for which the incoming and outgoing moves are
directly blended together.

189 is expressed as the cosine of the change in directed angle between the incoming and
outgoing moves. As such, it can take a value between -1.0 and +1.0. If the two moves
have the same directed angle at the move boundary (i.e. they are moving in the same
direction), the change in directed angle is 0, and the cosine is 1.0. As the change in
directed angle increases, the corner gets sharper, and the cosine of the change in directed
angle decreases. For a total reversal, the change in directed angle is 180°, and the cosine is
-1.0.

If the cosine of the change in directed angle of an outside corner is less than 189 (a large
change in directed angle; a sharp corner), PMAC will automatically add an arc move with
a radius equal to the cutter radius to join the incoming and outgoing moves. This prevents
the cutter from moving too far out when going around the outside of a sharp corner.

If the cosine of the change in directed angle of an outside corner is greater than 189 (a
small change in directed angle; a gradual corner), PMAC will directly blend the incoming
and outgoing moves with its normal blending algorithms. This can provide increased
speed on small angle changes, because an extra segment of minimum TA or 2*TS time is
not added.

Note:

Do not set 189 to +1.0 (or greater). Otherwise, PMAC will try to
add an arc to every blend (even straight lines).

189 does not affect the behavior at inside corners, where the incoming and outgoing moves
are always blended directly together, regardless of the change in directed angle.

PMAC I-Variable Specification 51

PMAC 2 Software Reference

Before V1.16 firmware, an arc was added to an outside corner if the change in directed
angle were greater than 1°.

Example If it is desired that an arc only be added if the change in directed angle is greater than 45°,
then 189 should be set to 0.707, because cos AO = cos 45° =0.707

See Also Cutter Radius Compensation (Writing a Motion Program)

190 Minimum Arc Angle

Range Non-negative floating point

Units Semi-circles (w radians; 180 degrees)

Default 0 (sets 2°)

Remarks 190 sets the threshold between a short arc and a full circle for CIRCLE mode moves in

PMAC in all coordinate systems. 190 is expressed as an angle, with units that represent a
fraction of a half-circle. It represents the smallest angle that can be covered by a
programmed arc move.

Any programmed CIRCLE-mode move with an IJK-vector representation of the center
which covers an angle smaller than 190 is executed as a full circle plus the programmed
angle change. Any such move which covers an angle greater than 190 is executed as an arc
smaller than a full circle.

The purpose of 190 is to support the circle programming standard that permits a full-circle
move to be commanded simply by making the end point equal to the starting point (0
degree arc), yet allow for round-off errors.

Most users will be able to leave 190 at the default value of one-millionth of a semi-circle.
This was formerly the fixed threshold value. However, some users may want to enlarge
the threshold to compensate for round-off errors, particularly when using cutter-radius
compensation in conjunction with full-circle moves. Remember that no arc covering an
angle less than 190 can be executed.

If a full-circle move is commanded with cutter compensation on, and the blending from the
previous move or into the next move creates a compensated outside corner without adding
an arc (see 189), PMAC will extend the compensated move past a full circle. If I90 is too
small, it may execute this as a very short arc, appearing to miss the move completely. 190
may have to be increased from its effective default value to cover this case.

For backward compatibility reasons, if I90 is set to 0, a threshold value of 2”2 (about one-
millionth) of a semi-circle will be used.

See Also Cutter Radius Compensation
I-variable 189

I9x Motor x Second-Resolver Gear Ratio

Range 0..4095

Units Primary-resolver turns per second-resolver turn

Default 0

Remarks 19x tells PMAC the gear ratio between the first (fine, or primary) and second (coarse or

medium) resolvers for a double- or triple-resolver setup for Motor x. It is expressed as the

52 PMAC I-Variable Specifiation

PMAC 2 Software Reference

number of turns (electrical cycles) the first resolver makes in one full turn (electrical cycle)
of the second resolver.

This parameter is used only during PMAC’s power-up/reset cycle to establish absolute
power-on servo position. Therefore, the parameter must be set, the value stored in
EAROM with the SAVE command, and the card reset before it takes effect.

If there is no geared second resolver on Motor X, or if absolute power-on position is not
desired, 19x should be set to zero. If Ix10 (for the primary resolver) is set to zero, [9x is
not used. In a triple-resolver system, 19x must be set greater than zero in order for 18x
(third-resolver gear ratio) to be used.

The second resolver must be connected to the next higher numbered R/D converter at the
same multiplexer address than the first resolver. If there is a third resolver, it must be
connected to the next higher numbered converter at the same multiplexer address than the
second resolver. There can be up to eight R/D converters on two ACC-8D Option 7
boards at one multiplexer address.

If Ix10 is set up for an ACC-8D Option 9 Yaskawa encoder converter, 19x represents the
counts per revolution (including x2 or x4 quadrature decode, if used) of the encoder;
effectively it is the “gear ratio” between the encoder and the revolution counter.

Example Motor 1 has a double resolver with the fine resolver connected to the R/D converter at
location 2 on an ACC-8D Option 7 board set to multiplexer address 4, and the coarse
resolver, geared down at a 36:1 ratio from the fine resolver, connected to the R/D
converter at location 3 on the same board. The following [-variable settings should be
used:

1110=$020004 ; Value of $0004 in low 16 bits specifies
............................ ; multiplexer address 4; $02 in high 8 bits
............................ ; specifies R/D at location 2 of this address
91=36................ ; Specify 36 turns of fine resolver per turn of
............................ ; coarse resolver; R/D must be at location 3
............................ ; of multiplexer address 4
I81=0................. ; No third resolver

See Also Selecting the Position Loop Feedback (Setting Up a Motor)
I-Variables 18x, Ix03, Ix10, Ix81
ACC-8D Option 7 (R/D Converter) Manual

PMAC I-Variable Specification 53

PMAC 2 Software Reference

199 Backlash Hysteresis

Range
Units
Default

Remarks

Example

See Also

0..8,388,607
1/16 count
64 (= 4 counts)

This parameter controls the size of the direction reversal in motor commanded position
that must occur on any motor before PMAC starts to add the programmed backlash (Ix86)
in the direction of motion. The purpose of this variable is to allow the customer to ensure
that a very small direction reversal (e.g. from the dithering of a master encoder) does not
cause the backlash to “kick in”. 199 thus provides a hysteresis in the backlash function.

The units of 199 are 1/16 of a count. Therefore this parameter must hold a value 16 times
larger than the number of counts reversal at which backlash is introduced. For example, if
backlash is to be introduced after 5 counts of reversal, 199 should be set to 80.

Before 199 was implemented, the backlash hysteresis was fixed at 4 counts, equivalent to
the default 199 value of 64.

With a system in which one count of the master encoder creates 10 counts of movement in
the slave motor, it is desired that a single count reversal of the master not trigger backlash
reversal. Therefore the backlash hysteresis is set to 15 counts, and 199 is set to
15%16=240.

Backlash Compensation (Setting Up a Motor)
I-Variables I1x85, 1x86

Motor x I-Variables

x = Motor Number (#x, x =1 to 8)

Motor Definition I-Variables
IXO0 Motor x Activate

Range 0.1
Units none
Default 1100=1; 1200 .. I800=0
Remarks Ix00 determines whether the Motor x is de-activated (=0) or activated (=1). If activated,
position, servo, and trajectory calculations are done for the motor. An activated motor
may be enabled — either in open or closed loop — or disabled (killed), depending on
commands or events.
If Ix00 is 0, not even the position calculations for that motor are done, so a P command
would not reflect position changes. Any PMAC motor not used should be de-activated, so
PMAC does not waste time doing calculations for that motor. The fewer motors are
activated, the faster the servo update time can be.
Note:
Do not use Ix00 to kill a motor. Changing Ix00 from 1 to 0 leaves
the motor outputs in whatever state they happened to be in at that
moment.
See Also On-line commands K, <CTRL-K>, A, <CTRL-A>, J/
54 PMAC I-Variable Specifiation

PMAC 2 Software Reference

IX01 Motor x PMAC-Commutation Enable

Range 0.1

Units none

Default 0

Remarks Ix01 determines whether PMAC will perform commutation calculations for Motor x. If

Ix01 is set to 0, PMAC will not perform commutation calculations for the motor, and it
will compute only one output value for that motor (usually analog or pulse-and-direction).
If a multi-phase motor is used, but is commutated in the amplifier, Ix01 should be set to 0.

If Ix01 is set to 1, PMAC will perform commutation calculations for Motor x. In this case,
it will either compute two phase-current command outputs for the motor (if [x82 = 0,
disabling the current loop), usually analog outputs, or three phase-voltage command
outputs (if [x82 > 0, enabling the current loops), usually as PWM signals

See Also Setting Up PMAC Commutation
I-variables Ix70-Ix83.

Ix02 Motor x Command Output Address

Range Extended legal PMAC X and Y addresses

Units Extended legal PMAC X and Y addresses

Default

Motor I-variable | PMAC(1) PMAC2 PMAC?2 Ultralite

Motor #1 1102 $C003 $C002 $COA0
Motor #2 1202 $C002 $CO00A $C0A4
Motor #3 1302 $C00B $C012 $COAS8
Motor #4 1402 $CO0A $CO1A $COAC
Motor #5 1502 $C013 $C022 $C0BO
Motor #6 1602 $C012 $C02A $C0B4
Motor #7 1702 $C01B $C032 $COBS
Motor #8 1802 $CO1A $CO03A $COBC

Remarks 1x02 tells Motor x which register or registers to which it writes its command output values. It

contains the address of this register or the first (lowest addresses) of these multiple registers.
This determines which output lines transmit the command output signals. If bit 19 of Ix02 is
set to 0 (default), this register is a Y-register; if bit 19 of Ix02 is set to 1, this register is an X-
register. Almost all output registers on PMAC are Y-registers; the only common use of X-
register outputs is in the Type 0 MACRO protocol. The exact function of Ix02 is dependent
on the motor’s mode of operation, as explained in the following sections.

No Commutation: If PMAC is not commutating Motor x (Ix01 = 0), only one command
output value is calculated, which is written to the register at the address specified in Ix02.

For PMAC(1) systems, this output register is almost always a DAC analog output. The
addresses of each DAC are shown in the following table.

Channel Address Channel Address
DACI1 $C003 DAC9 $C023
DAC2 $C002 DACI10 $C022
DAC3 $C00B DACI11 $C02B
DAC4 $CO0A DACI12 $CO2A
DAC5 $CO013 DACI3 $C033
DAC6 $CO012 DAC14 $C032
DAC7 $CO01B DACI15 $C03B
DACS8 $COIA DACI16 $CO3A

Channels 9 — 16 are on an ACC-24P/V board.

PMAC I-Variable Specification 55

PMAC 2 Software Reference

On PMAC(1) boards, if Ix01 is set to 0 and bit 16 of Ix02 is set to 1, then only the
magnitude of the command is written to the register specified by 1x02 (e.g. 1103=$1C003
to use DACI in this mode); the sign of the command is written to bit 14 of the flag register
specified by [x25, which is usually the AENA/DIR output. If this sign-and-magnitude
mode is used, bit 16 of [x25 should be set to 1 so this bit is not used for the amplifier-
enable function. This mode is usually used with the ACC-8D Opt 2 voltage-to-frequency
converter to generate pulse-and-direction signals for stepper-motor drives. Sign-and-
magnitude mode is not available on PMAC2; for stepper applications it uses a fully
digitally generated pulse train as described below.

In PMAC?2 systems, if a single analog output is desired for the servo, it is usually the A
DAC for the channel. The following table shows these addresses:

Channel Address Channel Address
DACIA $C002 DAC9A $C042
DAC2A $CO0A DACI0A $CO4A
DAC3A $CO012 DACI1A $C052
DAC4A $COIA DACI2A $CO5A
DACS5A $C022 DACI3A $C062
DAC6A $CO2A DACI4A $CO6A
DAC7A $C032 DACI5A $C072
DACSA $CO3A DACI6A $CO7A

Channels 9 — 16 are on an ACC-24P/V2 board. For B-channel DAC
registers, add 1 to the matching A-channel address

When using a PMAC?2 Ultralite board to command the servo over the MACRO ring, the
command output is typically written to the MACRO node register 0. For the MACRO
Type 1 protocol used with Delta Tau MACRO Stations, the addresses are shown in the
following table:

Channel Address Channel Address
Node 0 Reg. 0 $CO0A0 Node 8 Reg. 0 $C0OBO
Node 1 Reg. 0 $C0A4 Node 9 Reg. 0 $C0B4
Node 4 Reg. 0 $COA8 Node 12 Reg. 0 $COBS8
Node 5 Reg. 0 $COAC Node 13 Reg. 0 $COBC

One common application type for which the default value of Ix02 cannot be used is the
direct pulse-and-direction output for stepper motor drives (PMAC2 only). This mode uses
the C output register alone for each channel, and I19n6 for Channel n must be set to 2 or 3
to get pulse frequency output.

In this case, the following values should be used:

Channel Address Channel Address
PWMIA $C002 PWMO9A $C042
PWM2A $CO0A PWMI0A $CO4A
PWM3A $C012 PWMI1A $C052
PWM4A $CO1A PWMI2A $CO5A
PWMSA $C022 PWMI3A $C062
PWM6A $CO02A PWMI4A $CO6A
PWM7A $C032 PWMI5A $C072
PWMSA $CO3A PWMI6A $CO7A
Channels 9 — 16 are on an ACC-24P/V2 board.

56

PMAC I-Variable Specifiation

PMAC 2 Software Reference

Channel Address Channel Address
PFM1 $C004 PFM9 $C044
PFM2 $C00C PFM10 $C04C
PFM3 $C014 PFM11 $C054
PFM4 $C01C PFM12 $C05C
PFM5 $C024 PFM13 $C064
PFM6 $C02C PFM14 $C06C
PFM7 $C034 PFM15 $C074
PFM8 $C03C PFM16 $C07C

Channels 9 — 16 are on an ACC-24P/V2 board

When commanding pulse-and-direction from a PMAC Ultralite through a MACRO ring,
use the address of Register 2 for the MACRO node, as shown in the following table:

Channel Address Channel Address
Node 0 Reg. 0 $C0A2 Node 8 Reg. 0 $C0B2
Node 1 Reg. 0 $CO0A6 Node 9 Reg. 0 $C0B6
Node 4 Reg. 0 $COAA Node 12 Reg. 0 $COBA
Node 5 Reg. 0 $COAE Node 13 Reg. 0 $COBE

Commutation, No Current Loop: I[f PMAC is commutating Motor x (Ix01 = 1), but not
closing its current loop (Ix82 = 0), two command output values are calculated, which are
written to the Y-register at the address specified in Ix02, plus the Y-register at the next
higher address. Typically, these are two DAC output registers.

To use a pair of DACs on a PMAC(1), the address of the even-numbered DAC of the pair

is used:
Channel Address Channel Address
DACI &2 $C002 DAC9 & 10 $C022
DAC3 & 4 $CO0A DACI11 & 12 $CO02A
DAC5 & 6 $C012 DAC13 & 14 $C032
DAC7 & 8 $CO1A DACI5 & 16 $CO3A
Channels 9 — 16 are on an ACC-24P/V board.

To use a pair of DACs on a PMAC?2, the address of the A-channel DAC is used to specify
the use of both the A and B-channel DACs. The addresses used are the same as those for

the case when the PMAC?2 is not commutating the motor, whether directly or over
MACRO.

In this mode, if bit 16 of Ix02 is set to 1 (e.g. [102=$1C002), then the PMAC will execute
an open-loop commutation known as “direct microstepping” instead of the standard
closed-loop commutation.

Commutation and Current Loop: If PMAC2 is commutating Motor x (Ix01 = 1) and
closing its current loop (Ixx82 > 0), three command output values are calculated, which are
written to the Y-register at the address specified in Ix02, plus the Y-registers at the next
two higher addresses. This mode of operation is not supported on a PMAC(1).

In this mode, Ix02 typically specifies the A-channel output for the channel, which has been
set up for PWM outputs (I9n6 = 0 for Channel n). The following table shows these
addresses:

PMAC I-Variable Specification 57

PMAC 2 Software Reference

See Also

When commanding in this mode over the MACRO ring, the address specified is that of
Register 0 for the MACRO node. The following table shows these addresses:

Channel Address Channel Address
Node 0 Reg. 0 $CO0A0 Node 8 Reg. 0 $C0OBO
Node 1 Reg. 0 $C0A4 Node 9 Reg. 0 $C0B4
Node 4 Reg. 0 $COA8 Node 12 Reg. 0 $COBS
Node 5 Reg. 0 $COAC Node 13 Reg. 0 $COBC

Selecting the Output (Setting Up a Motor)
I-variables Ix01, Ix25, Ix70-1x83
Memory-1/O registers Y:$C000-Y:$CO3F

IX0O3 Motor x Position Loop Feedback Address

Range
Units
Default

Remarks

Extended legal PMAC “X” addresses
Extended legal PMAC “X” addresses

Variable | PMAC(1), Source with PMAC2 Source with
PMAC2 Default Table Ultralite Default Table

1103 $0720 Converted ENC1 $0721 Converted Node 0
1203 $0721 Converted ENC2 $0723 Converted Node 1
1303 $0722 Converted ENC3 $0725 Converted Node 4
1403 $0723 Converted ENC4 $0727 Converted Node 5
1503 $0724 Converted ENC5 $0729 Converted Node 8
1603 $0725 Converted ENC6 $072B Converted Node 9
1703 $0726 Converted ENC7 $072D Converted Node 12
1803 $0727 Converted ENC8 $072F Converted Node 13

Ix03 tells the PMAC where to look for its feedback to close the position loop for Motor x.
Usually it points to an entry in the Encoder Conversion Table, where the values from the
encoder counter registers have been processed at the beginning of each servo cycle
(possibly to include sub-count data). This table starts at address $0720 and continues until
address $073F. Tt is shipped from the factory configured as shown in the default table
above.

For a motor with dual feedback (motor and load), use 1x03 to point to the encoder on the
load, and Ix04 to point to the encoder on the motor.

If the position loop feedback device is the same device as is used for commutation (with
PMAC doing the commutation), then it must also be specified for commutation with Ix83.
However, Ix83 should specify the address of the encoder counter itself, not the converted
data of the table.

Hardware Home Position Capture: The source address of the position information occupies
bits 0 to 15 of Ix03 (range $0000 to SFFFF, or 0 to 65535). With bit 16 equal to zero — the
normal case — position capture on homing is done with the hardware capture register
associated with the flag inputs pointed to by Ix25. In this case, it is important to match the
encoder number, the address pointed to with 1x03, with the flag number, the address
pointed to with Ix03 (e.g. ENC1 — CHA1 & CHBI1 — with HMFL1 and LIM1).

Software Home Position Capture: If bit 16 (value 65536) is set to one, the position capture
on homing is done through software, and the position source does not have to match the
input flag source. This is particularly important for parallel-data position feedback, such
as from a laser interferometer (which is incremental data and requires homing). For
example, if motor #1 used parallel feedback from a laser interferometer processed as the
first (triple) entry in the conversion table, the key I-variables would be:

58

PMAC I-Variable Specifiation

PMAC 2 Software Reference

1103=$10722 1125=$C000
This would permit homing on interferometer data with HMFL1 triggering.
Note:

In the extended version, it is obviously easier to specify this
parameter in hexadecimal form. With I9 at 2 or 3, the value of this
variable will be reported back to the host in hexadecimal form.

Capture on following error: If bit 17 of Ix03 is set to 1, then the trigger for position capture
of this motor is a true state on the warning following error status bit for the motor. If bit
17 is at the default of 0, the trigger for position capture is the capture flag of the flag
registers as set by Ix25. The trigger is used in two types of moves: homing search moves
and programmed move-until-triggers. If bit 17 is set to 1, the triggered position must be
software captured, so bit 16 must also be set to 1 to specify software captured bit position.

Hardware Capture with Normal-Resolution Feedback: If bit 18 of Ix03 is set to its default
value of 0 when hardware position capture is used in a triggered move such as a homing-

search move, the captured data (whether whole-count only or including sub-count data) is
processed to match servo feedback of “normal” resolution (5 bits of fractional count data

per hardware whole count). This setting is appropriate for digital quadrature feedback or

for “low-resolution” interpolation of a sinusoidal encoder.

Hardware Capture with High-Resolution Interpolated Feedback: If bit 18 (value $40000, or
262,144) is set to 1 when hardware position capture is used in a triggered move, the
captured data (whether whole-count only or including sub-count data) is processed to
match servo feedback of “high” resolution (10 bits of fractional count data per hardware
whole count). This setting is appropriate for “high-resolution” interpolation of a sinusoidal
encoder through an ACC-51x interpolator.

Whole-Count Capture: If bit 19 of Ix03 is set to 0 when hardware position capture is used
in a triggered move such as a homing-search move, only the whole-count captured position
register is used to establish the trigger position. This setting must be used on PMAC(1)
controllers, and on PMAC?2 controllers with Servo ICs older than Revision “D” (Revision
“D” ICs started shipping in early 2002).

Sub-Count Capture: If bit 19 (value $80000, or 524,288) is set to 1 when hardware
position capture is used in a triggered move, both the whole-count captured position
register and the estimated sub-count position register are used to establish the trigger
position. This setting can only be used on PMAC?2 controllers with Servo ICs of Revision
“D” or newer. 19n9 for the Channel “n” used for the capture must be set to 1 to enable the
hardware sub-count estimation. This setting is typically used for registration or probing
triggered moves with interpolated sinusoidal encoder feedback. (Even with interpolated
sinusoidal encoder feedback, homing-search moves will probably be done without sub-
count captured data, to force a home position referenced to one of the four “zero-crossing”
positions of the sine/cosine signals.)

See Also Selecting the Position Loop Feedback (Setting Up a Motor)
Encoder Conversion Table (Setting Up a Motor)
I-variables Ix04, 1x05, 1x25, Ix83.

PMAC I-Variable Specification 59

PMAC 2 Software Reference

Ix04 Motor x Velocity Loop Feedback Address

Range
Units
Default
Remarks

See Also

Legal PMAC X addresses
Legal PMAC X addresses
Same as Ix03

1x04 holds the address of the position feedback device that PMAC uses for its velocity-
loop feedback information. For a motor with only a single feedback device (the usual
case), this must be the same as Ix03. For a motor with dual feedback (motor and load), use
Ix04 to point to the encoder on the motor, and Ix03 to point to the encoder on the load.

If the velocity-loop feedback device is the same device as is used for commutation (if
PMAC is doing the commutation), then both 1x04 and Ix83 (commutation feedback
address) must reference the same device. However, Ix04 typically points to the converted
data — a register in the Encoder Conversion table — while Ix83 must point directly to the
DSPGATE encoder register.

The instructions for setting this parameter are identical to those for Ix03, except that there
are no address extension bits.

Note:

When planning which channels to use when connecting the position
and velocity encoders, remember that the channel pointed to by
Ix25 is used for the Overtravel, Amplifier Fault, and Home Flag
inputs.

Selecting the Velocity-Loop Feedback (Setting Up a Motor)
Encoder Conversion Table (Setting Up a Motor)
I-variables Ix03, Ix05, Ix25, Ix83.

60

PMAC I-Variable Specifiation

PMAC 2 Software Reference

IX05 Motor x Master (Handwheel) Position Address

Range
Units
Default
Remarks

See Also

Legal PMAC X addresses
Legal PMAC X addresses
$073F (1855) (= zero register at end of conversion table)

1x05 tells the PMAC where to look for the position of the master, or handwheel, encoder
for Motor x. Usually this is an entry in the Encoder Conversion Table that holds processed
information from an encoder channel. The instructions for setting this parameter are
identical to those for Ix03, except the extended bits mean different things. The default
value permits handwheel input from the JPAN connector (jumpered into the ENC2 counter
with E22 and E23).

Following Modes: The source address of the position information occupies bits 0 to 15 of
Ix05 (range $0000 to $SFFFF, or 0 to 65535). With bit 16 equal to zero — the normal case —
position following is done with the actual position reported for the motor reflecting the
change due to the following. With bit 16 — value 65536 — equal to one, the actual position
reported for the motor does not reflect the change due to the following (“offset” mode).
This mode can be useful for part offsets, and for superimposing programmed and
following moves. For example, to have motor #1 following encoder 2 in offset mode, 1105
should be set to $10721.

Note:

In the extended version, it is easier to specify this parameter in
hexadecimal form. With I9 at 2 or 3, the value of this variable will
be reported back to the host in hexadecimal form.

Note:

It is important not to have the same source be both the master and
the feedback for an individual motor. If this is the case, with
Ix06=1 to enable following, the motor will run away (it is like a
puppy chasing its tail — it cannot catch up to its desired position,
because its desired position keeps moving ahead of it).

If you want to ensure that following cannot occur by accident, you may want to change
Ix05 so it points to a register that cannot change. This way, even if the following function
gets turned on, for instance by the motor selector inputs on the JPAN connector, no
following can occur. The best registers to use for this purpose are the unused ones at the
end of the conversion table. With the default table setup, you can choose any register
between $072A and $073F (1834 to 1855 decimal). If you extend the table, choose a
register between the end of the table and $073F.

Selecting the Master Position Source (Setting Up a Motor)
Encoder Conversion Table (Setting Up a Motor)

Position Following (Synchronizing PMAC to External Events)
I-variables 1x03, Ix04, Ix06, Ix08, 1x09.

PMAC I-Variable Specification 61

PMAC 2 Software Reference

IX06 Motor x Master (Handwheel) Following Enable

Range 0.1

Units none

Default 0

Remarks Ix06 disables or enables Motor x’s position following function. A value of 0 means

disabled; a value of 1 means enabled. Following mode is specified by high bits of Ix05.
Note:

This parameter can be changed on-line in a PMAC(1) through
hardware inputs on the JPAN connector. The FPDn/
motor/coordinate-system select lines (low-true BCD-coded) can
turn Ix06 on and off. On power-up or reset, if [2 was saved as zero,
Ix06 for the selected motor is set to one and Ix06 for all other
motors is set to zero regardless of the values that were saved. When
the select switch is changed, Ix06 for the de-selected motor is set to
zero and Ix06 for the selected motor is set to 1.

See Also Position Following (Synchronizing PMAC to External Events)

I-variables 12, Ix05, Ix07, Ix08
Control Panel Inputs (Connecting PMAC to the Machine)

Ix07 Motor x Master (Handwheel) Scale Factor

Range -8,388,608 .. 8,388,607

Units none

Default 96

Remarks Ix08 controls with what scaling the master (handwheel) encoder gets extended into the

full-length register. In combination with Ix08, it also controls the following ratio of Motor
x (delta-motor-x = [[x07/I1x08] * delta-handwheel-x) for position following (electronic
gearing). For following, Ix07 and Ix08 can be thought of as the number of teeth on
meshing gears in a mechanical coupling.

Ix07 can be changed on the fly to permit real-time changing of the following ratio, but
Ix08 may not.

See Also I-variables Ix05, Ix06, Ix08
Position Following (Synchronizing PMAC to External Events)

IX08 Motor x Position Scale Factor

Range 0..8,388,607

Units none

Default 96

Remarks Ix08 controls how the position encoder counter gets extended into the full-length register.
For most purposes, this is transparent to the user and does not need to be changed from the
default.

There are two reasons that the user might want to change this from the default value. First,
because it is involved in the “gear ratio” of the position following function — the ratio is
Ix07/1x08 — this might be changed (usually raised) to get a more precise ratio.

The second reason to change this parameter (usually lowering it) is to prevent internal
saturation at very high gains or count rates (velocity). PMAC’s filter will saturate when
the velocity in counts/sec multiplied by Ix08 exceeds 768M (805,306,368). This happens
only in very rare applications — the count rate must exceed 8.3 million counts per second
before the default value of [x08 gives a problem.

62 PMAC I-Variable Specifiation

PMAC 2 Software Reference

See Also

Note:

When changing this parameter, make sure the motor is killed
(disabled). Otherwise, a sudden jump will occur, because the
internal position registers will have changed. This means that this
parameter should not be changed in the middle of an application. If
a real-time change in the position-following “gear ratio” is desired,
Ix07 should be changed.

In most practical cases, [x08 should not be set above 1000 because higher values can make
the servo filter saturate too easily. If Ix08 is changed, [x30 should be changed inversely to
keep the same servo performance (e.g. if Ix08 is doubled, Ix30 should be halved).

Position Following (Synchronizing PMAC to External Events)
I-variables Ix05, Ix06, 1x07, I1x09, Ix30

IX09 Motor x Velocity Loop Scale Factor

Range
Units
Default

Remarks

Example

See Also

0..8,388,607
none
96

1x09 controls how the encoder counter used to close the velocity servo loop gets extended
into the full-length register. For most purposes, this is transparent to the user and does not
need to be changed from the default. This parameter should not be changed in the middle
of an application, because it scales many internal values. If the same sensor is used to
close both the position and velocity loops (Ix03), 1x09 should be set equal to 1x08.

If different sensors are used, Ix09 should be set such that the ratio of Ix09 to Ix08 is
inversely proportional to the ratio of the velocity sensor resolution (at the load) to the
position sensor resolution.

If a 5000 line/inch (20,000 cts/in) linear encoder is used for position feedback, and a 500
line/rev (2000 cts/rev) rotary encoder is used for velocity loop feedback, and there is a 5-
pitch screw, the effective resolution of the velocity encoder is 10,000 cts/in (2000x5), half
of the position sensor resolution, so 1x09 should be set to twice 1x08.

If the value computed this way for Ix09 does not come to an integer, use the nearest integer
value.

I-variables Ix03, Ix04, Ix08, 1x31
Dual-Feedback Systems (Setting Up a Motor)

PMAC I-Variable Specification 63

PMAC 2 Software Reference

IxX10 Motor x Power-Up Servo Position Address

Range $000000 - SFFFFFF
Units Extended PMAC Addresses
Default 0
Remarks Ix10 controls whether PMAC reads an absolute position sensor for Motor x on power-up/reset
and/or with the $* command. If an absolute position read is to be done, Ix10 specifies what
register is read for that absolute position data and how the data in this register is interpreted.
If Ix10 is set to 0, no absolute power-on/reset position read is performed. The power-on/reset
position is considered to be zero, even if an absolute sensor reporting a non-zero value is used.
Ix10 should be set to 0 when an incremental position sensor is used; typically a homing search
move is then executed to establish a position reference.
If Ix10 is set to a non-zero value, an absolute position read is performed for Motor x at power-
on/reset (unless Bit 2 of Ix80 is set to 1), or on the $* command, from the register whose
address is specified in Ix10. The motor’s position is set to the value read from the sensor
minus the [x26 “home” offset value.
Ix10 consists of two parts. The low 16 bits, represented by four hex digits, contain the address
of the register containing the power-on position information, either a PMAC memory-1/0
address, an address on the multiplexer (“thumbwheel”) port, or the number of the MACRO
node on the PMAC, depending on the setting of the high 8 bits. The high 8 bits, represented
by two hex digits, specify how to read the information at this address.
Note:
It is easier to specify this parameter in hexadecimal form ($ prefix). If
19 is set to 2 or 3, the value of this variable will be reported back to the
host in hexadecimal form.
The possible values of Bits 16 — 23 of Ix10 and the absolute position feedback devices they
reference are summarized in the following table:
Ix10 Value Absolute Position Source Ix10 Address Type Format
Range
$00xxxx - $07xxxx | ACC-8D Opt 7 R/D Converter Multiplexer Port Unsigned
$08xxxx - $30xxxx | Parallel Data Y-Register PMAC Memory-1/0 Unsigned
$31xxxx ACC-28 A/D Converter PMAC Memory-I/O Unsigned
$32xxxx ACC-49 Sanyo Abs. Encoder PMAC Memory-1/0 Unsigned
$48xxxx - $70xxxx | Parallel Data X-Register PMAC Memory-1/0 Unsigned
$71xxxx ACC-8D Opt 9 Yaskawa Abs. Enc. Multiplexer Port Unsigned
$72xxxx MACRO Station Yaskawa Abs. Enc. | MACRO Node Number | Unsigned
$73xxxx MACRO Station R/D Converter MACRO Node Number | Unsigned
$74xxxx MACRO Station Parallel Read MACRO Node Number | Unsigned
$75xxxx EnDat Data Read (Geo PMAC) Geo PMAC Unsigned
$80xxxx - $87xxxx | ACC-8D Opt 7 R/D Converter Multiplexer Port Signed
$88xxxx - $BOxxxx | Parallel Data Y-Register PMAC Memory-1/0 Signed
$B1xxxx ACC-28 A/D Converter PMAC Memory-1/0 Signed
$B2xxxx ACC-49 Sanyo Abs. Encoder PMAC Memory-1/O Signed
$C8xxxx - $FOxxxx| Parallel Data X-Register PMAC Memory-1/0 Signed
$FIxxxx ACC-8D Opt 9 Yaskawa Abs. Enc. Multiplexer Port Signed
$F2xxxx MACRO Station Yaskawa Abs. Enc. | MACRO Node Number Signed
64 PMAC I-Variable Specifiation

PMAC 2 Software Reference

$F3xxxx MACRO Station R/D Converter MACRO Node Number Signed
$F4xxxx MACRO Station Parallel Read MACRO Node Number Signed
$F4xxxx EnDat Data Read (Geo PMAC) Geo PMAC Signed

The following section provides details for each type of position feedback.

R/D Converter: If Ix10 contains a value from $0000xx to $0700xx, or from $8000xx to
$8700xx, Motor x will expect its absolute power-on position from an ACC-8D Opt. 7 R/D
converter board. The low 8 bits (last 2 hex digits) of Ix10 should contain the address of the
board on the multiplexer port, as set by the DIP switches on the board.

The first hex digit of Ix10, which can take a value of 0 or 8 in this mode, specifies whether the
position is interpreted as an unsigned value (1% digit = 0) or as a signed value (1% digit = 8).
The second hex digit of Ix10, which can take a value from 0 to 7 in this mode, specifies the
number of the individual R/D converter at that multiplexer port address. The following table
shows the Ix10 values for this mode and the R/D converter each specifies at the ‘xx’
multiplexer-port address:

Ix10 Value for Ix10 Value for ACC-8D Opt. 7 # of R/D
Unsigned Signed Position SW1-1 Setting Converter on
Position ACC-8D Opt. 7
$0000xx* $8000xx CLOSED (0) 1
$0100xx $8100xx CLOSED (0) 2
$0200xx $8200xx CLOSED (0) 3
$0300xx $8300xx CLOSED (0) 4
$0400xx $8400xx OPEN (1) 1
$0500xx $8500xx OPEN (1) 2
$0600xx $8600xx OPEN (1) 3
$0700xx $8700xx OPEN (1) 4
*If ‘xx” is ‘00°, the fourth hex digit should be set to 1(making Ix10=$000100);
otherwise no absolute position will be read because 1x10=0.

If I9x is set greater than 0, the next higher numbered R/D converter at the same multiplexer
port address is also read and treated as a geared-down resolver, with 19x specifying the gear
ratio. I8x is also set greater than 0, the following R/D converter at the same multiplexer port
address is read and treated as a third resolver geared down from the second, with 18x
specifying that gear ratio.

The following table shows the values of Ix10 for the multiplexer port addresses for the ACC-
8D Opt. 7 that can be used:

Board Ix10 Board Ix10 Board Ix10 Board Ix10
Mux. Mux. Mux. Mux.
Addr. Addr Addr Addr
0 $0n0000 64 $0n0040 128 $0n0080 192 $0n00CO
8 $0n0008 72 $0n0048 136 $0n0088 200 $0n00C8
16 $0n0010 80 $0n0050 144 $0n0090 208 $0n00DO
24 $0n0018 88 $0n0058 152 $0n0098 216 $0n00D8
32 $0n0020 96 $0n0060 160 $0n00A0 224 $0n00EO
40 $0n0028 104 $0n0068 168 $0n00AS 232 $0n00ES
48 $0n0030 112 $0n0070 176 $0n00BO 240 $0n00F0
56 $0n0038 120 $0n0078 184 $0n00B8 248 $0n00F8
‘n’ is a digit from 0 to 7 specifying the converter number at that address
*If ‘n’ is 0 and the multiplexer address is 0, the 4™ hex digit should be set to 1, making
1x10=$000100; otherwise with Ix10=0, no absolute position would be read.

PMAC I-Variable Specification 65

PMAC 2 Software Reference

Parallel Data Read: If Ix10 contains a value from $08xxxx to $30xxxx, from $48xxxx to
$70xxxx, from $88xxxx to $BOxxxx, or from $C8xxxx to $FOxxxx, Motor x will do a parallel
data read of the PMAC memory or I/O register at address ‘xxxx’.

In this mode, bits 16 to 21 of Ix10 specify the number of bits to be read, starting with bit 0 at
the specified address. In this mode, they can take a value from $08 to $30 (8 to 48). If the
number of bits is greater than 24, the high bits are read from the register at the next higher-
numbered address.

In this mode, bit 22 of Ix10 specifies whether a Y-register is to be read, or an X-register. A
value of 0 in this bit specifies a Y-register; a value of 1 specifies an X-register. Almost all
common sources of absolute position information are located in Y-registers, so this digit is
almost always 0.

Bit 23 of Ix10 specifies whether the position is interpreted as an unsigned or a signed value. If
the bit is set to 0, it is interpreted as an unsigned value, if the bit is 1, it is interpreted as a
signed value.

Combining these components, Ix10 values in this mode can be summarized as:

o $08xxxx - $30xxxX: Parallel Y-register read, unsigned value, 8 to 48 bits
e $48xxxx - $70xxxx: Parallel X-register read, unsigned value, 8 to 48 bits
o $88xxxx - $BOxxxx: Parallel Y-register read, signed value, 8 to 48 bits
e $C8xxxx - $FOxxxX: Parallel X-register read, signed value, 8 to 48 bits

The following table shows Ix10 values for parallel data read through an ACC-14 board.

Register Ix10 Register Ix10

1" ACC-14D/V Port A | $xxFFDO | 4™ ACC-14D/V Port A | $xxFFES

1" ACC-14D/V Port B | $xxFFDI | 4™ ACC-14D/V Port B | $xxFFE9

2" ACC-14D/V Port A | $xxFFD8 | 5™ ACC-14D/V Port A | $xxFFF0

2" ACC-14D/V Port B | $xxFFD9 | 5™ ACC-14D/V Port B $xxFFF1

3 ACC-14D/V Port A | $xxFFE0 | 6™ ACC-14D/V Port A | $xxFFF8

3" ACC-14D/V Port B | $xxFFEI 6™ ACC-14D/V Port B $xxFFF9
‘xx” represent the first two digits, which control bit width, and signed vs.
unsigned data. ACC-14 boards are always Y-addresses

For reading MLDT absolute position from a PMAC timer register, the first two hex digits of
Ix10 are set to $58. Bits 16 — 21 are set to $18 to specify a 24-bit register; bit 22 is set to 1
($40) to specify an X-register, and bit 23 is set to 0 to specify an unsigned value.

The following table shows Ix10 values for reading ACC-29 MLDT timer registers on a
PMAC(1) as parallel data:

Channel Ix10 Channel Ix10
9 $58C020 13 $58C030
10 $58C024 14 $58C034
11 $58C028 15 $58C038
12 $58C02C 16 $58C03C

The following table shows Ix10 values for reading PMAC2 built-in MLDT timer registers:

Channel Ix10 Channel Ix10
1 $58C000 5 $58C020
2 $58C008 6 $58C028
3 $58C010 7 $58C030
4 $58C018 8 $58C038

66

PMAC I-Variable Specifiation

PMAC 2 Software Reference

ACC-28 A/D Converter Read: If Ix10 is set to $3 Ixxxx or $B1xxxx, Motor x will expect its
power-on position in the upper 16 bits of the PMAC Y-memory or I/O register specified by
‘xxxx’. This format is intended for ACC-28 A/D converters.

Bit 23 of Ix10 specifies whether the position is interpreted as an unsigned or a signed value. If
the bit is set to 0, it is interpreted as an unsigned value, if the bit is 1, it is interpreted as a
signed value. Because ACC-28A produces signed values, Ix10 should be set to $B1xxxx
when using ACC-28A. ACC-28B produces unsigned values, so Ix10 should be set to $31xxxx
when using ACC-28B.

The following tables show Ix10 values for ACC-28A/B on PMAC(1) and Ix10 values for
ACC-28B through PMAC?2, respectively.

Channel Ix10 for Ix10 for Channel | Ix10 for Ix10 for
ACC-28A ACC-28B ACC-28A | ACC-28B
1 $B1C006 $31C006 9 $B1C026 $31C026
2 $B1C007 $31C007 10 $§B1C027 $31C027
3 $B1COOE $31CO0E 11 $B1CO2E $31C02E
4 $B1COOF $31CO0F 12 $B1CO2F $31C02F
5 $B1CO16 $31C016 13 $B1C036 $31C036
6 $§B1C017 $31C017 14 $B1C037 $31C037
7 $B1CO1E $31CO1E 15 $BI1CO3E $31CO3E
8 $BICO1F $31CO1F 16 $B1CO3F $31CO3F
Channels 9 through 16 are brought in through an ACC-24 board
Channel Ix10 for Ix10 for | Channel | Ix10 for Ix10 for
ADC A ADCB ADC A ADCB
1 $31C005 $31C006 9 $31C045 $31C046
2 $31C00D $31CO0E 10 $31C04D $31CO04E
3 $31C015 $31C016 11 $31C055 $31C056
4 $31C01D $31CO1E 12 $31C05D $31COSE
5 $31C025 $31C026 13 $31C065 $31C066
6 $31C02D $31C02E 14 $31C06D $31CO6E
7 $31C035 $31C036 15 $31C075 $31C076
8 $31C03D $31CO3E 16 $31C07D $31CO7E
Channels 9 through 16 are brought in through an ACC-24P/V2 board.

Sanyo Absolute Encoder Read: If Ix10 is set to $32xxxx or $B2xxxx, Motor x will expect its
power-on position from the ACC-49 Sanyo Absolute Encoder converter board at the PMAC
Y-address specified by ‘xxxx’.

Bit 23 of Ix10 specifies whether the position is interpreted as an unsigned value (Bit 23 = 0,
making the first hex digit a 3) or as a signed value (Bit 23 = 1, making the first hex digit a B).
Set Ix10 to $32xxxx for unsigned, or to $B2xxxx for signed.

The following table lists the possible values of Ix10 for the ACC-49:

Enc. # on Board Ix10 for E1 ON Ix10 for E2 ON Ix10 for E3 ON
Enc. 1 $m2FFDO $m2FFDS8 $m2FFEQ
Enc. 2 $m2FFD4 $m2FFDC $m2FFE4
Enc. # on Board Ix10 for E4 ON Ix10 for ES ON Ix10 for E6 ON
Enc. 3 $m2FFES $m2FFF0 $m2FFF8
Enc. 4 $m2FFEC $m2FFF4 $m2FFFC
m is 3 or B depending on whether the data is to be interpreted as an unsigned or signed quantity.

Yaskawa Absolute Encoder Read: If [x10 is set to $7100xx or $F100xx, Motor x will expect

PMAC I-Variable Specification

67

PMAC 2 Software Reference

its power-on position from the Yaskawa Absolute Encoder converter board at the multiplexer
port address specified by ‘xx’.

Bit 23 of Ix10 specifies whether the position is interpreted as an unsigned value (Bit 23 =0,
making the first hex digit a 7) or as a signed value (Bit 23 = 1, making the first hex digit an F).
Set Ix10 to $7100xx for unsigned, or to $F100xx for signed.

In this mode, 19x specifies the number of bits per revolution for a single turn of the Yaskawa
absolute encoder. (For example, with 8192 counts per revolution, there are 13 bits per
revolution.) It must be set greater than 0 to use the multi-turn absolute capability of this
encoder.

The following table shows the values of Ix10 for the ACC-8D Option 9:

Board Ix10 for Ix10 for Ix10 for Ix10 for Board Ix10 for Ix10 for Ix10 for Ix10 for
Mux. Enc. 1 Enc. 2 Enc. 3 Enc. 4 Mux. Enc. 1 Enc. 2 Enc. 3 Enc. 4
Addr. Addr.

0 $m10000 | $m10002 $m10004 $m10006 128 $m10080 $m10082 $m10084 $m10086
8 $m10008 | $m1000A $m1000C $m1000E 136 $m10088 $m1008A $m1008C $m1008E
16 $m10010 | $m10012 $m10014 $m10016 144 $m10090 $m10092 $m10094 $m10096
24 $m10018 | $ml1001A $m1001C $ml001E 152 $m10098 $m1009A $m1009C $m1009E
32 $m10020 | $m10022 $m10024 $m10026 160 $m100A0 $m100A2 $Sm100A4 $m100A6
40 $m10028 | $ml1002A $m1002C $m1002E 168 $m100A8 $m100AA | $ml100AC $m100AE
48 $m10030 | $m10032 $m10034 $m10036 176 $m100B0 $m100B2 $m100B4 $m100B6
56 $m10038 | $ml1003A $m1003C $m1003E 184 $m100B8 $m100BA | $m100BC $m100BE
64 $m10040 | $m10042 $m10044 $m10046 192 $m100C0O $m100C2 $m100C4 $m100C6
72 $m10048 | $m1004A $m1004C $m1004E 200 $m100C8 $Sm100CA $m100CC $m100CE
80 $m10050 | $m10052 $m10054 $m10056 208 $m100D0 $m100D2 $m100D4 $m100D6
88 $m10058 | $ml1005A $m1005C $m1005E 216 $m100D8 $m100DA | $m100DC $m100DE
96 $m10060 | $m10062 $m10064 $m10066 224 $m100EQ $SmI100E2 $m100E4 $m100E6
104 $m10068 | $ml1006A $m1006C $m1006E 232 $m100E8 $ml100EA $m100EC $ml100EE
112 $m10070 | $m10072 $m10074 $m10076 240 $m100F0 $m100F2 $m100F4 $m100F6
120 $m10078 | $ml1007A $m1007C $ml1007E 248 $m100F8 $m100FA $m100FC $m100FE
m is 7 or F, depending on whether the data is to be interpreted as an unsigned or signed quantity.

MACRO Station Yaskawa Absolute Encoder Read: If Ix10 is set to $72000n or $F2000n,
Motor x will expect its power-on position from a Yaskawa Absolute Encoder through a
MACRO Station. In this mode, ‘n’ specifies the MACRO node number at which the position
value will be read by PMAC itself. Set-up variable MI11x for the MACRO Station tells the
Station how to read the Yaskawa Encoder converter connected to its own multiplexer port or
serial port.

Bit 23 of Ix10 specifies whether the position is interpreted as an unsigned value (Bit 23 =0,
making the first hex digit a 7) or as a signed value (Bit 23 = 1, making the first hex digit an F).
Set Ix10 to $72000n for unsigned, or to $F2000n for signed.

In this mode, 19x specifies the number of bits per revolution for a single turn of the Yaskawa
absolute encoder. (For example, with 8192 counts per revolution, there are 13 bits per
revolution.) It must be set greater than 0 to use the multi-turn absolute capability of this
encoder.

MACRO Station R/D Converter Read: If Ix10 is set to $73000n or $F3000n, Motor x will
expect its power-on position from an ACC-8D Opt 7 R/D converter through a MACRO Station
or compatible device. In this mode, ‘n’ specifies the MACRO node number at which PMAC
will read the position value itself. Set-up variable MI11x for the matching node on the
MACRO Station tells the Station how to read the R/D converter connected to its own
multiplexer port.

Bit 23 of Ix10 specifies whether the position is interpreted as an unsigned value (Bit 23 = 0,
making the first hex digit a 7) or as a signed value (Bit 23 = 1, making the first hex digit an F).
Set Ix10 to $73000n for unsigned, or to $F3000n for signed.

If I9x is set greater than 0, the next higher numbered R/D converter at the same multiplexer

68

PMAC I-Variable Specifiation

PMAC 2 Software Reference

port address is also read and treated as a geared-down resolver, with 19x specifying the gear
ratio. If I8x is also set greater than 0, the following R/D converter at the same multiplexer port
address is read and treated as a third resolver geared down from the second, with I8x
specifying that gear ratio.

MACRO Station Parallel Data Read: If Ix10 is set to $74000n or $F4000n, Motor x will
expect its power-on position from a parallel data source through a MACRO Station or
compatible device. In this mode, ‘n’ specifies the MACRO node number at which PMAC will
read the position value itself. Set-up variable MI11x for the matching node on the MACRO
Station tells the Station how to read the parallel data source connected to it.

Bit 23 of Ix10 specifies whether the position is interpreted as an unsigned value (Bit 23 = 0,
making the first hex digit a 7) or as a signed value (Bit 23 = 1, making the first hex digit an F).
Set Ix10 to $74000n for unsigned, or to $F4000n for signed.

EnDat Data Read (Geo PMAC only): If Ix10 is set to $75wxyz or $F5wxyz on a Geo
PMAC, Motor x will expect its power-on servo position from the optional EnDat interface that
can be built in to the Geo PMAC.

Bit 23 of Ix10 specifies whether the position is interpreted as an unsigned value (Bit 23 =0,
making the first hex digit a 7) or as a signed value (Bit 23 = 1, making the first hex digit an F).
Set Ix10 to $75wxyz for unsigned, or to $F5wxyz for signed.

The third and fourth hex digits (wx) specify the number of bits of EnDat absolute position to
be read, as a hex value. For example, if 20 bits were to be read, these two hex digits would be
set to 14.

The fifth hex digit (y) specifies the shift of the data read, permitting the user to match the
resolution properly with that of the ongoing position. The data is first shifted left 10 bits, then
shifted right by “y” bits, so “y” should be set to (NetRightShift + 10). The object is to end up
with data whose LSB is equal to one quadrature count (1/4-line) of the encoder. Most
commonly, the data comes in with the LSB equal to 1/4 of a quadrature count (1/16-line),
requiring a net right shift of 2 bits, so “y” should be a hex digit of “C” (12 decimal).

The sixth hex digit (z) specifies the channel number used, whether the data is negated, and
whether it should be matched to ongoing digital quadrature or analog sinusoidal feedback.

Bits 1 and 0 together express the channel number minus one as a value from 0 to 3 (so Channel
1 to 4). Bit 2 is set to 0 if the ongoing feedback is analog sinusoidal processed through the
high-resolution conversion (format $F) in the conversion table, or to 1 if the ongoing feedback
is digital quadrature. Bit 3 is set to 0 to use the data without negation, or to 1 to negate the
data before using. Negating the data reverses the direction sense; this control is used to match
the direction sense of the ongoing feedback as set by I9n0.

Presently, Channels 1 and 2 are supported, and EnDat is almost always used with interpolated
sinusoidal ongoing feedback, so “z” is set to 0 or 8 for Channel 1 (regular or negated,
respectively), or to 1 or 9 for Channel 2 (regular or negated, respectively).

Motor Safety I-Variables

Ix11 Motor x Fatal (Shutdown) Following Error Limit

Range
Units
Default

Remarks

0..8,388,607
1/16 Count
32000 (2000 counts)

Ix11 sets the magnitude of the following error for Motor x at which operation will shut
down. When the magnitude of the following error exceeds Ix11, Motor x is disabled

PMAC I-Variable Specification 69

PMAC 2 Software Reference

(killed). Ifthe motor’s coordinate system is executing a program at the time, the program
is aborted. It is optional whether other PMAC motors are disabled when this motor
exceeds its following error limit; bits 21 and 22 of Ix25 control what happens to the other
motor (the default is that all PMAC motors are disabled).

A status bit for the motor, and one for the coordinate system (if the motor is in one) are set.
If this coordinate system is hardware-selected on JPAN (with 12=0), or software-addressed
by the host (with 12=1), the ERLD/ output on JPAN, and the EROR input to the interrupt
controller (except for PMAC-VME) are triggered.

Setting Ix11 to zero disables the fatal following error limit for the motor. This may be
desirable during initial development work, but it is strongly discouraged in an actual
application. A fatal following error limit is a very important protection against various
types of faults, such as loss of feedback, that cannot be detected directly, and that can
cause severe damage to people and equipment.

Note:

The units of Ix11 are 1/16 of a count. Therefore this parameter
must hold a value 16 times larger than the number of counts at
which the limit will occur. For example, if the limit is to be 1000
counts, Ix11 should be set to 16,000.

See Also I-variables 12, I1x12, Ix25
Following Error Limits, Amplifier Fault (Making Your Application Safe)
Control Panel Outputs (Connecting PMAC to the Machine)
Using Interrupts (Writing a Host Communications Program)
Memory registers Y:$0814, Y:08D4, etc., Y:$0817, Y:$08D7, etc.
On-line commands ?, ??.
70 PMAC I-Variable Specifiation

PMAC 2 Software Reference

Ix12 Motor x Warning Following Error Limit

Range
Units
Default
Remarks

See Also

0..8,388,607
1/16 Counts
16000 (1000 counts)

Ix12 sets the magnitude of the following error for Motor x at which a warning flag goes
true. If this limit is exceeded, status bits are set for the motor and the motor’s coordinate
system (if any). The coordinate system status bit is the logical OR of the status bits of all
the motors in the coordinate system.

Setting this parameter to zero disables the warning following error limit function. If this
parameter is set greater than the fatal following error limit, the warning status bit will
never go true, because the fatal limit will disable the motor first.

If bit 17 of Ix03 is set to 1, the motor can be triggered for homing search moves, jog-until-
trigger moves, and motion program move-until-trigger moves when the following error
exceeds Ix12. This is known as torque-mode triggering, because the trigger will occur at a
torque level corresponding to the Ix12 limit.

At any given time, one coordinate system’s status bit can be output to several places;
which system depends on what coordinate system is hardware-selected on the panel input
port if [2=0, or what coordinate system is software-addressed from the host (&n) if [2=1.
The outputs that work in this way are F1LD/ (pin 23 on connector J2), F1ER (line IR3 into
the programmable interrupt controller (PIC) on PMAC-PC, line IR6 into the PIC on
PMAC-STD) and, if E28 connects pins 1 and 2, FEFCO/ (on the JMACH connectors).

Note:

The units of Ix12 are 1/16 of a count. Therefore this parameter
must hold a value 16 times larger than the number of counts at
which the limit will occur. For example, if the limit is to be 1000
counts, Ix12 should be set to 16,000.

Control-panel (JPAN) output F1LD/, Interrupt line F1ER/
Following Error Limits (Making Your Application Safe)

Control Panel Outputs (Connecting PMAC to the Machine)
Torque-Mode Triggering (Basic Motor Moves)

Using Interrupts (Writing a Host Communications Program)
Memory registers Y:$0814, Y:08D4, etc., Y:$0817, Y:$08D7, etc.
I-variables 12, Ix11, Ix25;

On-line commands ?, ??, HOME, {jog}”{constant}.
Motion Program commands {axis} {data}*{data}

PMAC I-Variable Specification 71

PMAC 2 Software Reference

IXx13 Motor x Positive Software Position Limit

Range
Units
Default

Remarks

See Also

+/-2%
Encoder Counts
0

Ix13 sets the position for Motor x which if exceeded in the positive direction causes a
deceleration to a stop (controlled by Ix15) and allows no further positive position incre-
ments or positive output commands as long as the limit is exceeded. If this value is set to
zero, there is no positive software limit (if you want 0 as a limit, use 1). This limit is
automatically de-activated during homing search moves, until the home trigger is found. It
is active during the post-trigger move.

Starting in firmware 1.15, bit 17 of Ix25 does not de-activate the software limits.
Permanent de-activation is done by setting the value of the software limit to zero.

This limit is referenced to the most recent power-up zero position or homing move zero
position. The physical position at which this limit occurs is not affected by axis offset
commands (e.g. PSET, X=), although these commands will change the reported position
value at which the limit occurs.

Hardware Overtravel Limits, Software Overtravel Limits (Making Your Application Safe)
I-variables Ix14, Ix15.

Ix14 Motor x Negative Software Position Limit

Range
Units
Default

Remarks

See Also

+/-2%
Encoder Counts
0 (Disabled)

Ix14 sets the position for Motor x which if exceeded in the negative direction causes a
deceleration to a stop (controlled by Ix15) and allows no further negative position
increments or negative output commands as long as the limit is exceeded. If this value is
set to zero, there is no negative software limit (if you want 0 as a limit, use -1). This limit
is automatically de-activated during homing search moves, until the trigger is found. It is
active during the post-trigger move.

Starting in firmware 1.15, bit 17 of Ix25 does not de-activate the software limits.
Permanent de-activation is done by setting the value of the software limit to zero.

This limit is referenced to the most recent power-up zero position or homing move zero
position. The physical position at which this limit occurs is not affected by axis offset
commands (e.g. PSET, X=), although these commands will change the reported position
value at which the limit occurs.

Hardware Overtravel Limits, Software Overtravel Limits (Making Your Application Safe)
I-variables Ix13, Ix15.

72

PMAC I-Variable Specifiation

PMAC 2 Software Reference

IX15 Motor x Deceleration Rate on Position Limit or Abort

Range
Units
Default

Remarks

Example

See Also

positive floating point

2
Counts/msec

0.25

WARNING:

Do not set this parameter to zero, or the motor will continue
indefinitely after an abort or limit.

Ix15 sets the rate of deceleration that Motor x will use if it exceeds a hardware or software
limit, or has its motion aborted by command (A or <CONTROL-A). This value should
usually be set to a value near the maximum physical capability of the motor. It is not a
good idea to set this value past the capability of the motor, because doing so increases the
likelihood of exceeding the following error limit, which stops the braking action, and could
allow the axis to coast into a hard stop.

Suppose your motor had 125 encoder lines (500 counts) per millimeter, and you wished it
to decelerate at 4000 mm/sec’. You would set Ix15 to 4000 mm/sec” *500 cts/mm *
sec’/ 1,000,000 msec’ = 2 cts/msec_.

On-line commands A, <CONTROL-A>
Hardware Overtravel Limits, Software Overtravel Limits (Making Your Application Safe)

IXx16 Motor x Maximum Permitted Motor Program

Range
Units
Default

Remarks

See Also

positive floating point
Counts/msec
32.0

Ix16 sets a limit to the allowed velocity for LINEAR mode programmed moves for Motor
x, provided 113 equals zero (no move segmentation). If a blended move command in a
motion program requests a higher velocity of this motor, all motors in the coordinate
system are slowed down proportionately so that Motor x will not exceed this parameter,
yet the path will not be changed. This limit does not affect transition-point, circular, or
splined moves. The calculation does not take into account any feedrate override value
other than 100).

Note:

If PMAC’s circular interpolation function is used at all, then 113
must be greater than zero, and Ix16 will not be active as a velocity
limit.

This parameter also sets the speed of a programmed RAPID mode move for the motor,
provided that variable I50 is set to 1 (if 50 is set to 0, jog speed parameter [x22 is used
instead). This happens regardless of the setting of 113.

With the Option 6L special lookahead firmware, Ix16 sets the limit for velocity of
LINEAR and CIRCLE mode moves with segmentation active (113 > 0).

I-variables 113, 150, Ix17, 1x22
Velocity Limits (Making Your Application Safe)
LINEAR, RAPID-mode moves (Writing a Motion Program)

PMAC I-Variable Specification 73

PMAC 2 Software Reference

Ix17 Motor x Maximum Permitted Motor Program Acceleration

Range
Units
Default

Remarks

Example

positive floating point

counts/msec’
0.5

Ix17 sets a limit to the allowed acceleration in LINEAR-mode blended programmed moves
for Motor x, provided 113 equals zero (no move segmentation). If a LINEAR move
command in a motion program requests a higher acceleration of this motor given its TA
and TS time settings, the acceleration for all motors in the coordinate system is stretched
out proportionately so that Motor x will not exceed this parameter, yet the path will not be
changed.

Because PMAC cannot look ahead through an entire move sequence, it sometimes cannot
anticipate enough to keep acceleration within this limit. Refer to LINEAR-mode
trajectories in Writing a Motion Program.

It is possible to have this limit govern the acceleration for all LINEAR-mode moves by
setting very low TA and TS times. Do not set both the TA and TS times to zero, or a
division-by-zero error will occur in the move calculations, possibly causing erratic
movement. The minimum acceleration time settings that should be used are TA1 with
TSO0.

Note:

When moves are broken into small pieces and blended together, this
limit can affect the velocity, because it limits the calculated
deceleration for each piece, even if that deceleration is never
executed, because it blends into the next piece.

This limit does not affect PVT, CIRCLE, RAPID, or SPLINE moves. The calculation
does not take into account any feedrate override value other than 100).

Note:

If PMAC’s circular interpolation function is used at all, then 13
must be greater than zero, and Ix17 will not be active as an
acceleration limit.

With the Option 6L special lookahead firmware, Ix17 sets the limit for acceleration of
LINEAR and CIRCLE mode moves with segmentation active (113 > 0). This mode of
operation permits robust acceleration control by looking ahead far enough to ensure that
these motor acceleration limits can always be obeyed.

Given axis definitions of #1->10000X, #2->10000Y, an Ix17 for each motor of 0.25,
and the following motion program segment:

INC F10 TA200 TsO
X20
Y20

the rate of acceleration from the program at the corner for motor #2 (X) is ((0-10)units/sec
* 10000 cts/unit * sec/1000msec) / 200 msec = -0.5 cts/msec . The acceleration of motor

2
#2 (Y) is +0.5 cts/msec . Since this is twice the limit, the acceleration will be slowed so
that it takes 400 msec.

74

PMAC I-Variable Specifiation

PMAC 2 Software Reference

See Also

With the same setup parameters, and the following program segment:

INC F10 TA200 TSO
X20 Y20
X-20 Y20

The rate of acceleration from the program at the corner for motor #1 (X) is ((-7.07-
7.07)units/sec * 10000 cts/unit * sec/1000msec) / 200 msec = -0.707 cts/msec’. The
acceleration of motor #2 (Y) is 0.0. Since motor #1 exceeds its limit the acceleration time
will be lengthened to 200 * 0.707/0.25 = 707 msec.

Note that in the second case, the acceleration time is made longer (the corner is made
larger) for what is an identically shaped corner (90°). In a contouring XY application, this

parameter should not be relied upon to produce consistently sized corners.

Acceleration Limits (Making Your Application Safe)
LINEAR-mode moves (Writing a Motion Program)
I-variables 113, 150, Ix16, Ix19, Ix22

IXx19 Motor x Maximum Permitted Motor Jog/Home Acceleration

Range
Units
Default

Remarks

Example

See Also

positive floating point

counts/msec2
0.015625

Ix19 sets a limit to the commanded acceleration magnitude for jog and home moves, and
for RAPID-mode programmed moves, of Motor x. If the acceleration times in force at the
time (Ix20 and Ix21) request a higher rate of acceleration, this rate of acceleration will be
used instead. The calculation does not take into account any feedrate override

Since jogging moves are usually not coordinated between motors, many people prefer to
specify jog acceleration by rate, not time. To do this, simply set Ix20 and Ix21 low enough
that the Ix19 limit is always used. Do not set both Ix20 and Ix21 to 0, or a division-by-
zero error will result in the move calculations, possibly causing erratic operations. The
minimum acceleration time settings that should be used are [x20=1 and 1x21=0.

The default limit of 0.015625 counts/msec” is quite low and will probably limit
acceleration to a lower value than is desired in most systems; most users will eventually
raise this limit. This low default was used for safety reasons.

With Ix20 (accel time) at 100 msec, Ix21 (S-curve time) at 0, and 1x22 (jog speed) at 50
counts/msec, a jog command from stop would request an acceleration of (50 cts/msec) /

100 msec, or 0.5 cts/msec’. If Ix19 were set to 0.25, the acceleration would be done in 200
msec, not 100 msec.

With the same parameters in force, an on-the-fly reversal from positive to negative jog
would request an acceleration of (50-(-50) cts/msec) / 100 msec, or 1.0 cts/msec’. The
limit would extend this acceleration period by a factor of 4, to 400 msec.

Jogging and Homing Moves (Basic Motor Moves)
RAPID-mode moves (Writing a Motion Program)
I-variables 150, Ix16, 1x20, Ix21, Ix22

On-line commands EM, J+, J-, J=, J~, J:, J/
Motion program commands HOME, RAPID

PMAC I-Variable Specification 75

PMAC 2 Software Reference

Motor Movement I-Variables

Ix20 Motor x Jog/Home Acceleration Time

Range
Units
Default

Remarks

See Also

0 .. 8,388,607
msec
0 (so Ix21 controls)

Ix20 establishes the time spent in acceleration in a jogging, homing, or programmed
RAPID-mode move (starting, stopping, and changing speeds). However, if Ix21
(jog/home S-curve time) is greater than half this parameter, the total time spent in
acceleration will be 2 times Ix21. Therefore, if Ix20 is set to 0, Ix21 alone controls the
acceleration time in “pure” S-curve form. In addition, if the maximum acceleration rate set
by these times exceeds what is permitted for the motor (Ix19), the time will be increased so
that Ix19 is not exceeded.

Note:

Do not set both 1x20 and Ix21 to 0 simultaneously, even if you are
relying on Ix19 to limit your acceleration, or a division-by-zero
error will occur in the jog move calculations, possibly resulting in
erratic motion.

A change in this parameter will not take effect until the next move command. For
instance, if you wanted a different deceleration time from acceleration time in a jog move,
you would specify the acceleration time, command the jog, change the deceleration time,
then command the jog move again (e.g. J), or at least the end of the jog (J).

I-variables 150, Ix16, Ix19, Ix21, 1x22, Ix23, 1x87, Ix88

Jogging and Homing Moves (Basic Motor Moves)

RAPID-mode moves (Writing a Motion Program)

On-line commands HM, J+, J-, J=, J*, J:, J/

Motion program command HOME, RAPID

Ix21 Motor x Jog/[Home S-Curve Time

Range 0 .. 8,388,607
Units msec
Default 50
Remarks Ix21 establishes the time spent in each half of the S for S-curve acceleration in a jogging,
homing, or RAPID-mode move (starting, stopping, and changing speeds). If this
parameter is more than half of Ix20, the total acceleration time will be two times Ix21, and
the acceleration time will be “pure” S-curve (no constant acceleration portion). If the
maximum acceleration rate set by Ix20 and Ix21 exceeds what is permitted for the motor
(Ix19), the time will be increased so that Ix19 is not exceeded.
Note:
Do not set both [x20 and Ix21 to 0 simultaneously, even if you are
relying on Ix19 to limit your acceleration, or a division-by-zero
error will occur in the jog move calculations, possibly resulting in
erratic motion.
76 PMAC I-Variable Specifiation

PMAC 2 Software Reference

See Also

A change in this parameter will not take effect until the next move command. For
instance, if you wanted a different deceleration time from acceleration time in a jog move,
you would specify the acceleration time, command the jog, change the deceleration time,
then command the jog move again (e.g. J=), or at least the end of the jog (J/).

I-variables 150, Ix16, Ix19, 1x20, 1x22, 1x23, Ix87, Ix88
Jogging and Homing Moves (Basic Motor Moves)
RAPID-mode moves (Writing a Motion Program)
On-line commands HM, J+, J-, J=, J*, J:, J/
Motion program commands HOME, RAPID

Ix22 Motor x Jog Speed

Range
Units
Default

Remarks

See Also

positive floating point
Counts / msec
32.0

Ix22 establishes the commanded speed of a jog move, or a programmed RAPID-mode
move (if I50=0) for Motor x. Direction of the jog move is controlled by the jog command.
A change in this parameter will not take effect until the next move command. For
instance, if you wanted to change the jog speed on the fly, you would start the jog move,
change this parameter, then issue a new jog command.

I-variables 150, Ix19-Ix21

Jogging Moves (Basic Motor Moves)

RAPID-Mode Moves (Writing a Motion Program)

On-line commands J+, J-, J=, J*, J:, J/

Program command RAPID

Ix23 Motor x Homing Speed and Direction

Range
Units
Default
Remarks

See Also

floating point

Counts / msec

32.0

Ix23 establishes the commanded speed and direction of a homing-search move for Motor
x. Changing the sign reverses the direction of the homing move — a negative value
specifies a home search in the negative direction; a positive value specifies the positive
direction.

Homing Moves (Basic Motor Moves)

I-variables Ix19, Ix20 Ix21, Ix22, Ix25, Ix26

Encoder/Flag I-Variables 2 and 3

On-line command HM

Motion program command HOME.

Ix24 (Reserved for Future Use)

PMAC I-Variable Specification 77

PMAC 2 Software Reference

Ix25 Motor x Limit/Home Flag

Range Extended legal PMAC X addresses

Units Extended legal PMAC X addresses

Default Variable | PMAC(1) | PMAC2 PMAC?2 Ultralite
1125 $C000 $C000 $40F70
1225 $C004 $C008 $40F71
1325 $C008 $C010 $40F74
1425 $C00C $C018 $40F75
1525 $C010 $C020 $40F78
1625 $C014 $C028 $40F79
1725 $C018 $C030 $40F7C
1825 $C01C $C038 $40F7D

Remarks This parameter tells PMAC what set of flags it will look to for Motor x’s overtravel limit
switches, home flag, amplifier-fault flag, amplifier-enable output, and index channel.
Typically, these are the flags associated with an encoder input; specifically, those of the
position feedback encoder for the motor. If dual-loop feedback is used (Ix03 and 1x04 are
different) Ix25 should be set to match the position-loop encoder, not the velocity-loop.

Note:

To use PMAC’s Hardware Position Capture for homing search
moves, the channel number of the flags specified by Ix25 must
match the channel number of the encoder specified by 1x03 for
position-loop feedback.

The addresses for the flag sets in PMAC(1) and PMAC?2 systems are given in the tables
below. Channel3s 9 — 16 are present on ACC-24 axis-expansion boards, not on the

PMACs themselves.
PMAC(1)
Channel Address Channel Address
1 $C000 9 $C020
2 $C004 10 $C024
3 $C008 11 $C028
4 $C00C 12 $C02C
5 $C010 13 $C030
6 $C014 14 $C034
7 $C018 15 $C038
8 $Co1C 16 $C03C
PMAC2
Channel Address Channel Address
1 $C000 9 $C040
2 $C008 10 $C048
3 $C010 11 $C050
4 $C018 12 $C058
5 $C020 13 $C060
6 $C028 14 $C068
7 $C030 15 $C070
8 $C038 16 $C078

78 PMAC I-Variable Specifiation

PMAC 2 Software Reference

The overtravel-limit inputs specified by this parameter must be held low in order for Motor
X to be able to command movement. The polarity of the amplifier-fault input is
determined by a high-order bit of this parameter (see below). The polarity of the home-
flag input is determined by the Encoder/Flag I-Variables 2 and 3 for the specified encoder.
The polarity of the amplifier-enable output is determined by Jumper E17.

Extended Addressing: The source address of the flag information occupies bits 0 to 15 of
Ix25 (range $0000 to $SFFFF, or 0 to 65535). If this is all that is specified — that is, all
higher bits are zero — then all of the flags are used, and used in the “normal” mode (low-
true FAULT, disabling all motors). If higher bits are set to one, some of the flags are not
used, or used in an alternate manner, as documented below.

Note:

In the extended versions, it is easier to specify this parameter in
hexadecimal form. With 19 at 2 or 3, the value of this variable will
be reported back to the host in hexadecimal form.

IX25 - Motor x Flag Address and Modes

Moges PMAC addrless of flags

Hex($) 5 2 C 0 0 4

Binfo|1/0|1]|0]0

-
o
-
-
o
o
o
o
o
o
o
o
o
o
o
-
o
o

=0 Use amplifier enable function
I =1 Do not use amplifier enable function
[= Enable position limits

=1 Disable position limits

0 Enable amplifier fault input
1 Disable amplifier fault input

=01 Kill all C.S. motors on fault or F.E.
=1x Kill this motor only on fault or F.E.

[
1
(=00 Kill all PMAC motors on fault or F.E.

=0 Low true fault input
=1 High true fault input

Amplifier Enable Use Bit: With bit 16 equal to zero — the normal case — the AENAn/DIRn
output is used as an amplifier-enable line: off when the motor is killed, on when it is
enabled. Voltage polarity is determined by jumper(s) E17.

If bit 16 (value $10000, or 65536) is set to one (e.g. [125=$1C000), this output is not used
as an amplifier-enable line. This permits use of the line as a direction bit for applications
requiring magnitude-and direction outputs, such as driving steppers through voltage-to-
frequency converters. (Setting bit 16 of [x02 to 1 enables use of this output as a direction
bit.) General-purpose use of this output is also possible by assigning an M-variable to it.

PMAC I-Variable Specification 79

PMAC 2 Software Reference

Overtravel Limit Use Bit: With bit 17 equal to zero — the normal case — the +/-LIMn inputs
must be held low to permit commanded motion in the appropriate direction. If there are
not actual (normally closed or normally conducting) limit switches, the inputs must be
hardwired to ground.

Note:

The direction sense of the limit inputs is the opposite of what many
people consider intuitive. That is, the +LIMn input, when taken
high (opened), stops commanded motion in the negative direction;
the -LIMn input, when taken high, stops commanded motion in the
positive direction. It is important to confirm the direction sense of
your limit inputs in actual operation.

If bit 17 (value $20000, or 131072) is set to one (e.g. [1125=$2C000), Motor x does not use
these inputs as overtravel limits. This can be done temporarily, as when using a limit as a
homing flag. If the limit function is not used at all, these inputs can be used as general-
purpose inputs by assigning M-variables to them.

Starting in firmware 1.15, bit 17 of Ix25 does not effect the software overtravel limits.
Activation of the software overtravel limits is done by setting the value of Ix13 and or Ix14
to a non-zero value. De-activation is done by setting their values to zero.

MACRO Flag Bit: Ifbit 18 of Ix25 is 0, the flag set is wired directly into the PMAC
controller. If bit 18 (value $40000, or 262,144) is 1 (e.g. 1125=$4070), PMAC looks for
these flags to come through the MAXCRO ring.

Amplifier Fault Use Bit: If bit 20 of Ix25 is 0, the amplifier-fault input function through
the FAULTn input is enabled. If bit 20 (value $100000, or 1, 048,576) is 1 (e.g.
1125=$10C000), this function is disabled. General-purpose use of this input is then
possible by assigning an M-variable to the input.

Action-on-Fault Bits: Bits 21 (value $200000, or 2,097,152) and 22 (value $400000, or
4,194,344) of 1x25 control what action is taken on an amplifier fault for the motor, or on
exceeding the fatal following err limit (Ix11) for the motor:

Bit 22 Bit 21 Function
Bit 22=0 Bit 21=0: Kill all PMAC motors
Bit 22=0 Bit 21=1: Kill all motors in same coordinate system
Bit 22=1 Bit 21=0: Kill only this motor
Bit 22=1 Bit 21=1: Kill only this motor

Regardless of the setting of these bits, a program running in the coordinate system of the
offending motor will be halted on an amplifier fault of the exceeding of a fatal following
error limit.

Amplifier-Fault Polarity Bit: Bit 23 (value 8,388,608) of Ix25 controls the polarity of the
amplifier fault input. A zero in this bit means a low-true input (low means fault); a one
means high-true (high means fault). The input is pulled high internally, so if no line is
attached to the input, and bit 20 of [x25 is zero (enabling the fault function), bit 23 of Ix25
must be zero to permit operation of the motor.

First Hex Digit: In the hexadecimal form, bits 20 to 23 combine to form a single
hexadecimal digit.

80

PMAC I-Variable Specifiation

PMAC 2 Software Reference

For reference,

the possible values and their meanings are:

Hex Digit Function

$0: Low-true amp fault enabled; all motors killed on fault or excess following error
(default)

$1: Amp fault disabled; all motors killed on excess following error

$2: Low-true amp fault enabled: coordinate system motors killed on fault or excess
following error

$3 Amp fault disabled; coordinate system motors killed on excess following error

$4 Low-true amp fault enabled; only this motor k8illed on fault or excess following
error

$5: Amp fault disabled; only this motor killed on excess following error

$6: Low-true amp fault enabled; only this motor killed on fault or excess following
error

$7: Amp fault disabled; only this motor killed on excess following error

$8 High-true amp fault enabled; all motors killed on fault or excess following error
(default)

$9: Amp fault disabled; all motors killed on excess following error

$A: High-true amp fault enabled; coordinate system motors killed on excess
following error

$B: Amp fault disabled; coordinate system motors killed on excess following error

$C: High-true amp fault enabled; only this motor killed on fault or excess following
error

$D: Amp fault disabled; only this motor killed on excess following error

$E: High-true amp fault enabled; only this motor killed on fault or excess following
error

SF: Amp fault disabled; only this motor killed on excess following error

Example 1. Motor 1 using flags 1 with amp-enable output, and low-true amp fault disabling all

motors: I125=$00C000 or I125=$C000

2. Motor 1 using flags 1 with direction output, and low-true amp fault disabling all

motors:

I125=$01C000

3. Motor 1 using flags 1 with amp-enable output, and low-true amp fault disabling only

coordinate

system motors: I125=20C000

4. Motor 1 using flags 1 with direction output, and amp-fault disabled, with excess F.E.
disabling off C.S motors: I125=$31C000

5. Motor 1 using flags 5 with amp-enable output, and high-true amp fault disabling only

this motor:

I125=$C0C010

See Also Selecting the Flag Register (Setting up a Motor)
Homing Moves (Basic Motor Moves)
I-variables 1x02, Ix03 Ix11
Encoder/Flag I-Variables 2 and 3
Jumper(s) E17; JMACH connector flag I/O pins

PMAC I-Variable Specification

81

PMAC 2 Software Reference

IXx26 Motor x Home Offset

Range
Units
Default
Remarks

Example

See Also

-8,388,608 .. 8,388,607
1/16 Count
0

Ix26 specifies the relative distance of the Motor x zero position to either the trigger position
of a homing search move, or the zero position of an absolute sensor.

If Ix10 is set to 0, PMAC presumes the motor uses an incremental sensor and sets motor
position to 0 on power-up/reset. A homing search move is then required to establish the true
machine zero position.

In the homing search move, PMAC moves the motor until it sees a pre-defined trigger
condition, either an input trigger defined by Encoder I-variables 2 and 3 for the servo
interface channel addressed by Ix25, or the exceeding of the warning following error as set
by Ix12.

In the post-trigger part of the homing search move, the motor will stop a distance of [x26
from the position at which it found the trigger, and call this commanded location as motor
position zero.

This permits the motor zero position to be at a different location from the home trigger
position, particularly useful when using an overtravel limit as a home flag (offsetting out of
the limit before re-enabling the limit input as a limit). If large enough (greater than 1/2 times
home speed times accel time) it permits a homing move without any reversal of direction.

If Ix10 is greater than 0, PMAC reads the sensor specified by Ix10 for the motor’s absolute
position. In this case, it subtracts Ix26 from the sensor position to calculate absolute motor
position. This is especially desirable if the zero position of the sensor is outside the region of
travel, as it is for an MLDT.

The units of this parameter are 1/16 of a count, so the value should be 16 times the number of
counts between the trigger position and the home zero position.

If you wish your motor zero position to be 500 counts in the negative direction from the
home trigger position, you would set 1x26 to -500 * 16 = -8000.

Homing Moves (Basic Motor Moves)

Absolute Power-Up Position (Setting Up a Motor)
I-variables Ix10, 1x23, Ix25

Encoder I-Variables 2 and 3

On-line command HM

Program command HOME

Ix27 Motor x Position Rollover Range

Range +/-2%

Units Counts

Default 0

Remarks This parameter permits special position rollover modes on a PMAC rotary axis assigned to
Motor x by telling PMAC how many encoder counts are in one revolution of the rotary
axis. This lets PMAC compute the rollover function properly. IfIx27 is set to a non-zero
value, and Motor x is assigned to a rotary axis (A, B, or C), rollover is active.

82 PMAC I-Variable Specifiation

PMAC 2 Software Reference

If [x27 is set to a value greater than zero, for a programmed axis move in Absolute (ABS)
mode, the motor will take the shortest path around the circular range defined by Ix27 to get
to the destination point. No absolute move will be greater than half a revolution in this
mode.

If [x27 is set to a negative number, an alternate rollover mode for the rotary axis assigned
to the motor is activated that uses the sign of the commanded destination in absolute mode
to specify the direction of motion to that destination. In this mode, all absolute-mode
moves are less than one revolution (with the size of the revolution specified by the
magnitude of [x27), but can be greater than one-half revolution.

The sign of the commanded absolute destination in this mode is also part of the destination
value. So a command of A-90 in this mode is a command to move to —90 degrees (=
+270 degrees) in the negative direction. For commands to move in the positive direction,
the + sign is not required, but it is permitted (e.g. to command a move to 90 degrees in the
positive direction, either A90 or A+90 can be used).

PMAC cannot store the difference between a +0 and a —0 destination command, so a
command with a tiny non-zero magnitude must be used (e.g. A+0.0000001 and A-
0.0000001). This increment can be small enough not to have any effect on the final
destination.

If using commands from a similar mode in which only the magnitude, and not the sign, of
the value specifies the destination position, then the destination values for negative-
direction moves must be modified so that the magnitude is 360 degrees minus the
magnitude in the other mode. For example, if the command were C-120, specifying a
move to (+)120 degrees in the negative direction, the command would have to be modified
for PMAC to C-240, which specifies a move to —240 degrees (= +120 degrees) in the
negative direction. Commands for positive-direction moves do not have to be modified.

Axis moves in Incremental (INC) mode are not affected by rollover. When Ix27 is set to
0, there is no rollover. Rollover should not be attempted for axes other than A, B, or C.
Jog moves are not affected by rollover. Reported motor position is not affected by
rollover. (To obtain motor position information “rolled over” to within one motor
revolution, use the modulo (remainder) operator, either in PMAC or in the host computer:
e.g. P4=(M462/(1408*32))%1427).

Example Motor #4 drives a rotary table with 36,000 counts per revolution. It is defined to the A-
axis with #4->100A (A is in units of degrees). 1427 is set to 36000. With motor #4 at
zero counts (A-axis at zero degrees), an A270 move in a program is executed in Absolute
mode. Instead of moving the motor from 0 to 27,000 counts, which it would have done
with 1427=0, PMAC moves the motor from 0 to -9,000 counts, or -90 degrees, which is
equivalent to +270 degrees on the rotary table.

Motor #5 drives a positioning spindle with an 8192-line-per-rev (32,768-count-per-rev)
encoder on the motor and a 10-to-1 gear reduction to the load. It is defined to the C-axis
with #5->910.222222222C (C is in units of degrees). 1527 is set to 327,680. An
absolute-mode move of C-355 is commanded. PMAC moves Motor 5 in the negative
direction less than one revolution to +5 degrees (= -355 degrees).

See Also On-line commands INC, ABS
Program commands INC, ABS, A{data}, B{data}, C{data}
Axis Types (Setting Up a Coordinate System)

PMAC I-Variable Specification 83

PMAC 2 Software Reference

Ix28 Motor x In-position Band

Range
Units
Default

Remarks

Example

See Also

0..8,388,607
1/16 Count
160 (10 counts)

Ix28 determines the magnitude of the maximum following error at which Motor x will be
considered “in position” when not performing a move. Several things happen when the
motor is “in-position”. First, a status bit in the motor status word is set. Second, if all other
motors in the same coordinate system are also “in-position”, a status bit in the coordinate
system status word is set. Third, for the hardware-selected (FPD0/-FPD3/) coordinate
system — if [2=0 — or for the software addressed (&n) coordinate system — if [2=1 — outputs
to the control panel port and to the interrupt controller are set.

Technically, five conditions must be met for a motor to be considered “in-position”:

1. The motor must be in closed-loop control

2. The desired velocity must be zero;

3. The magnitude of the following error must be less than this parameter;
4. The move timer must not be active;

5. The above four conditions must all be true for (I7+1) consecutive scans

The move timer is active during any programmed or non-programmed move, including
DWELLs and DELAYS in a program — if you wish this bit to come true during a program,
you must do an indefinite wait between some moves by keeping the program trapped in a
WHILE loop that has no moves or DWELLs. More sophisticated in-position functions (for
instance, ones that require several consecutive scans within the band) can be implemented
using PLC programs. See the program examples section.

Note:

The units of this parameter are 1/16 of a count, so the value should
be 16 times the number of counts in the in-position band.

M140->Y:$0814,0 ; Motor 1 in-position bit
WHILE (M140=0) WAIT ; Delay indefinitely until in-position is true
Ml=1 ; Set output once in-position

Control Panel Port (Connecting PMAC to the Machine)

Using Interrupts (Writing a Host Communications Program)
I-variable 17

On-line commands ?, ?°?

Suggested M-variable definitions Mx40, Mx87

Memory Registers Y:$0814, Y:$08D4, etc., Y:$0817, Y:$08D7, etc.
JPAN connector

Ix29 Motor x Output/First Phase Offset

Range -32,768 .. 32,767

Units 16-bit DAC/ADC bit equivalent

Default 0

Remarks Ix29 serves as an output or feedback offset for Motor x; its exact use depends on the mode
of operation as described below. In any of the modes, it effectively serves as the digital
equivalent of an offset pot.

84 PMAC I-Variable Specifiation

PMAC 2 Software Reference

See Also

Mode 1: When PMAC is not commutating Motor x (Ix01 = 0), Ix29 serves as the offset
for the single command output value, usually a DAC command. 1x29 is added to the
output command value before it is written to the command output register.

Mode 2: When PMAC (PMAC(1) only) is not commutating Motor x (Ix01 = 0) but is in
sign-and-magnitude output mode (Ix02 bit 16 = 1), Ix29 is the offset of the command
output value before the absolute value is taken (Ix79 is the offset after the absolute value is
taken). Ix29 is typically left at zero in this mode, because it cannot compensate for real
circuitry offsets.

Mode 3: When PMAC is commutating Motor x (Ix01 Bit 0 = 1) but not closing the current
loop (Ix82 = 0), Ix29 serves as the offset for the first of two phase command output values
(Phase A), for the address specified by 1x02; Ix79 serves the same purpose for the second
phase (Phase B). 1x29 is added to the output command value before it is written to the
command output register.

When commutating from a PMAC(1), Phase A is output on the higher-numbered of the
two DACs (e.g. DAC2), Phase B on the lower-numbered (e.g. DAC1). When
commutating from a PMAC?2, Phase A is output on the A-channel DAC (e.g. DAC1A),
Phase B on the B-channel DAC (e.g. DACIB).

As an output command offset, Ix29 is always in units of a 16-bit register, even if the actual
output device is of a different resolution. For example, if a value of 60 had to be written
into an 18-bit DAC to create a true zero command, this would be equivalent to a value of
60/4=15 in a 16-bit DAC, so Ix29 would be set to 15 to cancel the offset.

Mode 4: When PMAC (PMAC?2 only) is commutating (Ix01 Bit 0 = 1) and closing the
current loop for Motor x (Ix82 > 0), Ix29 serves as an offset that is added to the phase
current reading from the ADC for the first phase (Phase A), at the address specified by
Ix82 minus 1. Ix79 performs the same function for the second phase. The sum of the
ADC reading and 1x29 is used in the digital current loop algorithms.

As an input feedback offset, [x29 is always in units of a 16-bit ADC, even if the actual
ADC is of a different resolution. For example, if a 12-bit ADC reported a value of -5
when no current was flowing in the phase, this would be equivalent to a value of -5*16=-
80 in a 16-bit ADC, so Ix29 would be set to 80 to compensate for this offset.

Setting Up PMAC Commutation
I-variables Ix01, 1x02, Ix79.

PMAC I-Variable Specification 85

PMAC 2 Software Reference

Servo Control I-Variables

Ix30 — Ix68 Motor x Extended Servo Algorithm Gains {Option 6 firmware only}
Range 0.0 —0.999999

Units none

Default 0.0

Remarks When the Option 6 Extended Servo Algorithm (ESA) special firmware is ordered,

variables Ix30 through Ix58 for each Motor x have different meanings from those in the
standard firmware with the PID servo filter. The following table shows the meanings of
these variables for the ESA algorithm. Please refer to the block diagram of the ESA in the
User’s Manual to understand the function of each of these variables.

I-Variable Gain Range I-Variable | Gain Range
Name Name

1x30 s0 -1.0<Var<+1.0 Ix45 TS -2%<var<2®
Ix31 sl -1.0<Var<+1.0 Ix46 L1 -1.0<Var<+1.0
1x32 f0 -1.0<Var<+1.0 1x47 L2 -1.0<Var<+1.0
Ix33 fl -1.0<Var<+1.0 1x48 L3 -1.0<Var<+1.0
1x34 hO -1.0<Var<+1.0 1x49 kO -1.0<Var<+1.0
1x35 hl -1.0<Var<+1.0 Ix50 k1 -1.0<Var<+1.0
Ix36 rl -1.0<Var<+1.0 Ix51 k2 -1.0<Var<+1.0
Ix37 r2 -1.0<Var<+1.0 Ix52 k3 -1.0<Var<+1.0
1x38 13 -1.0<Var<+1.0 Ix53 KS -2%<var<®
1x39 r4 -1.0<Var<+1.0 Ix54 dl -1.0<Var<+1.0
1x40 t0 -1.0<Var<+1.0 Ix55 d2 -1.0<Var<+1.0
Ix41 t1 -1.0<Var<+1.0 Ix56 g0 -1.0<Var<+1.0
1x42 t2 -1.0<Var<+1.0 Ix57 gl -1.0<Var<+1.0
Ix43 t3 -1.0<Var<+1.0 1x58 GS -2%<var<2®
Ix44 t4 -1.0<Var<+1.0 (Ix68) Kfff 0<Var<2'®

Variables Ix59, [x63, Ix64, Ix65, Ix66, and Ix67 for the standard PID algorithm have no
function for the Option 6 ESA.

Ix30 Motor x PID Proportional Gain

Range -8,388,608 .. 8,388,607
Units (Ix08/219) DAC bits/Encoder count
Default 2000
Remarks WARNING:
Changing the sign of Ix30 on a motor that has been closing a stable
servo loop will cause an unstable servo loop, leading to a probable
runaway condition.
Ix30 provides a control output proportional to the position error (commanded position
minus actual position) of Motor x. It acts effectively as an electronic spring. The higher
Ix30 is, the stiffer the “spring” is. Too low a value will result in sluggish performance.
Too high a value can cause a “buzz” from constant over-reaction to errors.
86 PMAC I-Variable Specifiation

PMAC 2 Software Reference

See Also

If Ix30 is set to a negative value, this has the effect of inverting the command output
polarity for motors not commutated by PMAC, when compared to a positive value of the
same magnitude. This can eliminate the need to exchange wires to get the desired polarity.
On a motor that is commutated by PMAC, changing the sign of I1x30 has the effect of
changing the commutation phase angle by 180°. Negative values of Ix30 cannot be used
with the auto-tuning programs in the PMAC Executive program.

This parameter is usually set initially using the Tuning utility in the PMAC Executive
Program. It may be changed on the fly at any time to create types of adaptive control.

Note:

The default value of 2000 for this parameter is exceedingly weak
for most systems (all but the highest resolution velocity-loop
systems), causing sluggish motion and/or following error failure.
Most users will immediately want to raise this parameter
significantly even before starting serious tuning.

If the servo update time is changed, [x30 will have the same effect for the same numerical
value. However, smaller update times (faster update rates) should permit higher values of
Ix30 (stiffer systems) without instability problems.

PID Servo Filter (Closing the Servo Loop)
I-variables Ix31-1x39
Tuning Instructions (PMAC Executive Program manual)

IX31 Motor x PID Derivative Gain

Range
Units
Default

Remarks

See Also

-8,388,608 .. 8,388,607

(Ix30*1x09)/226 DAC bits/(Counts/cycle)
1280

Ix31 subtracts an amount from the control output proportional to the measured velocity of
Motor x. It acts effectively as an electronic damper. The higher Ix31 is, the heavier the
damping effect is.

If the motor is driving a properly tuned tachometer-loop (velocity) amplifier, the amplifier
will provide sufficient damping, and Ix31 should be set to zero. If the motor is driving a
current-loop (torque) amplifier, or if PMAC is commutating the motor, the amplifier will
provide no damping, and Ix31 must be greater than zero to provide damping for stability.
On a typical system with a current-loop amplifier and PMAC’s default servo update time
(~440 pusec), an Ix31 value of 2000 to 3000 will provide a critically damped step response.
If the servo update time is changed, Ix31 must be changed proportionately in the opposite
direction to keep the same damping effect. For instance, if the servo update time is cut in
half, from 440 psec to 220 usec, Ix31 must be doubled to keep the same effect.

This parameter is usually set initially using the Tuning utility in the PMAC Executive
Program. It may be changed on the fly at any time to create types of adaptive control.
I-variables 1x30, Ix32-1x39

PID Servo Filter (Closing the Servo Loop)

Tuning Instructions (PMAC Executive Program manual)

PMAC I-Variable Specification

87

PMAC 2 Software Reference

Ix32 Motor x PID Velocity Feedforward Gain

Range
Units
Default

Remarks

See Also

0.. 8,388,607
(1x30*1x08)/2°° DAC bits/(counts/cycle)
1280

1x32 adds an amount to the control output proportional to the desired velocity of Motor x.
It is intended to reduce tracking error due to the damping introduced by Ix31, analog
tachometer feedback, or physical damping effects.

If the motor is driving a current-loop (torque) amplifier, Ix32 will usually be equal to (or
slightly greater than) Ix31 to minimize tracking error. If the motor is driving a tachometer-
loop (velocity) amplifier, Ix32 will typically be substantially greater than Ix31 to minimize
tracking error.

If the servo update time is changed, Ix32 must be changed proportionately in the opposite
direction to keep the same effect. For instance, if the servo update time is cut in half, from
440 psec to 220 usec, Ix32 must be doubled to keep the same effect.

This parameter is usually set initially using the Tuning utility in the PMAC Executive
Program. It may be changed on the fly at any time to create types of adaptive control.

PID Servo Filter (Closing the Servo Loop)
I-variables Ix30-Ix31, Ix32-1x39
Tuning Instructions (PMAC Executive Program manual)

Ix33 Motor x PID Integral Gain

Range
Units
Default
Remarks

See Also

0..8,388,607
(Ix30*Ix08)/242 DAC bits/(counts*cycles)
0

Ix33 adds an amount to the control output proportional to the time integral of the position
error for Motor x. The magnitude of this integrated error is limited by Ix63. With Ix63 at
a value of zero, the contribution of the integrator to the output is zero, regardless of the
value of Ix33.

No further errors are added to the integrator if the output saturates (if output equals 1x69),

and, if [x34=1, when a move is being commanded (when desired velocity is not zero). In
both of these cases, the contribution of the integrator to the output remains constant.

If the servo update time is changed, Ix33 must be changed proportionately in the same
direction to keep the same effect. For instance, if the servo update time is cut in half, from
440 usec to 220 psec, Ix33 must be cut in half to keep the same effect.

This parameter is usually set initially using the Tuning utility in the PMAC Executive
Program. It may be changed on the fly at any time to create types of adaptive control.

PID Servo Filter (Closing the Servo Loop)
I-variables Ix30-Ix32, 1x34-1x39, Ix63, Ix69
Tuning Instructions (PMAC Executive Program manual)

88

PMAC I-Variable Specifiation

PMAC 2 Software Reference

Ix34 Motor x PID Integration Mode

Range 0.1

Units none

Default 1

Remarks Ix34 controls when the position-error integrator is turned on. If it is 1, position error

integration is is the input to the integrator that is turned off during a commanded move,
which means performed only when PMAC is not commanding a move (when desired
velocity is zero). Ifitis 0, position error integration is performed all the time.

If Ix34 is 1, it the output control effort of the integrator is kept constant during this period
(but is generally not zero). This same action takes place whenever the total control output
saturates at the [x69 value.

This parameter is usually set initially using the Tuning utility in the PMAC Executive
Program. When performing the feedforward tuning part of that utility, it is important to set
Ix34 to 1 so the dynamic behavior of the system may be observed without integrator
action. Ix34 may be changed on the fly at any time to create types of adaptive control.

See Also PID Servo Filter (Closing the Servo Loop)
I-variables Ix30-Ix33, 1x35-1x39, Ix63, Ix69
Tuning Instructions (PMAC Executive Program manual)

IX35 Motor x PID Acceleration Feedforward Gain

Range 0..8,388,607

Units (Ix30*Ix08)/226 DAC bits/(counts/cyclez)

Default 0

Remarks Ix35 adds an amount to the control output proportional to the desired acceleration for

Motor x. It is intended to reduce tracking error due to inertial lag.

If the servo update time is changed, Ix35 must be changed by the inverse square to keep
the same effect. For instance, if the servo update time is cut in half, from 440 psec to 220
usec, Ix35 must be quadrupled to keep the same effect.

This parameter is usually set initially using the Tuning utility in the PMAC Executive
Program. It may be changed on the fly at any time to create types of adaptive control.

See Also PID Servo Filter (Closing the Servo Loop)
I-variables Ix30-1x34, Ix36-1x39
Tuning Instructions (PMAC Executive Program manual)

IX36 Motor x PID Notch Filter Coefficient N1

Range -2.0..+2.0
Units none (actual z-transform coefficient)
Default 0

Remarks Ix36, along with Ix37 — 1x39, is part of the notch filter for Motor x, whose purpose is to
damp out a resonant mode in the system. This parameter can be set according to
instructions in the Servo Loop Features section of the manual.

The notch filter parameters [x36-1x39 are 24-bit variables, with 1 sign bit, 1 integer bit,
and 22 fractional bits, providing a range of -2.0 to +2.0.

PMAC I-Variable Specification 89

PMAC 2 Software Reference

The equation for the notch filter is:
1+NIz7 14 N2z72
1+D1z=14D22:77

This parameter is usually set initially using the Tuning utility in the PMAC Executive
Program. It may be changed on the fly at any time to create types of adaptive control.

F(z)=

See Also Notch Filter (Closing the Servo Loop)
I-variables Ix30-1x35, 1x37-1x39
Tuning Instructions (PMAC Executive Program manual)

IX37 Motor x PID Notch Filter Coefficient N2

Range -2.0..+2.0
Units none (actual z-transform coefficient)
Default 0

Remarks Ix37 is part of the notch filter for Motor x. See Ix36 and the Servo Loop Features section
of the manual for details.

This parameter is usually set initially using the Tuning utility in the PMAC Executive
Program. It may be changed on the fly at any time to create types of adaptive control.

See Also Notch Filter (Closing the Servo Loop)
I-variables Ix30-1x36, 1x38-1x39
Tuning Instructions (PMAC Executive Program manual)

IXx38 Motor x PID Notch Filter Coefficient D1

Range -2.0..+2.0
Units none (actual z-transform coefficient)
Default 0

Remarks Ix38 is part of the notch filter for Motor x. See Ix36 and the Servo Loop Features section
of the manual for details.

This parameter is usually set initially using the Tuning utility in the PMAC Executive
Program. It may be changed on the fly at any time to create types of adaptive control.

See Also Notch Filter (Closing the Servo Loop)
I-variables Ix30-I1x37, Ix39
Tuning Instructions (PMAC Executive Program manual)

IX39 Motor x PID Notch Filter Coefficient D2

Range -2.0..4+2.0
Units none (actual z-transform coefficient)
Default 0

Example Ix39 is part of the notch filter for Motor x. See Ix36 and the Servo Loop Features section
of the manual for details.

This parameter is usually set initially using the Tuning utility in the PMAC Executive
Program. It may be changed on the fly at any time to create types of adaptive control.

See Also Notch Filter (Closing the Servo Loop)
I-variables Ix30-1x38
Tuning Instructions (PMAC Executive Program manual)

90 PMAC I-Variable Specifiation

PMAC 2 Software Reference

Ix40 - IX56 Motor x Extended Servo Algorithm |-Variables
(These variables are used only with the Option 6 Extended Servo Algorithm. Refer to the manual for the
Extended Servo Algorithm and the ACC-25 Servo Evaluation Program for details.)

x40 Motor x Net Desired Position Filter Gain {Option 6L Firmware Only}

Range
Units
Default

Remarks

Example

0.0 —0.999999
none
0.0

Ix40 permits the introduction of a first-order low-pass filter on the net desired position for
Motor x. This can be useful to smooth motion that comes from a “rough” source, such as
master following from a noisy sensor, or quantization error in very closely spaced
programmed points that are commonly found in lookahead applications.

If Ix40 is set to its default value of .0, this filter function is disabled. If Ix40 is set to any
value greater than 0.0, the filter is enabled.

Ix40 can be expressed in terms of the filter time constant by the following equation:

Ty
TS+Tf

Ix40 =

where T;is the filter time constant, and 7} is the servo update time.
The filter time constant can be expressed in terms of [x40 by the following equation:
Ix40* Ty

1-1Ix40
Filter time constants can range from a fraction of a servo cycle (when [x40 ~ 0) to infinite
(when Ix40 ~ 1). As with any low-pass filter, there is a fundamental trade-off between
smoothness and delay. Generally when the filter is used, filter time constants of a few

milliseconds are set. In an application where multiple motors are executing a path, the
same time constant should be sued for all of the motors.

If =

Ix40 is available only with the special Lookahead option. If the Extended Servo
Algorithm option is selected along with the Lookahead option, this Ix40 filter is not
available. (In the ESA, x40 is used for another purpose.)

To set a filter time constant of 2 msec on a system with the default servo update time of
442 psec, Ix40 can be computed as:

Ix40 0.819

T 0442+2

PMAC I-Variable Specification 91

PMAC 2 Software Reference

Motor Servo Loop Modifiers
These I-variables modify the action of the basic PID servo algorithm. They are not available with the
Option 6 Extended Servo Algorithm firmware.

IX57 Motor x Continuous Current Limit

Range
Units
Default

Remarks

Example

0..32,767
16-bit DAC/ADC bit equivalent
0

Ix57 sets the maximum continuous current limit for PMAC’s I°T integrated current
limiting function, when that function is active (Ix58 must be greater than 0 for I’T to be
active). If PMAC is closing a digital current loop for the motor, it uses actual current
measurements for this function; otherwise it uses commanded current values. If the actual
or commanded current level from PMAC is above [x57 for a significant period of time, as
set by Ix58, PMAC will trip this motor on an I*T amplifier fault condition.

Ix57 is in units of a 16-bit DAC or ADC (maximum possible value of 32,767), even if the
actual output or input device has a different resolution. Typically Ix57 will be set to
between 1/3 and 1/2 of the Ix69 (instantaneous) output limit. Consult your amplifier and
motor documentation for their specifications on instantaneous and continuous current
limits.

Technically, [x57 is the continuous limit of the vector sum of the quadrature and direct
currents. The quadrature (torque-producing) current is the output of the position/velocity-
loop servo. The direct (magnetization) current is set by I1x77.

In sine-wave output mode (Ix01 = 1, Ix82 = 0), amplifier gains are typically given in
amperes of phase current per volt of PMAC output, but motor and amplifier limits are
typically given in RMS amperage values. In this case, it is important to realize that peak
phase current values are V2 (1.414) times greater than the RMS values.

In direct-PWM mode (Ix01 = 1, Ix82 > 0) of 3-phase motors (Ix72 = 85 or 171), the
corresponding top values of the sinusoidal phase-current ADC readings will be 1/cos(30°),
or 1.15, times greater than the vector sum of quadrature and direct current. Therefore,
once you have established the top values you want to see in the A/D converters your phase
currents on a continuous basis, this value should be multiplied by cos(30°), or 0.866, to get
your value for Ix57. Remember that if current limits are given as RMS values, you should
multiply these by \2 (1.414) to get peak phase current values.

1. PMAC Motor 1 is driving a torque-mode DC brush-motor amplifier that has a gain of
3 amps/volt with a single analog output voltage. The amplifier has a continuous
current rating of 10 amps; the motor has a continuous current rating of 12 amps.

e PMAC’s maximum output of 32,768, or 10 volts, corresponds to 30 amps.

e The amplifier has the lower continuous current rating, so we use its limit of 10
amps.

e [157issetto 32,768 * 10/30=10,589.

2. Motor 3 is driving a self-commutating brushless-motor amplifier in current (torque)
mode with a single analog output. The amplifier has a gain of 5 amps(RMS)/volt and
an continuous current limit of 20 amps (RMS). The motor has an continuous current
limit of 25 amps (RMS).

e PMAC’s maximum output of 32,768, or 10 volts, corresponds to 50 amps (RMS).
e The amplifier has the lower continuous current rating, so we use its limit of 20
amps (RMS).

92

PMAC I-Variable Specifiation

PMAC 2 Software Reference

e 1357 issetto 32,768 * 20/50 = 13,107.

3. PMAC Motor 4 is driving a sine-wave mode amplifier that has a gain for each phase
input of 5 amps/volt. The amplifier has a continuous rating of 20 amps (RMS); the
motor has a continuous rating of 22 amps (RMS).

® PMAC’s maximum output of 32,768, or 10 volts, corresponds to 50 amps peak in a
phase.

® The amplifier has the lower continuous current rating, so we use its limit of 20
amps (RMS).

® 20 amps (RMS) corresponds to peak phase currents of 20*1.414 = 28.28 amps.

® [457issetto 32,768 * 28.28 / 50 = 18,534.

4. PMAC Motor 6 is driving a direct-PWM power block amplifier for an AC motor. The
A/D converters in the amplifier are scaled so that a maximum reading corresponds to
50 amps of current in the phase. The amplifier has a continuous current rating of 20
amps (RMS), and the motor has a continuous rating of 15 amps (RMS).

e PMAC’s maximum ADC phase reading of 32,768 corresponds to 50 amps.

e The motor has the lower continuous current rating, so we use its limit of 15 amps
(RMYS).

e 15 amps (RMS) corresponds to peak phase currents of 15%1.414 =21.21 amps.

e 21.21 amps corresponds to an ADC reading of 32,768 * 21.21/50 = 13,900.

e 1657 should be set to 13,900 * 0.866 = 12,037.

See Also Integrated Current Protection (Making Your Application Safe)
I-Variables I1x58, 1x69

Ix58 Motor x Integrated Current Limit

Range 0.. 8,388,607
Units 2"’ (DAC bits)” e servo cycles
{bits of a 16-bit DAC}
Default 0
Remarks Ix58 sets the maximum integrated current limit for PMAC’s I'T integrated current limiting

function. If Ix58 is 0, the I°T limiting function is disabled. If Ix58 is greater than 0,
PMAC will compared the time-integrated difference between the squares of commanded
current and the Ix57 continuous current limit to Ix58. If the integrated value exceeds Ix58,
then PMAC faults the motor just as it would for receiving an amplifier fault signal, setting
both the amplifier-fault and the I°T-fault motor status bits.

The Ix58 limit is typically set by taking the relationship between the instantaneous current
limit (Ix69 on PMAC, in units of a 16-bit DAC), the magnetization current (Ix77; typically
0 except for vector control of induction motors) and the continuous current limit (Ix57 on
PMAC, in units of a 16-bit DAC) and multiplying by the time permitted at the
instantaneous limit. The formula is:

Ix692 + Ix772 — Ix572

Ix58 = * ServoUpdateRate(Hz) * PermittedTime(sec
327682 P (He) (sec)

Refer to the section Making Your Application Safe in the User’s Guide for a more detailed
explanation of I°T protection.

PMAC I-Variable Specification 93

PMAC 2 Software Reference

Example

See Also

With the instantaneous current limit [x69 at 32,767, the magnetization current Ix77 at 0,
the continuous current limit Ix57 at 10,589 (1/3 of max), the time permitted with maximum
current is at 1 minute, and the servo update rate at the default of 2.25 kHz, Ix58 would be
set as:

Ix58=(1.02 +0.02 —0.332)% 2250*60 = 120000

Integrated Current Protection (Making Your Application Safe)

IX59 Motor x User-Written Servo/Phase Enable

Range
Units
Default

Remarks

See Also

0.3
none
0

Ix59 controls whether the built-in servo and commutation routines, or user-written servo
and commutation routines, are used for Motor x.

Ix59 | Servo Algorithm Commutation Algorithm
0 Built-in Built-in

1 User-written Built-in

2 Built-in User-written

3 User-written User-written

Any user-written servo or commutation (phase) algorithms will have been coded and
cross-assembled in a host computer, and downloaded into PMAC’s program memory.
These algorithms are retained by the battery on battery-backed RAM versions, or saved
into flash memory on flash-backed versions.

Ix00 must be 1 in order for the user-written servo to execute. Ix01 must be 1 in order for
the user-written commutation to execute. The servo algorithm can be changed
immediately between the built-in algorithm and a user-written algorithm by changing Ix59.
PMAC only selects the phasing algorithm to be used at power-on reset, so in order to
change the commutation algorithm, Ix59 must be changed, this new value stored to non-
volatile memory with the SAVE command, and the board reset.

It is possible to use the user-written algorithms for purposes other than servo or
commutation, making them essentially very fast and efficient PLC programs. This is very
useful for fast, position-based outputs. Simply load the code, activate an extra “motor”
with [x00 and/or Ix01, and set Ix59 for this pseudo-motor to use this algorithm.

User-Written Servo Instructions (Closing the Servo Loop)
User-Written Commutation Instructions (Setting Up PMAC Commutation)
I-Variables I1x00, Ix01

94

PMAC I-Variable Specifiation

PMAC 2 Software Reference

IX60 Motor x Servo Cycle Period Extension

Range
Units
Default

Remarks

See Also

0..8,388,607
Servo Interrupt Periods
0

Ix60 permits an extension of the servo update time for Motor x beyond the servo interrupt
period, which is controlled by hardware (E3-E6, E29-E33, E98, and master clock). The
servo loop will be closed every (Ix60 + 1) servo interrupts. With the default value of zero,
the loop will be closed every servo interrupt. For the standard PID servo algorithm, Ix60

must be set to a value that can be expressed as (2" — 1), where “n” is a non-negative
integer.

Other update times, including trajectory update and phase update are not affected by Ix60.
110 does not need to be changed with Ix60.

The velocity values reported for a motor with the V or <CTRL-V> command, and the
actual velocity registers in regular memory or DPRAM, are affected by 1x60. They are
reported in counts per servo loop closure, not counts per servo interrupt.

Servo Update Rate (Closing the Servo Loop)
On-line commands <CTRL-V>, V
M-Variable Mx66

Jumpers E3-E6, E29-E33, E98; 110.

Ix61 Motor x Current Loop Integral Gain {PMAC2 only}

Range
Units
Default

Remarks

See Also

0.0 .. 1.0 (24-bit resolution)
Output = 8 * Ix61 * Sum [i=0 to n] (Icmd[i]-lact[i])
0

Ix61 is the integral gain term of the digital current loops, multiplying the difference
between the commanded and actual current levels and adding the result into a running
integrator that adds into the command output. It is only used if [x82>0 to activate digital
current loop execution.

Ix61 can be used with either 1x62 forward-path proportional gain, or Ix76 back-path
proportional gain. If used with Ix62, the value can be quite low, because 1x62 provides the
quick response, and Ix61 just needs to correct for biases. If used with I1x76, Ix61 is the
only gain that responds directly to command changes, and it must be significantly higher to
respond quickly.

Ix61 is typically set using the current loop auto-tuner or interactive tuner in the PMAC
Executive Program. Typical values of Ix61 are 0.02.

Setting Up PMAC Commutation
I-variables Ix62, Ix66, 1x76, 1x82

PMAC I-Variable Specification 95

PMAC 2 Software Reference

Ix62 Motor x Current Loop Proportional Gain (Forward Path) {PMAC2 only}

Range
Units
Default

Remarks

See Also

0.0 .. 1.0 (24-bit resolution)
Output =4 * Ix62 * (Iemg - Lact)
0

Ix62 is the proportional gain term of the digital current loops that is in the “forward path”
of the loop, multiplying the difference between the commanded and actual current levels.
Either Ix62 or Ix76 (back path proportional gain) must be used to close the current loop.
Generally, only one of these proportional gain terms is used, although both can be. Ix62 is
only used if Ix82>0 to activate digital current loop execution.

Ix62 can provide more responsiveness to command changes from the position/velocity
loop servo, and therefore a higher current loop bandwidth, than Ix76. However, if the
command value is very noisy, which can be the case with a low-resolution position sensor,
using Ix76 instead can provide better filtering of the noise.

Ix62 is typically set using the current loop auto-tuner or interactive tuner in the PMAC
Executive Program. . Typical values of Ix62, when used, are around 0.5.

Setting Up PMAC Commutation
I-variables Ix61, Ix66, 1x76, 1x82

Ix63 Motor x Integration Limit

Range
Units
Default

Remarks

See Also

-8,388,608 .. 8,388,607
(Ix33/2") counts * servo-cycles
4,194,304

Ix63 limits the magnitude of the integrated position error (the output of the integrator), which
can be useful for “anti-windup” protection. The default value of Ix63 provides essentially no
limitation. (The integral gain Ix33 controls how fast the error is integrated.)

A value of zero here forces a zero output of the integrator, effectively disabling the integration
function in the PID filter. This can be useful during periods when you are applying a constant
force and are expecting a steady-state position error. (In contrast, setting Ix33 to 0 prevents
further inputs to the integrator, but maintains the output.)

The Ix63 integration limit can also be used to create a fault condition for the motor. If Ix63 is
set to a negative number, then PMAC will also check as part of its following error safety
check whether the magnitude of integrated following error has saturated at the magnitude of
Ix63. With Ix63 negative, if the integrator has saturated, PMAC will trip (kill) the motor with
a following error fault. Both the normal fatal following error motor status bit and the
integrated following error status bit are set when this fault occurs. If Ix63 is 0 or positive, the
motor cannot trip on integrated following error fault.

To set Ix63 to a value such that the integrator saturates at the same point that its contribution
to the command output causes saturation at the Ix69 level, use the following formula:
x69 %223 J

Ix63 =+
(Ix08 * Ix30

To cause trips, the magnitude of Ix63 must be set to less than this value due to other potential
contributions to the output. Remember that the integrator stops increasing when the output
saturates at [x69.

PID Servo Filter (Closing the Servo Loop)
I-variables 1x33, Ix67, Ix69

96

PMAC I-Variable Specifiation

PMAC 2 Software Reference

Ix64 Motor x Deadband Gain Factor
Range -32,768 .. 32,767

Units none
Default 0 (no deadband)

Remarks [x64 is part of the PMAC feature known as deadband compensation, which can be used to
create or cancel deadband. It controls the effective gain within the deadband zone (see Ix65).
When the following error is less than the value of Ix65, the proportional gain (Ix30) is
multiplied by (Ix64+16)/16. At a value of -16, Ix64 provides true deadband. Values between
-16 and 0 yield reduced gain within the deadband. 1x64 = 0 disables any deadband effect.

PMAC DEAD BAND

: TOTAL DEAD BAND SET BY
—» | #— [x65, IN UNITS OF 1/16 COUNT

: (A VALUE OF 16 IS 1 ACTUAL ENCODER COUNT)
|
| PROPO ATIOMAL GAIN

:SEI BYVALUE OF 1x3p <—
F 4

n=0PROVIDES STIFFER SERVO
WHEN NEAR IN-FOSITON

o n=0D0ISABLES ANY DEADBAND
|'— EFFECT

n<0 REDUCES GAIN WHEN NEAR

IN-POSITION (n=-16 PROVIDES

TRUE DEADBAND)

. n<16 PROVIDES NEG ATIVE GAIN
AP WHEN NEAR IN-POSITION (THS IS

& OF NO KNOWMN USE)

ERROR QUTPUT

DESIRED POSITION

[
[
|
[
|
|
|
|
|
[
|
|
|
|
|
|
|
|
|
TWO STABLE H .
POSITIONSOMLY 7| 4 FOLLOWING
: : : ERROR
|
|
[
|
|
)
|
|
[
|
|
|
1

DEAD BAND GAIN CONTROL
| X6 4=n

_ fn+l6
WHERE DEAD BAND GAIN = (_]G_J X 1x30

n=++ (2 '-1)

DEAD BAND

DEAD BAND

NO GAIN DISCONTINUITIES

----------------------------- 1x30

FOLLOWING
! ERRCR

Values of [x64 greater than 0 yield increased gain within the deadband; a value of 16
provides double gain in the “deadband”. A small band of increased gain can be used to
reduce errors while holding position, without as much of a threat to make the system
unstable. It is also useful in compensating for physical deadband in the system.

Note:

Values of [x64 less than -16 will cause negative gain inside the
deadband, making it impossible for the system to settle inside the
band. These settings have no known useful function.

Outside the deadband, gain asymptotically approaches 1x30 as the following error increases.

PMAC I-Variable Specification 97

PMAC 2 Software Reference

See Also

I-variables 1x30, Ix65
Closing The Servo Loop

IX65 Motor x Deadband Size

Range
Units
Default
Remarks

See Also

0..32,767
1/16 count
16 (=1 count)

Ix65 defines the size of the position error band, measured from zero error, within which
there will be changed or no control effort, for the PMAC feature known as deadband
compensation. [x64 controls the effective gain relative to Ix30 within the deadband.

Note:

The units of this parameter are 1/16 of a count, so the value should
be 16 times the number of counts in the deadband. For example, if
modified gain is desired in the range of +/-5 counts of following
error, Ix65 should be set to 80.

Deadband (Closing the Servo Loop)
I-variables Ix30, Ix64

Ix66 Motor x PWM Scale Factor {PMAC2 only}

Range
Units
Default

Remarks

0..32,767
PWM_CLK cycles
0

Ix66 multiplies the output of the digital current loops for Motor x (which are values
between -1.0 and 1.0) before they are written to the PWM output registers. As such, it
determines the maximum value that can be written to the PWM output register. Ix66 is
only used if [x82>0 to activate digital current loop execution.

The PWM output value for each phase is compared digitally to the PWM up-down
counter, which increments or decrements once per PWM_CLK cycle to determine whether
the outputs are on or off. The limits of the up-down counter are 1900+1 and -1900-2 for
channels 1 to 4; 1906+1 and -1906-2 for channels 5 to 8.

Generally, Ix66 is set to about 10% above 1900 (or [906) for motors commutated by
PMAC?2. This permits a full-on command of the phase for a substantial fraction of the
commutation cycle, providing maximum possible utilization of the power devices at
maximum command. IfIx66 is set to a smaller value than 1900 or 1906, it serves as a
voltage limit for the motor (Vmax = [900/Ix66*VDC). Ix69 serves as the current limit.

IX67 Motor x Linear Position Error Limit

Range 0 .. 8,388,607

Units 1/16 count

Default 4,194,304 (=262,144 counts)

Remarks Ix67 defines the biggest position error that will be allowed into the servo filter. This is
intended to keep extreme conditions from upsetting the stability of the filter. However, if
it is set too low, it can limit the response of the system to legitimate commands (this
situation can particularly be noticed on very fine resolution systems).

This parameter is not to be confused with Ix11 or Ix12, the following error limits. Those
parameters take action outside the servo loop based on the real (before limiting) following
error.

98 PMAC I-Variable Specifiation

PMAC 2 Software Reference

See Also

Note:

The units of this parameter are 1/16 of a count, so the value should
be 16 times the number of counts in the limit.

I-variables Ix11, Ix12, Ix68

IX68 Motor x Friction Feedforward

Range
Units
Default
Remarks

Example

See Also

-32,768 .. 32,767
DAC bits
0

Ix68 adds a bias term to the servo loop output of Motor x that is proportional to the sign of
the commanded velocity. That is, if the commanded velocity is positive, [x68 is added to
the output. If the commanded velocity is negative, Ix68 is subtracted from the output. If
the commanded velocity is zero, no value is added to or subtracted from the output.

This parameter is intended primarily to help overcome errors due to mechanical friction. It
can be thought of as a “friction feedforward” term. Because it is a feedforward term that
does not utilize any feedback information, it has no direct effect on system stability. It can
be used to correct the error resulting from friction, especially on turnaround, without the
time constant and potential stability problems of integral gain.

If PMAC is commutating this motor, this correction is applied before the commutation
algorithm, and so will affect the magnitude of both analog outputs.

Note:

This direction-sensitive bias term is independent of the constant
bias introduced by 1x29 and/or 1x79.

Starting with a motor at rest, if Ix68 = 1600, then as soon as a commanded move in the
positive direction is started, a value of +1600 (~0.5V) is added to the servo loop output.
As soon as the commanded velocity goes negative, a value of -1600 is added to the output.
When the commanded velocity becomes zero again, no bias is added to the servo output as
a result of this term.

Closing the Servo Loop
I-Variables Ix01, Ix29, 1x32, Ix35, Ix79

IX69 Motor x Output Command Limit

Range
Units
Default

Remarks

0..32,767 (0 to 10V or equivalent)
16-bit DAC bits
20,480 (6.25V or equivalent)

1x69 defines the magnitude of the largest output that can be sent from PMAC’s PID
position/velocity servo loop. If the servo loop computes a larger value, PMAC clips it to
this value. When the PID output has saturated at the [x69 limit, the integrated error value
will not increase, providing anti-windup protection.

For the Extended Servo Algorithm (ESA) that with the Option 6 firmware version, 1x69 is
used to multiply a normalized command (-1.0 <= Normalized Command < +1.0) before
outputting it or using it for commutation. As such, it acts as both a scale factor and an
output command limit for the ESA.

Ix69 is always in units of a 16-bit DAC, even if the actual output device is of a different
resolution, or the command value is used for PMAC’s own internal current loop
commands.

PMAC I-Variable Specification 99

PMAC 2 Software Reference

Example

If you are using differential analog outputs (DAC+ and DAC-), the voltage between the
two outputs is twice the voltage between an output and AGND, so the 1x69 value should
be set to half of what it would be for a single-ended analog output.

This parameter provides a torque (current) limit in systems with current-loop amplifiers, or
when using PMAC’s internal commutation; it provides a velocity limit with velocity-mode
amplifiers. Note that if this limit “kicks in” for any amount of time, the following error
will start increasing.

Use when Commutating: When PMAC is commutating Motor x (Ix01 = 1) but not
closing the current loops (Ix82 = 0), [x69 corresponds to peak values of the sinusoidal
phase currents. Motor and amplifier current limits are usually given as RMS values. Peak
phase values are V2, or 1.414, times greater than RMS values. For instance, if an amplifier
has a 10 amp (RMS) instantaneous current limit, the instantaneous limit for the peak of the
phase currents is 14.14 amps.

Use with Magnetization Current: When commutating, Ix69 is technically the limit of only
the quadrature, or torque-producing, current. Ix77 sets the magnitude of the direct, or
magnetization current, and the total current limit is the vector sum of these two variables.
If the Ix77 magnetization current for the motor is set to a value other than 0, [x69 should

be set such that:
NI692 + Ix772 < Iygy < 32767

Use in Direct-PWM Mode: When commutating (IxO1 = 1) and closing the current loop
(Ix82 > 0) of a 3-phase motor (Ix72 = 85 or 171), it is important to understand the
relationship between the quadrature current limited by Ix69 and the phase currents
measured by the A/D converters. This difference is due to the nature of the conversion
between direct and quadrature current components, which are 90° apart, and the phase
currents, which are 120° apart. This difference introduces a factor of cos(30°) into the
calculations.

For a given level of DC quadrature current with zero direct (magnetization) current, the
peak value of AC sinusoidal current measured in the phases will be 1/cos(30°), or 1.15
times, greater. When quadrature current is commanded at its limit of x69, the peak phase
currents can be 15% higher that this value. For instance, with Ix69 at 10,000, and I1x77 at
0, the A/D converters can provide readings (normalized to 16-bit resolution) up to 11,547.

Use with Magnetization Current: With non-zero direct current, the peak value of AC
sinusoidal current measured in the phases will be 1.15 times greater than the vector sum of
the direct and quadrature currents. Therefore, in order not to saturate the current in the
phases, 1x69 should be set such that:

VIx692 + Ix772 < I gy cos(300)< 32,767%0.866 < 28,377

1. Motor 1 is driving a velocity-mode amplifier with differential analog inputs that are
limited to +/-10V between the inputs. This means that the PMAC outputs should each
be limited to +/-5V with respect to the AGND reference. 1169 should therefore be
limited to 32,768/2 = 16,384.

2. Motor 3 is driving a DC brush motor amplifier in current (torque) mode with an analog

output. The amplifier has a gain of 2 amps/volt and an instantaneous current limit of
20 amps. The motor has an instantaneous current limit of 15 amps.

100

PMAC I-Variable Specifiation

PMAC 2 Software Reference

e PMAC’s maximum output of 32,768, or 10 volts, corresponds to 20 amps.

e The motor has the lower instantaneous current rating, so we use its limit of 15
amps.

e 369 is set to 32,768 * 15/20 = 24,576.

3. Motor 5 is driving a self-commutating brushless-motor amplifier in current (torque)
mode with a single analog output. The amplifier has a gain of 5 amps(RMS)/volt and
an instantaneous current limit of 50 amps (RMS). The motor has an instantaneous
current limit of 60 amps (RMS).

e PMAC’s maximum output of 32,768, or 10 volts, corresponds to 50 amps (RMS).

e The amplifier has the lower instantaneous current rating, so we use its limit of 50
amps (RMS).

e 1569 is set to 32,768 * 50/50 = 32,767 (note that the maximum value is 32,767).

4. Motor 7 is driving a “sine-wave” amplifier for a brushless servo motor with two analog
outputs. The Ix77 magnetization current limit is set to 0. The amplifier has a gain on
each phase of 4 amps/volt. The amplifier has an instantaneous current limit of 25 amps
(RMS). The motor has an instantaneous current limit of 30 amps (RMS).

e PMAC’s maximum output of 32,768, or 10 volts, corresponds to 40 amps peak in
the phase.

e The amplifier has the lower instantaneous current rating, so we use its limit of 25
amps (RMS).

e 25 amps (RMS) corresponds to peak phase currents of 25*%1.414 = 35.35 amps.

e 1769 is setto 32,768 * 35.35/40 = 28,958.

5. Motor 8 is driving a direct-PWM “power-block” amplifier and an AC induction motor.
The Ix77 magnetization current parameter is set to 3000. The A/D converters in the
amplifier are scaled so that a maximum reading corresponds to 100 amps of current in
the phase. The amplifier has an instantaneous current limit of 60 amps (RMS), and the
motor has an instantaneous current limit of 75 amps (RMS).

e PMAC’s maximum ADC phase reading of 32,768 corresponds to 100 amps in the
phase.
e The amplifier has the lower instantaneous current rating, so we use its limit of 60
amps (RMS).

60 amps (RMS) correspond to peak phase currents of 60*1.414 = 84.84 amps.

84.84 amps correspond to an ADC reading of 32,768 * 84.84/100 = 27,800.

The vector sum of [x69 and Ix77 should equal 27,800 * 0.866 = 24,075.

1869 should be set to sqrt(24,075°-3,000%) = 23,887.

PMAC I-Variable Specification 101

PMAC 2 Software Reference

Commutation I-Variables

IX70 Motor x Number of Commutation Cycles (N)

Range
Units
Default

Remarks

Example

See Also

0..255
Commutation cycles
1

For a PMAC-commutated motor (Ix01=1), this parameter is used in combination with Ix71
to define the size of the commutation cycle, in encoder counts, as [x71/Ix70. Usually, this
is set to one, and Ix71 represents the number of counts in a single commutation cycle.

Ix70 only needs to be set greater than one if the number of counts in a single cycle is not
an integer.

A commutation cycle, or electrical cycle, consists of two poles (one pole pair) of a
multiphase motor.

A 6-pole brushless motor has three commutation cycles per mechanical revolution. If a
feedback device is used with 4096 counts per mechanical revolution (a number not
divisible by three), Ix70 should be set to 3, and Ix71 to 4096.

I-variables Ix01, Ix71-Ix83
Setting Up PMAC Commutation

Ix71 Motor x Encoder Counts per N Commutation Cycles

Range
Units
Default

Remarks

Example

See Also

0..8,388,607
Counts
1000

For a PMAC-commutated motor, [x71 defines the size of a commutation cycle in
conjunction with Ix70 (counts/cycle = Ix71/1x70). The meaning of a “count” used in this
parameter is defined by the encoder-decode variable for the commutation feedback device
(Encoder I-Variable 0; 1900, 1905, etc. on a PMAC(1); I9n0 on a PMAC2). If a “times-4”
decode is used, a count is one-fourth of an encoder [ine.

If a highly interpolated encoder is used (e.g. from an ACC-51P or ACC-8D Opt 8) for
servo loop closure, the digital hardware quadrature counter is usually still used for
commutation, with a resolution of 4 counts per encoder line.

If the commutation feedback comes from a MACRO-node position feedback register, the
position value is usually in units of 1/32 of a count, so Ix71 should be 32 times larger than
it would be for reading a hardware encoder counter directly.

A commutation cycle, or electrical cycle, consists of two poles (one pole pair) of a
multiphase motor.

A four-pole brushless motor with a 1000-line-per-revolution encoder and “times-4” decode
read directly on the PMAC has 2 commutation cycles per revolution and 4000 counts per
revolution. Therefore, either Ix70=2 and 1x71=4000 could be used, or Ix70=1 and
1x71=2000.

For the same motor and encoder read through a MACRO Station, the units of the position
register read for commutation would be 1/32-count, so there would appear to be 4000*32,
or 128,000 counts per revolution. Therefore, either [x70=2 and Ix71=128000 could be use,
or Ix70=1 and Ix71=64000.

I-variables Ix01, Ix70, Ix72-1x83
Setting Up PMAC Commutation

102

PMAC I-Variable Specifiation

PMAC 2 Software Reference

Ix72 Motor x Commutation Phase Angle

Range
Units
Default

Remarks

0..255
360/256 elec. deg. (1/256 commutation cycle)

85 (=1200 ¢)

For a PMAC-commutated motor (Ix01 = 1), [x72 set the angular distance between the
phases of a multiphase motor. The usual values to be used are:

3-phase: 85 or 171 (+/- 120%%)
2- or 4-phase: 64 or 192 (+/- 909)

For a given number of phases, determining which of the two possible settings is to be used
depends on whether the PMAC is also closing the current loop for the motor.

1. PMAC performing commutation, but not current loop

When PMAC is not performing digital current loop closure for Motor x (Ix82 = 0), the
output direction sense determined by this parameter and the motor and amplifier phase
wiring must match the feedback direction sense as determined by the encoder-decode
variable 0 (1900, 1905, etc. on a PMAC(1); I9n0 on a PMAC?2) and the encoder wiring. If
the direction senses do not match proper commutation and servo control will be
impossible; the motor will lock into a given position.

For these systems, changing between the two values for a given number of phases has the
same effect as exchanging motor leads, which changes the motor’s direction of rotation for
a given sign of a PMAC2 torque command.

Refer to the section Setting Up PMAC Commutation for tests to determine the proper Ix72
setting. For systems without PMAC?2 digital current loop closure, once this
commutation/feedback polarity has been properly matched, the servo/feedback polarity
will automatically be properly matched.

2. PMAC performing commutation and current loop

When PMAC is performing digital current loop closure for Motor x (Ix82 > 0; PMAC2
only), the output direction sense determined by this parameter must match the polarity of
the phase current sensors and the analog-to-digital conversion (ADC) circuitry that brings
this data into PMAC2. It is independent of motor or amplifier phase wiring, encoder
wiring, and PMAC2 encoder-decode direction sense.

CAUTION:

Do not attempt to close the digital current loops on PMAC2 (O
commands or closing the position loop) until you are sure of the
proper sense of the Ix72 setting. An Ix72 setting of the wrong sense
will cause positive feedback in the current loop, leading to
saturation of the PMAC outputs and possible damage to the motor
and or amplifier.

For these systems with a PMAC?2 digital current loop, if the phase-current ADC registers
report a positive value for current flowing into the phase (i.e. the PWM voltage command
value and the current feedback value have the same sign), [x72 must be set to a value
greater than 128 (usually 171 for a 3-phase motor, or 192 for a 2- or 4-phase motor). If the
phase-current ADC registers report a positive value for current flowing out of the phase
(i.e. the PWM voltage command value and the current feedback value have opposite
signs), Ix72 must be set to a value less than 128 (usually 85 for a 3-phase motor, or 64 for
a 2- or 4-phase motor).

PMAC I-Variable Specification 103

PMAC 2 Software Reference

For systems with PMAC?2 digital current loop closure, the commutation/feedback polarity
match is independent of the servo/feedback polarity. Once Ix72 has been set for proper
commutation/feedback polarity, the proper position-loop servo/feedback polarity must still
be established.

See Also I-variables Ix70, Ix71
Encoder I-Variable 0
Setting Up PMAC Commutation
Getting Started Section, Setting Up A PMAC-Commutated Motor

Ix73 Motor x Phase Finding Output Value

Range -32,768 .. 32,767

Units Bits of 16-bit DAC

Default 0

Remarks WARNING:

An unreliable phasing search method can lead to a runaway
condition. Test your phasing search method carefully to make sure
it works properly under all conceivable conditions. Make sure your
Ix11 fatal following error limit is active and as tight as possible so
the motor will be killed quickly in the event of a serious phasing
search error.

Ix73 defines the magnitude of the open-loop output to be used if a power-on phasing
search is done for a PMAC-commutated motor (Ix01=1). A phasing search is required for
a synchronous motor (Ix78=0) such as a permanent-magnet brushless motor with no
absolute position sensor (Ix81=0). The phasing search is done automatically as part of the
power-on phasing search if [x80 is 1 or 3; if [x80 is 0 or 2, the on-line $ command must be
used must be used to initiate the phasing search.

If Ix80 is 0 or 1, the two-guess phasing search is used, and Ix73 controls the “vector”
magnitude of the open-loop output that is distributed among the phases according to the
guessed phasing angle.

If [x80 is 2 or 3, the stepper-motor phasing search is used, and Ix73 controls the magnitude
of current forced into individual phase(s) to lock the motor to a position like a stepper
motor. In this method, if the PMAC?2 is not performing current loop closure for the motor
(Ix82 = 0) and Ix72 > 128, then 1x73 should be set to a negative number of the desired
magnitude. In all other cases it should be set to a positive number. If the sign of Ix73 is
wrong for your setup, the motor will run away when the loop is closed.

Values of 2000 to 6000 are typically used for Ix73 in either method.

See Also Power-Up Phasing Search (Setting Up PMAC Commutation)
I-Variables 1x01, 1x74, Ix78, Ix80, Ix81

Ix74 Motor x Phase Finding Time

Range 0..255
Units Servo Interrupt Cycles (for [x80 =0 or 1)

or

Servo Interrupt Cycles * 256 (for Ix80 = 2 or 3)
Default 0

104 PMAC I-Variable Specifiation

PMAC 2 Software Reference

Remarks

See Also

WARNING:

An unreliable phasing search method can lead to a runaway
condition. Test your phasing search method carefully to make sure
it works properly under all conceivable conditions. Make sure your
Ix11 fatal following error limit is active and as tight as possible so
the motor will be killed quickly in the event of a serious phasing
search error.

Ix74 defines the time that an open-loop output is to be used if a power-on phasing search is
done for a PMAC-commutated motor (Ix01=1). A phasing search is required for a
synchronous motor (Ix78=0) such as a permanent-magnet brushless motor with no
absolute position sensor (Ix81=0). The phasing search is done automatically as part of the
power-on phasing search if [x80 is 1 or 3; if [x80 is 0 or 2, the on-line $ command must be
used must be used to initiate the phasing search.

If Ix80 is 0 or 1, the “two-guess” phasing search is used; Ix74 has units of servo cycles and
controls the time for the open-loop command at each “guess” of the phase angle. Typical
values are 3 to 10 servo cycles; 5 is a good starting point.

If Ix80 is 2 or 3, the “stepper-motor” phasing search is used; [x74 has units of (servo
cycles*256) and controls the time current is forced into each phase and PMAC waits for
the motor to settle into the “step” position. With the default servo cycle rate of 2.25 kHz,
each unit of Ix74 represents about 0.1 seconds in this mode; typical values are 10 to 20.

Power-Up Phasing Search (Setting Up PMAC Commutation)
I-Variables Ix01, Ix73, Ix78, 1x80, Ix81

IX75 Motor x Power-On Phase Position Offset

Range
Units
Default
Remarks

-8,388,608 .. 8,388,607
Encoder counts * Ix70
0

Ix75 tells PMAC the distance between the zero position of an absolute sensor used for
power-on phase position (specified by 1x81) and the zero position of PMAC’s
commutation cycle. It is used to reference the phasing algorithm for a PMAC-commutated
motor with an absolute sensor (Ix81 > 0). If [x80 is 1, this is done automatically during
the power-up/reset cycle. It will also be done in response to a $ command to the motor.

The SETPHASE command also uses Ix75, copying the [x75 value directly into the phase
position register. This mode is typically used to correct the phasing at a known position
(usually at the index pulse of the encoder) after a rough phasing (hall-sensor read or
phasing search) gives you enough torque for basic motion to the known position.

The proper value for this parameter can be found with a simple procedure that should be
done with an unloaded motor, after satisfactory operation has been achieved using a
power-on phasing search.

For use with the Ix81 absolute read, define an M-variable to the absolute sensor (TWR
form for a resolver, Y form for an absolute encoder). Next, drive the motor to the zero
position in the commutation cycle, either by issuing a $ command with the motor set up for
the “stepper motor” phasing search (Ix80 = 1 or 3), or by manually setting the phase
offsets for the motor.

PMAC I-Variable Specification 105

PMAC 2 Software Reference

In the manual technique, give the motor an 00 command. Put a bias on the A phase
(higher-numbered DAC of a PMACI pair) by setting [x29; use a positive bias if [x72=171
or 192 (2000 is usually a good value); use a negative bias if [x72=85 or 64. Also put a bias
in the opposite direction of the same magnitude on the B phase by setting Ix79. The motor
should lock in on a position like a stepper motor.

Now remove the A-phase bias by setting [x29 back to zero, or at least to the value you
have found to force zero current in the phase, and the motor should lock in on another
position. This position is the zero position of the phasing cycle.

In either technique for forcing the motor to its zero commutation position, after you are
sure the motor has settled, read the position of the absolute sensor by querying its M-
variable value.

Take the negative of this value, multiply it by Ix70, and put the resulting value in Ix75.
Now, with Ix79 returned to zero or the proper bias, and Ix81 pointing to the absolute
sensor, give the motor a $§ command. The motor should be properly phased. Remember to
save these variable values before doing a full reset on the card.

For use with the SETPHASE command, define an M-variable to the the phase position
register. The suggested M-variable is Mx71 (e.g. M171->X:$0041, 0,24,8S).
Execute the above sequence with Ix29 and Ix79 to force the motor to the zero-point in its
phase cycle. Set the M-variable to zero (e.g. M171=0). Now move the motor to the
known position in its cycle (usually with a homing search move), let it settle, and read the
M-variable value. This value will be put in Ix75.

Example On a brushless motor #1 commutated from PMAC with Ix70 =1 and Ix72 = 171, using an
R/D converter at location 0 of a board at multiplexer address 0, the following on-line
commands can be used to set [x75:

M171->TWR:0,0 ;Resolver position

#100 ;Open-loop zero command

I129=2000 ;Pos bias on first phase output (Neg if [x72=85 or 64)
I179=-2000 ;Neg bias on second phase output (Pos if Ix72=85 or 64)
I129=0 ;Remove bias from first phase output

M171 ;Query sensor position

223 ;PMAC responds

I175=-223 ;Set phasing position offset (223*-1*Ix70)

I179=0 ;Remove bias from second phase

I181=$000100 ;Set power-on position address

I173=0 ;Make sure no phasing search move is done

I174=0 ;Make sure no phasing search move is done

SAVE ;Store [-variables in non-volatile memory

$;Try phasing from absolute position sensor

See Also Phasing Referenced to Absolute Sensor (Setting Up PMAC Commutation)
I-Variables 18x, 19x, 1x03, Ix10, Ix81, Ix83
ACC-8D Option 7 (R/D Converter) Manual

106 PMAC I-Variable Specifiation

PMAC 2 Software Reference

Ix76 Motor x Velocity Phase Advance Gain {PMAC(1) Only}

Range
Units
Default
Remarks

See Also

0..8,388,607
(Ix09*32) / (Ix70*2*) counts / (counts per servo update)
0

Ix76 advances the phasing angles on a motor commutated by PMAC(1) by an amount
proportional to the measured velocity of the motor. This compensates for the lag in the
electrical circuits of the phases, and for calculation delays. It should be set to zero for
induction motors.

This parameter is best set experimentally by running the motor at high speeds, and finding
the setting that minimizes the current draw of the motor.

Setting Up PMAC Commutation
I-variables Ix70-I1x75

IX76 Motor x Current-Loop Proportional Gain (Back Path) {PMAC2 only}

Range
Units
Default

Remarks

See Also

0.0 .. 1.0 (24-bit resolution)
PWMout = -4 * [x76 * (lact)
0.0

Ix76 is the proportional gain term of the digital current loop that is in the back path of the
loop, multiplying the actual current level, and subtracting the result from the command
output. Either Ix76 or Ix62 (forward path proportional gain) must be used to close the
current loop. Generally, only one of these proportional gain terms is used, although both
can be.

If [x76 is used as the only proportional gain term, only the Ix61 integral gain term reacts
directly to command changes. The act of integration acts as a low-pass filter on the
command, which eliminates a lot of noise, but lowers the responsiveness to real changes.
Generally Ix76 is only used when the command value from the position/velocity loop
servo have high noise levels (usually due to low position resolution), and the actual current
measurements have low noise levels.

Typically, Ix76 is set using the current loop auto-tuner or interactive tuner in the PMAC
Executive Program. Typical values of Ix76, when used, are around 0.5.

Ix76 is only used if [x82>0 to activate digital current loop execution.

Setting Up PMAC Commutation
I-variables Ix61, [x62, Ix66, 1x82

Ix77 Motor x Induction Motor Magnetization Current

Range
Units
Default
Remarks

See Also

-32,768 .. 32,767
DAC bits
0

Ix77 is used in induction motors to provide a stator current component parallel to the
estimated rotor magnetic field (the “direct” current — the control loop determines the
magnitude of the “quadrature” current perpendicular to this component). This should be
set to zero for non-induction motors. The proper value for an induction motor is system
dependent, but 2500 is a good starting value for most motors. Refer to the Setting Up
PMAC Commutation section of the manual for instructions in optimizing the setting of this
parameter.

Setting Induction Motor Parameters (Setting Up PMAC Commutation)
I-variables Ix01, Ix70-1x72, Ix78

PMAC I-Variable Specification 107

PMAC 2 Software Reference

IX78 Motor x Induction Motor Slip Gain

Range

Units

Default
Remarks

See Also

0..8,388,607 {PMAC(1)}
0.0.. 1.0 (24-bit resolution) {PMAC2}

2% (electrical cycles/update)/DAC bit {PMAC(1)}
Unitless (ratio of times) {PMAC2}
0

Ix78 controls the relationship between the torque command and the slip frequency of
magnetic field on the rotor of an AC asynchronous (induction) motor. While it is usually
set experimentally, it can be calculated as the ratio between the phase update period and
the rotor (not stator) L/R electrical time constant.

Ix78 is only active if [x01 is set to 1 to specify PMAC2 commutation of Motor x. It should
be set to 0 for AC synchronous motors such as permanent-magnet brushless motors and
switched (variable) reluctance motors.

Ix78 operates slightly differently on PMAC(1) and PMAC?2 boards.

PMAC(1) computes the slip frequency each phase update by multiplying the torque
command from the position/velocity-loop servo (or O-command magnitude) by [x78. The
optimum value of Ix78 is dependent of the value of the Ix77 magnetization current, so if
Ix77 is changed (e.g. for field weakening), [x78 should be changed in opposite proportion
so that the product of Ix77 and Ix78 stays constant.

PMAC2 computes the slip frequency each phase update by multiplying the torque
command from the position/velocity-loop servo (or O-command magnitude) by 1x78 and
then dividing by the magnetization current value controlled by Ix77. This makes the
optimum value of Ix78 independent of the value of Ix77, so changing the value of Ix77 for
field control does not require changes in Ix78.

Ix78 is typically set on a PMAC?2 through use of the P2SETUP expert system program
running on a PC. P2SETUP excites the motor and analyzes its response to derive an
optimum Ix78 value.

Ix78 can also be set experimentally by giving the motor an O-command and watching the
velocity response, probably with the data gathering feature. As the velocity saturates
because the back EMF reaches the supply voltage, the velocity should fall back about 5%
to reach a steady-state value. If it falls back more than this, the slip time constant is too
high; if it falls back less than this, or not at all, the slip time constant is too low.

On a PMAC(1), 1200 is a typical value of Ix78 for an standard induction motor at a phase
update rate of about 9 kHz.

On a PMAC?2, 0.00015 is a typical value of Ix78 for an standard induction motor at a phase
update rate of about 9 kHz.

If [x78 is greater than zero, no power-on phasing search will be done (because the rotor
field is not fixed to the rotor).

Setting Induction Motor Parameters (Setting Up PMAC Commutation)
I-Variables 1x01, Ix70-1x72, 1x77

108

PMAC I-Variable Specifiation

PMAC 2 Software Reference

IX79 Motor x Second Phase Offset

Range
Units
Default

Remarks

-32,768 .. 32,767
16-bit DAC/ADC bit equivalent
0

Ix79 serves as an output or feedback offset for Motor x; its exact use depends on the mode of
operation as described below:

Mode 1: When PMAC is not commutating Motor x (Ix01 = 0) and the output is bipolar (Ix02
bit 16 = 1, the default), Ix79 is not used. Ix29 is the offset for this mode.

Mode 2: When PMAC is not commutating Motor x (Ix01 bit 0 = 0) but is in sign-and-
magnitude output mode (Ix02 bit 16 = 1 — PMAC(1) only), Ix79 is the offset of the command
output value after the absolute value is taken (Ix29 is the offset before the absolute value is
taken). Ix79 is typically used in this mode to compensate for analog offsets in interface
circuitry, either in DACs or in voltage-to-frequency converters.

Mode 3: When PMAC is commutating Motor x (Ix01 = 1) but not closing the current loop
(Ix82 = 0), Ix79 serves as the offset for the second of two phase command output values (Phase
B), for the address specified by 1x02 plus 1; Ix29 serves the same purpose for the first phase.
Ix79 is added to the output command value before it is written to the command output register.

When commutating from a PMAC(1), Phase A is output on the sigher-numbered of the two
DAC:s (e.g. DAC2), Phase B on the lower-numbered (e.g. DAC1). When commutating from a
PMAC?2, Phase A is output on the A-channel DAC (e.g. DAC1A), Phase B on the B-channel
DAC (e.g. DACI1B).

As an output command offset, [x79 is always in units of a 16-bit register, even if the actual
output device is of a different resolution. For example, if a value of 60 had to be written into an
18-bit DAC to create a true zero command, this would be equivalent to a value of 60/4=15 in a
16-bit DAC, so Ix79 would be set to 15 to cancel the offset.

Mode 4: When PMAC is commutating (Ix01 = 1) and closing the current loop for Motor x
(Ix82 > 0), Ix79 serves as an offset that is added to the phase current reading from the ADC for
the second phase (Phase B), at the address specified by [x82. [x29 performs the same function
for the first phase. The sum of the ADC reading and Ix79 is used in the digital current loop
algorithms.

As an input feedback offset, [x79 is always in units of a 16-bit ADC, even if the actual ADC is
of a different resolution. For example, if a 12-bit ADC reported a value of -5 when no current

was flowing in the phase, this would be equivalent to a value of -5*16=-80 in a 16-bit ADC, so
Ix79 would be set to 80 to compensate for this offset.

Ix80 Motor x Power-Up Mode

Range
Units
Default
Remarks

0.7
None
0

Ix80 controls the power-up mode, including the phasing search method (if used), for Motor x.
It consists of 3 independent control bits, each determining one aspect of the state of the motor at
power-up or full board reset:

e Bit 0 controls whether the motor is enabled at power-up/reset or not. If bit 0 is set to 0, the
motor is left in the “killed” (disabled) state at power-up/reset, and a command must be
issued to the motor to enable it. If bit O is set to 1, the motor is automatically enabled at
power-up/reset, and if a phasing search move is required to establish the commutation
position reference, this is automatically done.

PMAC I-Variable Specification 109

PMAC 2 Software Reference

e Bit 1 controls what type of phasing search move is performed, if one is required (Ix74 > 0),
either during power-up/reset, or on a subsequent $ motor reset command. Ifbit 1is 0 and a
phasing search move is required, PMAC will use the two-guess phasing search method. If
bit 1 is 1 and a phasing search move is required, PMAC will use the “stepper-motor”
phasing search method. The state of bit 1 does not matter unless a phasing search move is
to be done.

e Bit 2 controls whether an absolute position read for the motor is done at power-up/reset or
not, if one is required (Ix10 > 0). If bit 2 is set to 0 and an absolute position read is
specified, this read operation will be performed automatically at the board power-up/reset.
If bit 2 is set to 1 and an absolute position read is specified, this read operation will not be
done automatically at power-up/reset, and the $* command must be issued to perform the
absolute position read. The state of bit 2 does not matter unless an absolute position read is

to be done.
The possible values of Ix80 and the function of each are described in the following table:
Ix80 Absolute Position Read at Phasing Search Power-up/Reset

Power-up/Reset? Method Enable State

0 Yes Two-Guess Disabled

1 Yes Two-Guess Enabled

2 Yes Stepper-Motor Disabled

3 Yes Stepper-Motor Enabled

4 No Two-Guess Disabled

5 No Two-Guess Enabled

6 No Stepper-Motor Disabled

7 No Stepper-Motor Enabled

Power-up/reset enable state: If the motor is not automatically enabled at power-up/reset, a
command must be used subsequently to enable the motor. If PMAC is commutating the motor
(Ix01 = 1) and it is a synchronous motor (Ix78 = 0), a phase reference must be established with
the $ or $$ command as part of the enabling process. The motor cannot be enabled before a
successful phase reference is established, because the motor “phase reference error” status bit
that is automatically set on power-up/reset will not have been cleared.

If the motor is either not commutated by PMAC (Ix01 =0) or it is not a synchronous motor
(Ix78 > 0), a simple enabling command can be used. The J/ command enables a single motor;
the A command enables all of the motors in a coordinate system; the <CTRL-A> command
enables all of the motors on PMAC.

The phase reference, whether executed at power-up/reset or on the $ command, can be done

either by reading an absolute position sensor (Ix81 > 0) or by a phasing search move (Ix74 > 0)
if only an incremental sensor is used.

WARNING:

An unreliable phasing search method can lead to a runaway condition.
Test your phasing search method carefully to make sure it works
properly under all conceivable conditions. Make sure your Ix11 fatal
following error limit is active and as tight as possible so the motor will
be killed quickly in the event of a serious phasing search error.

Phasing search move method: The two-guess phasing search is very quick and requires little
movement, but can be adversely affected if there are significant external loads such as friction
and gravity. The stepper-motor phasing search takes more time and causes more movement,
but it is more reliable in the presence of significant external loads.

110

PMAC I-Variable Specifiation

PMAC 2 Software Reference

Absolute motor position read: If [x10 is set to 0, the position reference for a motor comes
from a homing search move. IfIx10 is greater than 0, the position reference comes from
reading an absolute position sensor at the address and with the format specified by Ix10. In this
case, Ix80 bit 2 specifies whether or not this read is done automatically at power-up/reset.
If the absolute position read is not done automatically at power-up/reset, the motor position will
be set to 0 at this time. This does not prevent full operation of the motor. The $* command
must be used later to read the sensor and establish absolute position. Even if the absolute
position is read automatically at power-up/reset, it may be read again later with the $*
command.

See Also Power-Up Phasing Search (Setting Up PMAC Commutation)
On-line commands $, $$, $*, $5$$
I-Variables Ix01, Ix73, Ix74, Ix78, Ix81

Ix81 Motor x Power-Up Phase Position Address

Range $000000 .. SFFFFFF

Units Extended PMAC Addresses

Default 0

Remarks Ix81 tells PMAC what address to read for absolute power-on phase-position information

for Motor x, and how to read it, if such information is present. This can be a different
address from that of the ongoing phase position information, which is specified by 1x83.
Ix81 is set to zero if no special power-on phase position reading is desired, as is the case
for an incremental encoder.

If [x81 is set to zero, a power-on phasing search routine is required for synchronous fixed-
field brushless motors (permanent magnet, and switched reluctance); those that have a slip
gain (Ix78) of zero. PMAC’s automatic phasing search routines based on 1x73 and 1x74
can be used, or a custom power-on PLC routine can be written.

Note:

Ix81 is used for PMAC’s commutation algorithms alone, to locate
position within one electrical cycle of the motor. It is not used for
any servo loop position information, even for power-up. Ix10 is
used for that purpose.

Ix81 consists of two parts. The low 16 bits contain the address of the register containing
the power-on position information, either a PMAC memory-1/O address, or an address on
the multiplexer (“thumbwheel”) port. The high 8 bits specify how to read the information
at this address.

Note:

It is easier to specify this parameter in hexadecimal form ($ prefix).
If 19 is set to 2 or 3, the value of this variable will be reported back
to the host in hexadecimal form.

PMAC I-Variable Specification 111

PMAC 2 Software Reference

The possible value ranges of [x81 and the position sources they specify are summarized in
the following table:

Ix81 Value Range Absolute Position Source Ix81 Address Type
$00xxxx - $07xxx% ACC-8D Opt 7 R/D Converter Multiplexer Port
$08xxxx - $18xxxx Parallel Data Y-Register PMAC Memory-1/0
$48xxxx - $58xxxX Parallel Data X-Register PMAC Memory-1/0

$73xxxx MACRO Station R/D Converter MACRO Node Number
$74xxxx MACRO Station Parallel Read MACRO Node Number
$80xxxx - $FFxxxx Hall Sensor Read PMAC Memory-1/0

The following section provides detail for each type of position feedback.

R/D Converter: If Ix81 contains a value from $0000xx to $0700xx, Motor x will expect
its absolute power-on phase position from an ACC-8D Opt. 7 R/D converter board. The
low 8 bits(last 2 hex digits) of Ix81 should contain the address of the board on the
multiplexer port, as set by the DIP switches on the board.

The second hex digit of Ix81, which can take a value from 0 to 7 in this mode, specifies the
number of the individual R/D converter at that multiplexer port address. This is a function
of the DIP switch setting on the board and the location of the converter on the board, as
specified in the following table:

Ix81 Value ACC-8D Opt. 7 # of R/D Converter

SW1-1 Setting on ACC-8D Opt. 7
$0000xx CLOSED (0) 1
$0100xx CLOSED (0) 2
$0200xx CLOSED (0) 3
$0300xx CLOSED (0) 4
$0400xx OPEN (1) 1
$0500xx OPEN (1) 2
$0600xx OPEN (1) 3
$0700xx OPEN (1) 4

The following table shows the value of [x81 for the multiplexer port addresses for the
ACC-8D Opt. 7 that can be used:

Board Ix81 Board Ix81 Board Ix81 Board Ix81
Mux. Mux. Mux. Mux.
Addr. Addr. Addr. Addr.
0 $0n0000* 64 $0n0040 128 $0n0080 192 $0n00CO
8 $0n0008 72 $0n0048 136 $0n0088 200 $0n00C8
16 $0n0010 80 $0n0050 144 $0n0090 208 $0n00DO
24 $0n0018 88 $0n0058 152 $0n0098 216 $0n00DS
32 $0n0020 96 $0n0060 160 $0n00A0 224 $0n00EQ
40 $0n0028 104 $0n0068 168 $0n00AS8 232 $0n00ES
48 $0n0030 112 $0n0070 176 $0n00BO 240 $0n00F0
56 $0n0038 120 $0n0078 184 $0n00B8 248 $0n00F8
‘n’ is a digit from 0 to 7 specifying the converter number at that address

*If ‘n’ is 0 and the multiplexer address is 0, the 4™ hex digit should be set to 1, making
1x81=$000100; otherwise with Ix10=0, no absolute position would be read.

Parallel Data Read: If Ix81 contains a value from $08xxxx to $18xxxx, or from $48xxxx
to $58xxxx, Motor x will do a parallel data read of the PMAC memory or I/O register at
the address specified by the low 16 bits of [x81.

112 PMAC I-Variable Specifiation

PMAC 2 Software Reference

In this mode, bits 16 to 21 of Ix81 specify the number of bits to be read, starting with bit 0
at the specified address. In this mode, they can take a value from $08 to $18 (8 to 24).

In this mode, bit 22 of [x81 specifies whether a Y-register is to be read, or an X-register.
A value of 0 in this bit, yielding Ix81 values from $08xxxx to $18xxxx, specifies a Y-
register; a value of 1, yielding Ix81 values from $48xxxx to $58xxxx, specifies an X-
register.

The following table shows Ix81 values for parallel data read through an ACC-14 board.
All ACC-14 registers are a Y-addresses.

Register Ix81 Register Ix81

1" ACC-14D/V Port A | $xxFFDO | 4™ ACC-14D/V Port A | $xxFFES

1" ACC-14D/V Port B | $xxFFD1 | 4™ ACC-14D/V Port B | $xxFFE9

2" ACC-14D/V Port A | $xxFFD8 | 5™ ACC-14D/V Port A | $xxFFF0

2" ACC-14D/V Port B | $xxFFD9 | 5™ ACC-14D/V Port B | $xxFFF1

3 ACC-14D/V Port A | $xxFFEO | 6™ ACC-14D/V Port A | $xxFFF8

3 ACC-14D/V Port B | $xxFFEl | 6™ ACC-14D/V Port B | $xxFFF9
xx’ represent the first two digits, which control bit width. They can take values
from $08 to $18.

For the ACC-8D Opt. 9 Yaskawa Absolute Encoder Converter, PMAC’s 24-bit encoder
phase position register, an X-register, is read, so Ix81 is set to $58xxxx ($180000 +
$400000).

The following table shows Ix81 values for a Yaskawa absolute encoder connected through
an ACC-8D Option 9 to each PMAC(1) encoder channel:

Channel Ix81 Channel Ix81
1 $58C001 9 $58C021
2 $58C005 10 $58C025
3 $58C009 11 $58C029
4 $58C00D 12 $58C02D
5 $58C011 13 $58C031
6 $58C015 14 $58C035
7 $58C019 15 $58C039
8 $58C01D 16 $58C03D
Channels 9 — 16 are on an ACC-24P/V board

The following table shows Ix81 values for a Yaskawa absolute encoder connected through
an ACC-8D Option 9 to each PMAC2 encoder channel:

Channel Ix81 Channel Ix81
1 $58C001 9 $58C041
2 $58C009 10 $58C049
3 $58C011 11 $58C051
4 $58C019 12 $58C059
5 $58C021 13 $58C061
6 $58C029 14 $58C069
7 $58C031 15 $58C071
8 $58C039 16 $58C079
Channels 9 — 16 are on an ACC-24P/V2 board

For the ACC-49 Sanyo Absolute Encoder Converter, the encoder provides a 13-bit value
within one motor revolution, and the data is read from a Y-register, so [x81 is set to
$ODxxXXX.

PMAC I-Variable Specification 113

PMAC 2 Software Reference

The following table lists the possible values of Ix81 for the ACC-49:

Enc. # | Ix81 for | Ix81 for | Ix81 for | Enc. # | Ix81 for | Ix81 for | Ix81 for
on E1 ON E2 ON E3 ON on E4 ON E5 ON E6 ON

Board Board

Enc.1 | $ODFFDO | $ODFFDS8 | $ODFFEO | Enc.3 | $ODFFES | $ODFFFO | $ODFFFS8

Enc.2 | $ODFFD4 | $ODFFDC | $ODFFE4 | Enc.4 | $ODFFEC | $ODFFF4 | SODFFFC

MACRO R/D Read: If Ix81 contains a value of $73000n, Motor x will read the absolute
phase position from an ACC-8D Opt. 7 Resolver-to-Digital Converter through a MACRO
Station or compatible device.

In this mode, the last hex digit ‘n’ of Ix81 specifies the MACRO node number. MACRO
Station setup variable MI11x for the matching node must be set to read the R/D converter.

MACRO Parallel Read: If Ix81 contains a value of $74000n, Motor x will read the
absolute phase position from a parallel data source through a MACRO Station or
compatible device.

In this mode, the last hex digit ‘n’ of Ix81 specifies the MACRO node number. MACRO
Station setup variable MI11x for the matching node must be set to read the parallel data
source.

Hall Sensor Read: If Ix81 contains a value from $80xxxx to $FFxxxx (bit 23 if Ix81 set to
1), Motor x will read bits 20 through 22 of the PMAC memory or I/O register at the
address specified by the low sixteen bits (last 4 hex digits ‘xxxx’) of [x81. It will expect
these three bits to be encoded as the U, V, and W “hall-effect” commutation signals with
120°¢ spacing for the absolute power-on phase position. In this mode, the address
specified in Ix81 is usually that of a flag register.

If the flag register is in a PMAC(1) or PMAC(1)-style ACC-24P, the flag inputs for bits
20, 21, and 22, representing W, V, and U, are +LIMn, -LIMn, and HMFLn, respectively.
In a typical application, Ix81 specifies that these inputs are used from the “spare” flag
register matching the second DAC channel used for commutation.

The following table shows the Ix81 settings for the flag registers in even-numbered
channels of a PMAC(1) and a PMAC(1)-style ACC-24P that are typically used for hall
commutation sensor inputs:

Channel Ix81 Channel Ix81
2 $xxC004 10 $xxC024
4 $xxC00C 12 $xxC02C
6 $xxC014 14 $xxC034
8 $xxC01C 16 $xxC03C
The proper value of ‘xx’ depends on the offset and direction sense of
the hall sensors.

If the flag register is in a PMAC2-style Servo IC, the input flags for bits 20, 21, and 22,
representing W, V, and U, are CHWn, CHVn, and CHUn, respectively. In a typical
application, these inputs are used from the same flag register addressed by 1x25 for the

main flags.

114

PMAC I-Variable Specifiation

PMAC 2 Software Reference

Example

The following table shows the Ix81 settings for the flag registers in channels of a PMAC2
that are typically used for hall commutation sensor inputs:

Channel Ix81 Channel Ix81
1 $xxC000 5 $xxC020
2 $xxC008 6 $xxC028
3 $xxCO010 7 $xxC030
4 $xxCO018 8 $xxC038
The proper value of ‘xx’ depends on the offset and direction sense of
the hall sensors.

In this mode, bit 22 of Ix81 allows for reversal of the sense of the hall-effect sensors. If W
(bit 20 of the register; HMFLn or CHWn) leads V (bit 21; -LIMn or CHVn), and V leads
U (bit 22; +LIMn or CHUn) as the commutation cycle counts up, then bit 22 of Ix81
should be set to 0. If U leads V and V leads W as the commutation cycle counts up, then
bit 22 of Ix81 should be set to 1.

In this mode, bits 16 to 21 of Ix81 together form an offset value from 0 to 63 representing
the difference between PMAC’s commutation cycle zero and the hall-effect sensor zero
position, which is defined as the transition of the V signal when U is low. This offset has
units of 1/64 of a commutation cycle, or 5.625°%. Typically, one of the transitions will be
at PMAC’s commutation zero point, so the desired offset values will be 0°, 60°, 120°, 180°,
240°, and 300°, approximated by values of 0, 11($0B), 21($15), 32($20), 43($2B), and
53(835).

This operation can handle hall-effect sensors separated by 120°e. The following table
gives the Ix81 settings for bits 16 to 23 for the most common cases of hall-effect settings
as they relate to the PMAC commutation cycle.

0to 60 to 120 to 180 to -120 to -60 to Ix81
60 deg 120deg | 180 deg | -120 deg | -60 deg 0 deg
011 010 110 100 101 001 $80xxxx
001 011 010 110 100 101 $8Bxxxx
101 001 011 010 110 100 $95xxxx
100 101 001 011 010 110 $AOxxxXX
110 100 101 001 011 010 $ABxxxx
010 110 100 101 001 011 $B5xxxx
001 101 100 110 010 011 $COxxxx
011 001 101 100 110 010 $CBxxxx
010 011 001 101 100 110 $D5xxxx
110 010 011 001 101 100 $EOxxxx
100 110 010 011 001 101 $EBxxxx
101 100 110 010 011 001 $F5xxxx
Note that ‘000’ and ‘111’ are invalid readings.

Motor 1 has a single resolver at location 0 of an ACC-8D Opt.7 R/D converter board at
multiplex address 0; no phasing search is permitted, but a homing search is required:
1181=$000100 ($100=256dec, representing multiplex address 0), 1110=0.

Motor 2 has a single resolver at location 6 of an ACC-8D Opt 7 board at multiplex address
4; no phasing search is permitted, but a homing search is required: 1281=$060004; 1210=0.

Motor 3 has a double geared resolver at locations 2 and 3 of an ACC-8D Opt 7 board at
multiplex address 6, with a 10:1 gear ratio between them; no phasing search or homing
search is permitted: 1381=$020006; 1310=$020006; 193=10

PMAC I-Variable Specification 115

PMAC 2 Software Reference

See Also

Motor 4 has a 20-bit single-turn absolute encoder at Port A of the first ACC-14 (address
Y:$FFDO): 1481=§14FFDO ($14=20dec)

Motor 5 is a brush motor with a double geared resolver at locations 0 and 1 of an ACC-8D
Opt 7 board at multiplex address 2; no homing search is permitted: 1581=0 (no phasing
required); 1510=$000002

Motor 6 uses hall-effect sensors wired into the flags on Channel 12 for power-up phase
referencing. The zero point of the hall effect is at 609, and the direction is “standard”, not
reversed. 1610= $8BC034.

Phasing Referenced to Absolute Sensor (Setting Up PMAC Commutation)
I-Variables 18x, 19x, 1x03, Ix10, Ix75, Ix83
ACC-8D Option 7 (R/D Converter) Manual

Ix82 Current loop Feedback Address {PMAC2 only}

Range
Units
Default

Remarks

Legal PMAC Y addresses
Legal PMAC Y addresses
0

1x82 tells PMAC2 which addresses to read to get its current feedback values for Motor x if
PMAC?2 is closing the current loop for this motor. PMAC must be performing the
commutation for the motor (Ix01=1) if it is to close the current loop as well.

A zero value for Ix82 tells PMAC2 not to close the current loop for this motor. In this
case, PMAC either outputs one velocity or torque command value (Ix01=0), or two phase-
current command values (Ix01=1), usually represented as analog voltages.

A non-zero value for Ix82 automatically triggers current loop execution in the phase
interrupt, using the current value(s) found in the register(s) specified by Ix82. Typically
these registers are analog-to-digital converter (ADC) registers in the PMAC2 ASIC, or
MACRO feedback registers containing copies of ADC registers in a MACRO Station

When Ix01 is set to 1, PMAC2 performs the phase commutation for this motor, computing
two phase current commands based on the position/velocity servo command and the
magnetization current value. If [x82>0, these commands are compared to the two actual
current values read from the address specified by Ix82, and the next Jower address. It
executes a PI filter on the current loops and outputs three voltage command values to the
address specified by 1x02 and the next two higher addresses. These are typically the PWM
commands for the three half-bridges of a brushless motor power stage.

When the digital current loop is used for drives connected directly to the PMAC2, the
typical values for [x82 are:

Channel 1x82 Channel 1x82
ADCIA & B $C006 ACDCYA & B $C046
ADC2A & B $COOE ACDCI0A & B $CO4E
ADC3A & B $Co016 ACDCI1A & B $C056
ADC4A & B $CO1E ACDCI2A & B $COSE
ADC5A & B $C026 ACDCI3A & B $C066
ADC6A & B $CO2E ACDCI4A & B $CO6E
ADC7A & B $C036 ACDCI5A & B $C076
ADC8A & B $CO3E ACDCI6A & B $CO7E

Channels 9 — 16 are present on an ACC-24P/V2 board

116

PMAC I-Variable Specifiation

PMAC 2 Software Reference

When the digital current loop is used for drives connected to the PMAC2 through a
MACRO station, the typical values for Ix82 are:

Node/Register 1x82 Node/Register 1x82
Node 0/Reg 1 & 2 $C0A2 Node 8/Reg 1 & 2 $C0OB2
Node 1/Reg 1 & 2 $COA6 Node 9/Reg 1 & 2 $C0B6
Node 4/Reg 1 & 2 $COAA Node 12/Reg 1 & 2 $COBA
Node 5/Reg 1 & 2 $COAE Node 13/Reg 1 & 2 $COBE

If [x82>0, the following variables must be set properly for correct operation of the digital
current loop:

Ix61: Current-Loop Integral Gain

Ix62: Current-Loop Forward-Path Proportional Gain
Ix66: PWM Scale Factor

Ix72: Commutation Phase Angle

Ix76: Current-Loop Back-Path Proportional Gain
1x84: Current-Loop Feedback Mask Word

Ix83 Motor x Ongoing Phasing Position Address

Range
Units
Default

Remarks

Legal PMAC X and Y addresses
Legal PMAC X and Y addresses

Variable PMAC(1) PMAC2 PMAC2

Ultralite
1183 $C001 $CO001 $8COA0
1283 $C009 $C009 $8C0A4
1383 $CO11 $CO11 $8COAS8
1483 $C019 $C019 $8COAC
1583 $C021 $C021 $8C0OBO
1683 $C029 $C029 $8C0B4
1783 $CO031 $CO031 $8C0OB8
1883 $C039 $C039 $8COBC

For a motor commutated by PMAC2, this parameter tells PMAC2 where to read its
commutation (phasing) position information for Motor x every commutation cycle. This
can be a different address from that used for power-on/reset phasing position, which is
determined by Ix81.

Bits 0 to 15 of Ix83 contain the 16-bit address of the register to be read. Bit 19 of Ix83
tells whether the register has a X address or a Y address; a 0 value specifies X, and a 1
value (which makes the hexadecimal digit have an 8 value) specifies Y.

For PMAC(1) and PMAC2 boards with on-board encoder circuitry, Ix83 typically contains
the address of the phase position encoder register for encoder x; this is the default. Since
these registers have X addresses, bit 19 is 0.

On PMAC(1) boards, because two channels are required for commutation output, usually
only the odd-numbered channels are used for commutation feedback. This is reflected in
the defaults.

PMAC I-Variable Specification 117

PMAC 2 Software Reference

See Also

The following table provides the 1x83 values for all of the possible phase-position registers
in PMAC(1) system:

Channel Ix83 Channel Ix83
1 $C001 9 $C021
2 $C005 10 $C025
3 $C009 11 $C029
4 $C00D 12 $C02D
5 $Co11 13 $C031
6 $CO015 14 $C035
7 $C019 15 $C039
8 $C01D 16 $C03D
Channels 9 — 16 are present on an ACC-24P/V board

On PMAC?2 boards, commutation requires only one channel, so any channel can be used
for commutation feedback. The following table provides the 1x83 values for all of the
phase-position registers in a PMAC2 system:

Channel Ix83 Channel Ix83
1 $C001 9 $C041
2 $C009 10 $C049
3 $CO11 11 $CO051
4 $C019 12 $C059
5 $C021 13 $C061
6 $C029 14 $C069
7 $C031 15 $C071
8 $C039 16 $C079
Channels 9 — 16 are present on an ACC-24P/V2 board

For PMAC?2 Ultralite boards, Ix83 typically contains the address of a MACRO node’s
position feedback register; this is the default. Since PMAC?2 can only commutate over
MACRO using nodes with ‘Y’ addresses, bit 19 must be set to 1 in these cases. The
following table shows Ix83 values for all of the MACRO servo nodes:

Node Ix83 Channel Ix83
0 $8COA0 8 $8C0OB0
1 $8C0A4 9 $8C0B4
4 $8COAS 12 $8C0OB8
5 $8COAC 13 $8COBC

If the motor is performing open-loop microstepping control inside PMAC (Ix01=1, bit 16
of Ix02=1), this parameter must contain the address of the motor’s “phase advance “
register (X:$0042, X:$007E, etc.) instead of an encoder register.

I-variables Ix01, 1x02, Ix03, Ix04, Ix81
Setting Up PMAC Commutation
I/O-Memory Map registers X:$C001, X:$C005, etc., X:$0042, X:$007E, etc.

Ix84 Current-Loop Feedback Mask Word {PMAC2 only}

Range $000000 .. SFFFFFF

Units Bit mask

Default $FFF000 (12-bit ADCs)

Remarks Ix84 tells PMAC2 what bits of the 24-bit current feedback word(s) to use as actual the
actual current value in the current loop equations when it is closing the current loops for a
direct-PWM “power-block” amplifier. It is only used if Ix82>0, enabling current loop
closure in the PMAC?2.

118 PMAC I-Variable Specifiation

PMAC 2 Software Reference

Example

PMAC?2 supports interface to serial analog-to-digital converters of many resolutions
through its “DSPGATE1” ASIC. The data is received in 18-bit shift registers in the ASIC,
which are read as the high end of a 24-bit word, with the number “left-justified” to the
most significant bit.

Ix84 specifies a 24-bit mask word that is combined with the feedback word through a
logical AND operation to produce the value that is used in the current loop equations.
There should be a 1 in every bit that is used, and a 0 in every bit that is not. Since the data
is left justified, [x84 should start with 1s and end with Os. Usually [x84 is represented as a
hexadecimal number, with 4 bits per digit, and a total of six digits

Some direct-PWM amplifiers will transmit status and fault information on the end of the
serial data stream for the ADC, and it is important to mask out these values from the
current loop equations.

For a 10-bit ADC: Ix84=$FFC000
For a 12-bit ADC: Ix84=$FFF000
For a 16-bit ADC: Ix84=$FFFF00

Further Motor I-Variables
Ix85 Motor x Backlash Take-up Rate

Range
Units
Default

Remarks

See Also

0..8,388,607
(1/16 Counts) / Background Cycle
0

Ix85 determines how fast backlash is “taken up” on direction reversal. The size of the
backlash is determined by Ix86, and possibly the backlash compensation table for the
motor. PMAC will “take up” the backlash at the Ix85 rate whenever the commanded or
Master Handwheel position for the motor reverses more than 4 encoder counts. If Ix85 is
zero, backlash is effectively disabled. 1x85 is usually set as high as possible without
creating dynamic problems.

Variable 199, Backlash Hysteresis, determines the amount of reversal in desired position
that is required before backlash will start to be introduced or removed.

I-variables 199, Ix64, Ix65, 1x68, 1x86
On-line commands DEFINE BLCOMP, DELETE BLCOMP
Backlash Compensation (Setting Up a Motor)

IXx86 Motor x Backlash Size

Range
Units
Default

Remarks

-8,388,608 .. 8,388,607
1/16 Count
0

Ix86 allows PMAC to compensate for backlash in the motor’s coupling by adding or
subtracting (depending on the new direction) the amount specified in the parameter to the
commanded position on direction reversals (this offset will not appear when position is
queried or displayed). A value of zero means no backlash. Negative values of [x86 can be
useful if the motor is slaved to another motor that has more backlash than the slave.

The rate at which this backlash is added or subtracted (taken up) is determined by Ix85.
Variable 199, Backlash Hysteresis, determines the amount of reversal in desired position
that is required before backlash will start to be introduced or removed.

PMAC I-Variable Specification 119

PMAC 2 Software Reference

If backlash tables are used, Ix86 represents the backlash at motor zero position; values in
the table should represent the difference between the backlash at a given position and 1x86.

Note:

The units of this parameter are 1/16 of a count so the value should
be 16 times the number of counts of backlash compensation desired.

Example If you find that you have a backlash on reversal of motor direction of 7.5 encoder counts,
you would set [x86 to 7.5 * 16 = 120.

See Also I-variables 199, Ix64, Ix65, Ix68, Ix85
On-line commands DEFINE BLCOMP, DELETE BLCOMP
Backlash Compensation (Setting Up a Motor)

Coordinate System x I-Variables
x = Coordinate System Number (&x,x =1 to 8)

Ix87 Coordinate System x Default Program Acceleration Time

Range 0..8,388,607

Units msec

Default 0 (so Ix88 controls)

Remarks Ix87 sets the default time for commanded acceleration for programmed blended LINEAR

and CIRCLE mode moves in Coordinate System x. It also provides the default segment
time for SPLINE mode moves. The first use of a TA statement in a program overrides this
value.

Note:

Even though this parameter makes is possible not to specify
acceleration time in the motion program, you are strongly
encouraged to use TA in the program and not rely on this parameter,
unless you must keep to a syntax standard that does not support this
(e.g. RS-274 “G-Codes). Specifying acceleration time in the
program along with speed and move modes makes it much easier
for later debugging.

If the specified S-curve time (see 1x88, below) is greater than half the specified
acceleration time, the time used for commanded acceleration in blended moves will be
twice the specified S-curve time.

The acceleration time is also the minimum time for a blended move; if the distance on a
feedrate-specified (F) move is so short that the calculated move time is less than the
acceleration time, or the time of a time-specified (TM) move is less than the acceleration
time, the move will be done in the acceleration time instead. This will slow down the
move.

Note:

The acceleration time will be extended automatically when any

motor in the coordinate system is asked to exceed its maximum

acceleration rate (Ix17) for a programmed LINEAR-mode move
with 113=0 (no move segmentation).

120 PMAC I-Variable Specifiation

PMAC 2 Software Reference

See Also

Note:

Make sure that the specified acceleration time (Ix87 or 2*Ix88) is
greater than zero, even if you are planning to rely on the maximum
acceleration rate parameters. A specified acceleration time of zero
will cause a divide-by-zero error. The minimum specified time
should be Ix87=1, Ix88=0.

Acceleration Limits (Making Your Application Safe)
I-variables 113, Ix17, Ix88
Program Commands TA, TS

Ix88 Coordinate System x Default Program S-Curve Time

Range
Units
Default

Remarks

See Also

0 .. 8,388,607
msec
50

Ix88 set the default time in each half of the S in S-curve acceleration for programmed
blended LINEAR and CIRCLE mode moves in Coordinate System x. It does not affect
SPLINE, PVT, or RAPID mode moves. The first use of a TS statement in a program
overrides this value.

Note:

Even though this parameter makes is possible not to specify
acceleration time in the motion program, you are strongly
encouraged to use TS in the program and not rely on this parameter,
unless you must keep to a syntax standard that does not support this
(e.g. RS-274 G-Codes). Specifying acceleration time in the
program along with speed and move modes makes it much easier
for later debugging.

If Ix88 is zero, the acceleration is constant throughout the Ix87 time and the velocity
profile is trapezoidal. If Ix88 is greater than zero, the acceleration will start at zero and
linearly increase through Ix88 time, then stay constant (for time TC) until [x87-1x88 time,
and linearly decrease to zero at [x87 time (that is [x87=2*Ix88 - TC). If Ix88 is equal to
1x87/2, the entire acceleration will be spec in S-curve form (Ix88 values greater than
Ix87/2 override the [x87 value; total acceleration time will be 2*1x88).

Note:

The acceleration time will be extended automatically when any
motor in the coordinate system is asked to exceed its maximum
acceleration rate (Ix17) for a programmed LINEAR-mode move
with 113=0 (no move segmentation).

Make sure the specified acceleration time (TA or 2*TS) is greater
than zero, even if you are planning to rely on the maximum
acceleration rate parameters (Ix17). A specified acceleration time
of zero will cause a divide-by-zero error. The minimum specified
time should be TA1 TSO.

Acceleration Limits (Making Your Application Safe)
I-variables 113, Ix17, Ix87
Program Commands TA, TS

PMAC I-Variable Specification 121

PMAC 2 Software Reference

Ix89 Coordinate System x Default Program Feedrate/Move Time

Range
Units

Default

Remarks

See Also

Positive floating point

(user position units)/(feedrate time units) for feedrate
msec for move time

1000.0

Ix89 sets the default feedrate (commanded speed) for programmed LINEAR and CIRCLE
mode moves in Coordinate System x. The first use of an F or TM statement in a motion
program overrides this value. The velocity units are defined by the position and time units,
as defined by axis definition statements and [x90. After power-up/reset, the coordinate
system is in feedrate mode, not move time mode.

Note:

You are strongly encouraged not to rely on this parameter and to
declare your feedrate in the program. This will keep your move
parameters with your move commands, lessening the chances of
future errors, and making debugging easier.

When polled, 1x89 will report the value from the most recently executed F or TM command
in that coordinate system.

Axis Definition Statements (Setting Up a Coordinate System)

LINEAR and CIRCLE mode blended moves (Writing a Motion Program)
I-variables Ix87, Ix88, 1x90

Program commands F, TM

IX90 Coordinate System x Feedrate Time Units

Range
Units
Default

Remarks

Example

positive floating point
msec
1000.0 (velocity time units are seconds)

1x90 defines the time units used in commanded velocities (feedrates) in motion programs
executed by Coordinate System x. Velocity units are comprised of length units divided by
time units. The length units are determined in the axis definition statements for the
coordinate system. Ix90 sets the time units. 1x90 itself has units of milliseconds, so if
1x90 is 60,000, the time units are 60,000 milliseconds, or minutes. The default value of
1x90 is 1000 msec, specifying velocity time units of seconds.

This affects two types of motion program values: F values (feedrate) for LINEAR- and
CIRCLE-mode moves; and the velocities in the actual move commands for PVT-mode
moves.

If position units have been set as centimeters by the axis definition statements, and it is
desired that feedrate values be specified in cm/sec, this parameter would be set to 1000.0
(time units = sec).

If position units have been set as degrees by the axis definition statements, and it is desired
that feedrate values be specified in deg/min, this parameter would be set to 60,000.0 (time
units = minutes).

If a spindle is rotating at 4800 rpm, with a linear axis specified in inches, and it is desired
that linear speed be specified in inches per spindle revolution, Ix90 would be set to 12.5 ([1
min/4800 rev] * [60,000 msec/ min] = 12.5 msec/rev).

122

PMAC I-Variable Specifiation

PMAC 2 Software Reference

See Also

Axis Definition Statements (Setting Up a Coordinate System)
Velocity-Specified Moves, PVT-Mode Moves (Writing a Motion Program)
Motion program commands F{data}, {axis}{data}: {data}.

Ix91 Coordinate System x Default Working Program Number

Range
Units
Default

Remarks

See Also

0..32,767
Motion Program Numbers
0

1x91 tells PMAC which motion program to run in this coordinate system when
commanded to run from the control-panel input (START/ or STEP/ line taken low). It
performs the same function for a hardware run command as the B command does for a
software run command (R). It is intended primarily for stand-alone PMAC applications.
The first use of a B command from a host computer for this coordinate system overrides
this parameter.

Control-Panel Port Inputs (Connecting PMAC to the Machine)

On-line commands B{constant}, R, S.

Ix92 Coordinate System x Move Blend Disable

Range
Units
Default

Remarks

See Also

0.1
None
0

1x92 controls whether Coordinate System x automatically blends moves together or not. If
1x92 set to 0, programmed blended moves — LINEAR, SPLINE, and CIRCLE-mode — are
blended together with no intervening stop. Upcoming moves are calculated during the
current moves.

If [x92 is set to 1, there is a brief stop in between each programmed move (it effectively
adds a DHELL O command), during which the next move is calculated. The calculation
time for the next move is determined by 111.

This parameter is only acted upon when the R or S command is given to start program
execution. To change the mode of operation while the program is running the “continuous
motion request” coordinate system status bit (bit 4 of X:$0818 etc.) must be changed. The
polarity of this bit is opposite that of [x92.

LINEAR- and CIRCLE-Mode Blended Moves (Writing a Motion Program)
How PMAC Executes a Motion Program (Writing a Motion Program)
I-variable 111

IxX93 Coordinate System x Time Base Control Register Address

Range
Units
Default

Legal PMAC X addresses
Legal PMAC addresses
Variable Hex | Decimal Register

1193 $0806 2054 C.S.1 ‘%’ cmd reg
1293 $08C6 2246 C.5.2 ‘%’ cmd reg
1393 $0986 2438 C.S.3 ‘%’ cmd reg
1493 $0A46 2630 C.S5.4 ‘%’ cmd reg
1593 $0B06 2822 C.S.5 ‘%’ cmd reg
1693 $0BC6 3014 C.S5.6 ‘%’ cmd reg
1793 $0C86 3206 C.S.7 ‘%’ cmd reg
1893 $0D46 3398 C.S5.8 ‘%’ cmd reg

PMAC I-Variable Specification 123

PMAC 2 Software Reference

Remarks

See Also

1x93 tells Coordinate System x where to look for its time base control (feedrate override)
information by specifying the address of the register that will be used. The default value
of this parameter for each coordinate system (see above) specifies the register that
responds to on-line commands. If the time base is left alone, or is under host or
programmatic control, this parameter should be left at the default.

Alternatively, if the time base is controlled externally from a frequency or voltage, the
register containing the time-base information will almost always be in the conversion table
(which starts at address $720 [1824 decimal]). With the default conversion table, there is a
time-base register at $0729 (1833) related to the frequency into the Encoder 4 counter.
This frequency can be controlled by an input voltage on the WIPER pin of the Control
Panel Port if jumpers E72 and E73 are ON. If another register is to be used for the time

base, it must have the units of 110 so that 8388608 (223) indicates 1 msec between servo
interrupts. See instructions for using an external time base, under Synchronizing PMAC to
External Events.

Note:

Ix93 contains the address of the register that holds the time-base
value (it is a pointer to that register). 1x93 does not contain the
time-base value itself.

Time-Base Control (Synchronizing PMAC to External Events)
Control Panel Port Inputs (Connecting PMAC to the Machine)
I-variables 110, Ix93, Ix95

On-line commands %, $ {constant}.

Jumpers E72, E73

Ix94 Coordinate System x Time Base Slew Rate

Range
Units

Default
Remarks

0 .. 8,388,607

2-"msec/ servo cycle

1644

Ix94 controls the rate of change of the coordinate system’s time base. It effectively works
in two slightly different ways, depending on the source of the time base information. If
the source of the time base is the “%” command register, then [x94 defines the rate at
which the “ (actual time base) value will slew to a newly commanded value. If the rate is
too high, and the % value is changed while axes in the coordinate system are moving, there
will be a virtual step change in velocity. For these type of applications, [x94 is set
relatively low (often 1000 to 5000) to provide smooth changes.

Note:

The default 1x94 value of 1644, when used on a card set up with the
default servo cycle time of 442 psec, provides a transition time
between %0 and %100 of one second.

If there is a hardware source (as defined by Ix93), the commanded time-base value
changes every servo cycle, and the rate of change of the commanded value is typically
limited by hardware considerations (e.g. inertia). In this case, x94 effectively defines the
maximum rate at which the % value can slew to the new hardware-determined value, and
the actual rate of change is determined by the hardware. If you wish to keep synchronous
to a hardware input frequency, as in a position-lock cam, 1x94 should be set high enough
that the limit is never activated. However, following motion can be smoothed significantly
with a lower limit if total synchronicity is not required.

124

PMAC I-Variable Specifiation

PMAC 2 Software Reference

See Also Time-Base Control (Synchronizing PMAC to External Events)
I-variables 110, 1x93, Ix95
On-line commands % {constant}, %

Ix95 Coordinate System x Feed Hold Slew Rate

Range 0 .. 8,388,607

Units 2-"msec/servo cycle

Default 1644

Remarks Ix95 controls the rate at which the axes of the coordinate system stop if a feed hold

command (H) is given, and the rate at which they start up again on a succeeding run
command (R or S). A feed hold command is equivalent to a $0 command except that it
uses [x95 for its slew rate instead of [x94. Having separate slew parameters for normal
time-base control and for feed hold commands allows both responsive ongoing time-base
control (Ix94 relatively high) and well-controlled holds (Ix95 relatively low).

Note:

The default 1x95 value of 1644, when used on a card set up with the

default servo cycle time of 442 psec, provides a transition time
between %100 and %0 (feed hold) of one second.

See Also Stop Commands (Making Your Application Safe)
Time-Base Control (Synchronizing PMAC to External Events)
I-variables 110, Ix93, 1x94
On-line commands H, <CONTROL-0>, R, <CONTROL-R>, S, <CONTROL-S>, %.

IX96 Coordinate System x Circle Error Limit

Range positive floating point

Units User length units

Default 0 (function disabled)

Remarks In a circular arc move, a move distance that is more than twice the specified radius will

cause a computation error because a proper path cannot be found. Sometimes, due to
round-off errors, a distance slightly larger than twice the radius is given (for a half-circle
move), and it is desired that this not create an error condition.

Ix96 allows the user to set an error limit on the amount the arc move distance is greater
than twice the specified radius. If the move distance is greater than 2R, but by less than
this limit, the move is done in a spiral fashion to the endpoint, and no error condition is
generated. If the distance error is greater than this limit, a run-time error will be generated,
and the program will stop. If this variable is set to 0 the error generation is disabled and
any move distance greater than 2R is done in a spiral fashion to the endpoint.
If the circular move is specified with an IJK center-vector instead of an R radius, 1x96 is
not used.

Example Given the program segment

INC CIRCLE1l F2
X7.072 ¥7.072 R5

technically no circular arc path can be found, because the distance is SQRT(7.0722+7.0722)
=10.003, which is greater than twice the radius of 5. However as long as Ix96 is greater
than 0.003, PMAC will create a near-circular path to the end point.

See Also Circular Blended Moves (Writing a Motion Program)
Program commands CIRCLE1, CIRCLE2, {axis}{data} {vector}{data}

PMAC I-Variable Specification 125

PMAC 2 Software Reference

IxX97 (Reserved for Future Use)
Ix98 Coordinate System x Maximum Feedrate

Range Non-negative floating-point

Units User axis length/angle units per Ix90 milliseconds

Default 0

Remarks Ix98 permits a maximum feedrate to be set for a coordinate system, preventing a program

from accidentally exceeding a specified value. If [x98 is greater than 0, PMAC will
compare each commanded vector feedrate value from an F command in a motion program
to [x98. If the commanded feedrate is greater than 1x98, it will use Ix98 instead.

If Ix98 is set to 0, PMAC will not check the programmed feedrate value against a limit.
x99 (Reserved for Future Use)

PMAC(1) Encoder/Flag Setup I-Variables

One PMAC can have up to 16 incremental encoder channels — four per gate array IC. Each encoder and
its related flags and registers are set up using (up to) 5 I-variables. The encoders and their flags are
numbered 1 to 16, matching the numbers of their pinouts (e.g. CHA1, CHB1, and CHC1 belong to
encoder 1.) The encoder I-variables are assigned to the different encoders as follows:

1900 - 1904 — Encoder 1
1905 - 1909 — Encoder 2
1910 - 1914 — Encoder 3
1915 -1919 — Encoder 4

1970 - 1974 — Encoder 15
1975 - 1979 — Encoder 16

An encoder is assigned to a motor for position, velocity (feedback), handwheel (master), or feedpot
(frequency control) by using the appropriate motor I[-variables (see above).

1900, 1905, ..., 1975 Encoder n Decode Control “Encoder |-Variable 0” {PMAC(1) Only}
Range 0..15

Units none
Default 7
Remarks WARNING:

Changing the direction sense of the encoder decode for a motor that
is servoing properly will result in unstable positive feedback and a
dangerous runaway condition in the absence of other changes (for
motors not commutated by PMAC from the same encoder). The
output polarity must be changed as well to re-establish polarity
match for stable negative feedback.

This parameter controls how the input signal for Encoder n is decoded into counts. As
such, this defines the sign and magnitude of a count.

126 PMAC I-Variable Specifiation

PMAC 2 Software Reference

The following settings may be used to decode an input signal.

Setting Meaning

0 pulse and direction CW
x1 quadrature decode CW
x2 quadrature decode CW
x4 quadrature decode CW
pulse and direction CCW
x1 quadrature decode CCW
x2 quadrature decode CCW
x4 quadrature decode CCW

N[N | |W[IN|—

In any of the quadrature decode modes, PMAC is expecting two input waveforms on
CHAn and CHBn, each with approximately 50% duty cycle, and approximately one-
quarter of a cycle out of phase with each other. “Times-one” (x1) decode provides one
count per cycle; x2 provides two counts per cycle; and x4 provides four counts per cycle.
The vast majority of users select x4 decode to get maximum resolution.

The “clockwise” (CW) and “counterclockwise” (CCW) options simply control which
direction counts up. If you get the wrong direction sense, simply change to the other
option (e.g. from 7 to 3 or vice versa).

In the pulse-and-direction decode modes, PMAC is expecting the pulse train on CHAn,
and the direction (sign) signal on CHBn. If the signal is unidirectional, the CHBn input
can be tied high (to +5V) or low (to GND), or, if set up by E18-E21, E24-E27 for single-
ended (non-differential) input, left to float high.

Any spare encoder counters may be used as fast and accurate timers by setting this
parameter in the 8§ to 15 range. In this range, any input signal is ignored. The following
settings may be used in timer mode:

Setting Meaning
8 Timer counting up at SCLK/10
9 Timer counting up at SCLK/10
10 Timer counting up at SCLK/5
11 Timer counting up at SCLK/2.5
12 Timer counting down at SCLK/10
13 Timer counting down at SCLK/10
14 Timer counting down at SCLK/5
15 Timer counting down at SCLK/2.5

These timers are particularly useful when the related capture and compare registers are
utilized for precise event marking and control, including triggered time base. The SLCK
frequency is determined by the crystal clock frequency and E34-E38.

See Also Triggered Time Base (Synchronizing PMAC to External Events)
I-variables Ix03-1x05, 1x93
Jumpers E18-E21, E24-E27, E34-E38.

PMAC I-Variable Specification 127

PMAC 2 Software Reference

1901, 1906, ..., 1976 Encoder n Filter Disable “Encoder |-Variable 1” {PMAC(1) Only}

Range
Units
Default

Remarks

See Also

0..1
none
0

This parameter controls whether the encoder channel enables or disables its digital delay
filter. The options are:

0 = Encoder n digital delay filter enabled

1 = Encoder n digital delay filter disabled (bypassed)

The filter is a 3-stage digital delay filter with best-2-o0f-3 voting to help suppress noise
spikes on the input lines. It does introduce a small delay into the signal, which can be

unacceptable if the motor is using interpolated sub-count parallel data input, because of
loss of synchronization between the quadrature and parallel data signals.

Note:

Generally, the only people to disable this filter are those using the
special interpolated parallel data format. These people should
disable the filters both on the encoder for their quadrature signals
and the encoder matching their parallel data input.

The sampling frequency for the filter is that of the SCLK signal, which is set by the master
clock frequency and jumpers E34-E38. The higher the frequency of SCLK, the higher the
possible count rate, but the narrower the pulse that can be filtered out. SCLK should be set
to allow the maximum expected encoder frequency, but no faster, in order to provide the
maximum noise protection.

Digital Delay Filter (Connecting PMAC to the Machine)
Parallel Sub-Count Interpolation (Setting Up a Motor)
Jumpers E34-E38

1902, 1907, ..., 1977 Encoder n Position Capture Control “Encoder |-Variable 2”
{PMAC(1) Only}

Range 0..15

Units none

Default 1

Remarks This parameter determines which signal or combination of signals (and which polarity)
triggers a position capture of the counter for encoder n. If a flag input (home, limit, or
fault) is used, 1903 (etc.) determines which flag. Proper setup of this variable is essential
for a successful home search, which depends on the position-capture function.

128 PMAC I-Variable Specifiation

PMAC 2 Software Reference

The following settings may be used:

Setting

Meaning

0

Software Control (armed)

Rising edge of CHCn (third channel)

Rising edge of Flag n (as set by Flag Select)

Rising edge of [CHCn AND Flag n] — Low true index, high true Flag

Software Control (triggered)

Falling edge of CHCn (third channel)

Rising edge of Flag n (as set by Flag Select)

Rising edge of [CHCn/ AND Flag n] — Low true index, high true Flag

[l RN Ee Y LU, | N SNY QUS| § O)

Software Control (armed)

O

Rising edge of CHCn (third channel)

10

Falling edge of Flag n (as set by Flag Select)

11

Rising edge of [CHCn AND Flag n/] — High true index, low true Flag

12

Software Control (triggered)

13

Falling edge of CHCn (third channel)

14

Falling edge of Flag n (as set by Flag Select)

15

Rising edge of [CHCn/ AND Flag n/] — Low true index, low true Flag

Note that several of these values are redundant. To do a software-controlled position

capture, preset this parameter to 0 or 8; when the parameter is then changed to 4 or 12, the

capture is triggered (this is not of much practical use, but can be valuable for testing the
capture function).

See Also Position Capture (Synchronizing PMAC to External Events)
Homing Moves (Basic Motor Moves)
I-variables Ix25, Encoder I-Variable 3

1902, 1907, ..., 1977

High-true CHCn [(1) & (3)] 3
High-true FLAGn

{
Low-true CHCn [(2)/ & (3)] 7{
Iy
Iy

High-true FLAGn

High-true CHCn [(1) & (4)/] "
Low-true FLAGn

Low-true CHCN [(2)/ & (4)/] 15

2o0r6
(3) FLAGN i)
or
(4) FLAGN ot

ENCODER POSITION CAPTURE CONTROL

Used for homing and registration

(1) CHCn °'9{
or
(2) CHCn t
50r13

Low-true FLAGNn

PMAC I-Variable Specification

129

PMAC 2 Software Reference

1903, 1908, ..., 1978 Encoder n Flag Select Control Encoder |-Variable 3 {PMAC(1) only}

Range
Units
Default

Remarks

See Also

0.3
None
0

This parameter determines which of the Flag inputs will be used for position capture (if

one is used — see 1902 etc.):

Setting | Meaning
0 HMFLn (Home Flag n)
1 -LIMn (Positive Limit Signal n)
2 +LIMn (Negative Limit Signal n)
3 FAULTn (Amplifier Fault Signal n)

This parameter is typically set to zero, because in actual use, the +/-LIMn and FAULTn
flags create other effects that usually interfere with what is trying to be accomplished by
the position capture. If you wish to capture on the +/-LIMn or FAULTn flags, you must
either disable their normal functions with Ix25, or use a channel n where none of the flags
is used for the normal axis functions.

Note:

The direction sense of the limit inputs is the opposite of what many
people consider intuitive. That is, the +LIMn input, when taken
high (opened), stops commanded motion in the negative direction;
the -LIMn input, when taken high, stops commanded motion in the
positive direction. It is important to confirm the direction sense of
your limit inputs in actual operation.

I-variables Ix25, 1902

Position Capture (Synchronizing PMAC to External Events)
Homing Moves (Basic Motor Moves)

1904, 1909, .., 1979 — (Reserved for Future Use) {PMAC(1) only}

130

PMAC I-Variable Specifiation

PMAC 2 Software Reference

PMAC2 Encoder/Flag/Output Setup I-Variables

The DSPGATEI Servo ICs of PMAC?2 controllers have several setup variables. PMAC2 has I-variables
for the important setup registers of 2 Servo ASICs comprising eight servo interface channels. It is
possible to use two additional Servo ASICs on ACC-24P2 or ACC-51P boards, but these do not have I-
variables assigned to their setup registers.

Global / Multi-Channel ASIC I-Variables

The I-variables 1900 — 1909 on a PMAC?2 controller control the global setup registers of the two possible
on-board Servo ASICs of the PMAC2. Several of these registers on the first Servo ASIC control
important parameters for the whole PMAC?2 system.

1900 MaxPhase and PWM 1-4 Frequency Control {PMAC2 only}

Range 0..32767

Units MaxPhase Frequency = 117,964.8 kHz / [2*¥1900+3]
PWM Frequency = 117,964.8 kHz / [4*1900+6]

Default 6527

MaxPhase Frequency = 117,964.8 / 13057 = 9.0346 kHz
PWM Frequency = 117,964.8 / 26114 = 4.5173 kHz

Remarks 1900 controls the maximum phase clock frequency for the PMAC2, and the PWM
frequency for machine interface channels 1-4. It does this by setting the limits of the

PWM up-down counter, which increments and decrements at the PWMCLK frequency of
117,964.8 kHz (117.9648 MHz).

The actual phase clock frequency is divided down from the maximum phase clock
according to the setting of [901. On the falling edge of the phase clock, PMAC2 samples
any serial analog-to-digital converters connected to its ASICs (as for phase current
measurement), and interrupts the processor to start any necessary phase commutation and
digital current-loop algorithms. Even if phasing and current-loop algorithms are not used,
the MaxPhase and PhaseClock frequencies are important because the servo clock is
derived from the phase clock.

The PWM frequency determines the actual switching frequency of amplifiers connected to
any of PMAC?2’s first four machine interface channels with the direct PWM command. It
is only important if the direct PWM command signal format is used.

The maximum value that can be written into the PWM command register without full
saturation is [900+1 on the positive end, and -[900-2 on the negative end. Generally, the
PWM scale factor Ix66 for Motor, which determines the maximum PWM command
magnitude, is set to 1900 + 10%.

To set 1900 for a desired PWM frequency, the following formula can be used:

117,964.8(kHz)
4* PWM _Freq(kHz)

1900 = —1 (rounded down)

To set 1900 for a desired “maximum phase” clock frequency, the following formula can be
used:

117,964.8(kHz)
2* MaxPhaseFreq(kHz)

1900 = —1 (rounded down)

To set a PWM frequency of 10 kHz and therefore a MaxPhase clock frequency of 20 kHz:
1900 = (117,964.8 kHz / [4*10 kHz]) - 1 = 2948

PMAC I-Variable Specification 131

PMAC 2 Software Reference

Example

See Also

To set a PWM frequency of 7.5 kHz and therefore a MaxPhase clock frequency of 15 kHz:
1900 = (117,964.8 kHz / [4*7.5 kHz]) - 1 = 3931
1901, 1902, 1905, 1906, 1992

1901 Phase Clock Frequency Control {PMAC2 only}

Range
Units
Default

Remarks

Example

See Also

0..15
PHASE Clock Frequency = MaxPhase Frequency / (1901+1)

0
PHASE Clock Frequency = 9.0346 kHz / 1 = 9.0346 kHz
(with default value of 1900)

1901, in conjunction with 1900, determines the frequency of the PHASE clock on PMAC2
(except for PMAC2 Ultralites, which use 1992 and 1997 for this). Each cycle of the
PHASE clock, motor phase commutation and digital current-loop algorithms are
performed for specified motors.

Specifically, 1901 controls how many times the PHASE clock frequency is divided down
from the “maximum phase” clock, whose frequency is set by 1900. The PHASE clock
frequency is equal to the “maximum phase” clock frequency divided by (I1901+1). 1901
has a range of 0 to 15, so the frequency division can be by a factor of 1 to 16. The
equation for 1901 is:

MaxPhaseFreq(kHz) J
PhaseFreq(kHz)

1901 =

The ratio of MaxPhase Freq. to PHASE Clock Freq. must be an integer.

Note:

If jumper E1 is ON, PMAC2 gets its PHASE clock signal externally
from a serial-port input, and 1901 is not used.

Note:

If the phase clock frequency is set too high, lower priority tasks
such as communications can be starved for time. If the background
tasks are completely starved, the watchdog timer will trip, shutting
down the board. If a normal reset of the board does not re-establish
a state where the watchdog timer has not tripped and
communications works well, it will be necessary to re-initialize the
board by powering up with the E3 re-initialization jumper on. This
restores default settings, so communication is possible, and 1900
and 1901 can be set to supportable values.

With a 20 kHz MaxPhase Clock frequency established by 1900, and a desired 6.67 kHz
PHASE clock frequency, the ratio between MaxPhase and PHASE is 3:
1901 =(20/6.67)-1=3-1=2

1900, 1902, 1997

132

PMAC I-Variable Specifiation

PMAC 2 Software Reference

1902 Servo Clock Frequency Control {PMAC2 only}

Range
Units
Default

Remarks

Example

See Also

0..15
Servo Clock Frequency = PHASE Clock Frequency / (1902+1)

3 — SERVO Clock Frequency = 9.0346 kHz / (3+1) = 2.2587 kHz
(with default values of 1900 and 1901)

1902, in conjunction with 1901 and 1900, determines the frequency of the SERVO clock on
PMAC?2 (except for PMAC2 Ultralites, which use 1992, 1997, and 1998 for this). Each
cycle of the SERVO clock, PMAC2 updates the commanded position for each activated
motor, and executes the servo algorithm to compute the command output to the amplifier.

Specifically, 1902 controls how many times the SERVO clock frequency is divided down
from the PHASE clock, whose frequency is set by 1900 and 1901. The SERVO clock
frequency is equal to the PHASE clock frequency divided by (I1902+1). 1902 has a range
of 0 to 15, so the frequency division can be by a factor of 1 to 16. The equation for 1902
is:

PhaseFreq(kHz) ;

ServoFreq(kHz)
The ratio of PHASE Clock Freq. to SERVO Clock Freq. must be an integer.

Note: If jumper E1 is ON, PMAC?2 gets its SERVO clock signal externally from a serial-
port input, and 1902 is not used.

1902 =

For execution of trajectories at the proper speed, 110 must be set properly to tell the
trajectory generation software what the SERVO clock cycle time is. The formula for 110
is:

8,388,608

110=—""——
ServoFreq(kHz)

In terms of the variables that determine the SERVO clock frequency on a (non-Ultralite)
PMAC?2 board, the formula for 110 is:

110 = 6i90(2 *1900+ 3Y1901+1)1902+1)

At the default servo clock frequency, 110 should be set to 3,713,707 in order that PMAC’s
interpolation routines use the proper servo update time.

Note:

If the servo clock frequency is set too high, lower priority tasks
such as communications can be starved for time. If the background
tasks are completely starved, the watchdog timer will trip, shutting
down the board. If a normal reset of the board does not re-establish
a state where the watchdog timer has not tripped and
communications works well, it will be necessary to re-initialize the
board by powering up with the E3 re-initialization jumper on. This
restores default settings, so communication is possible, and 1900
and 1901 can be set to supportable values.

With a 6.67 kHz PHASE Clock frequency established by 1900 and 1901, and a desired 3.33
kHz SERVO Clock frequency:

1902 =(6.67/333)-1=2-1=1

110, 1900, 1901, 1998

PMAC I-Variable Specification 133

PMAC 2 Software Reference

1903 Hardware Clock Control Channels 1-4 {PMAC2 only}

Range
Units

Default

Remarks

0 .. 4095

1903 = Encoder SCLK Divider

.......................... + 8 * PFM_CLK Divider
.......................... + 64 * DAC_CLK Divider
.......................... +512 * ADC_CLK Divider

Encoder SCLK Frequency = 39.3216 MHz / (2 ~ Encoder SCLK Divider)
PFM_CLK Frequency = 39.3216 MHz / (2 * PFM_CLK Divider)
DAC_CLK Frequency = 39.3216 MHz / (2 * DAC_CLK Divider)
ADC_CLK Frequency =39.3216 MHz / (2 ~ ADC_CLK Divider)

2258 =2+ (8 *2)+ (64 *3) + (512 * 4)

Encoder SCLK Frequency =39.3216 MHz / (2 ~ 2) =9.8304 MHz
PFM_CLK Frequency =39.3216 MHz / (2 ~ 2) = 9.8304 MHz
DAC_CLK Frequency =39.3216 MHz / (2~ 3) =4.9152 MHz
ADC_CLK Frequency =39.3216 MHz / (2 4) =2.4576 MHz

1903 controls the frequency of four hardware clock frequencies — SCLK, PFM_CLK,

DAC _CLK, and ADC_CLK - for the first four machine interface channels on PMAC2. It
is a 12-bit variable consisting of four independent 3-bit controls, one for each of the
clocks. Each of these clock frequencies can be divided down from a starting 39.3216 MHz

frequency by powers of 2, 2N, from 1 to 128 times (N=0 to 7). This means that the
possible frequency settings for each of these clocks are:

Frequency Divide by Divider N in
12"

39.3216 MHz
19.6608 MHz
9.8304 MHz
4.9152 MHz 8
2.4576 MHz 16
1.2288 MHz 32
614.4 kHz 64
307.2 kHz 128 7

Very few PMAC?2 users will be required to change the setting of 1903 from the default
value.

The encoder sample clock signal SCLK controls how often PMAC2’s digital hardware
looks at the encoder and flag inputs. PMAC2 can take at most one count per SCLK cycle,
so the SCLK frequency is the absolute maximum encoder count frequency. SCLK also
controls the signal propagation through the digital delay filters for the encoders and flags;
the lower the SCLK frequency, the greater the noise pulse that can be filtered out. The
SCLK frequency should optimally be set to the lowest value that can accept encoder
counts at the maximum possible rate.

N =

AN N[V [— O

Note:

If jumper E13 is ON in either setting, PMAC2 uses an external
SCLK signal for encoder sampling and digital delay filter clocking;
in this case, this part of 1903 is not used.

134

PMAC I-Variable Specifiation

PMAC 2 Software Reference

Example

See Also

The pulse-frequency-modulation clock PFM_CLK controls the PFM circuitry that is
commonly used for stepper drives. The maximum pulse frequency possible is 1/4 of the
PFM_CLK frequency. The PFM_CLK frequency should optimally be set to the lowest
value that can generate pulses at the maximum frequency required.

The DAC_CLK controls the serial data frequency into D/A converters. If these converters
are on Delta Tau-provided accessories, the DAC _CLK setting should be left at the default
value.

The ADC _CLK controls the serial data frequency from A/D converters. If these
converters are on Delta Tau-provided accessories, the ADC_CLK setting should be left at
the default value.

To determine the clock frequencies set by a given value of 1903, use the following
procedure:

1. Divide I903 by 512 and round down to the nearest integer. This value N1 is the
ADC_CLK divider.

2. Multiply N1 by 512 and subtract the product from 1903 to get 1903°. Divide [903” by

64 and round down to the nearest integer. This value N2 is the DAC_CLK divider.

3. Multiply N2 by 64 and subtract the product from 1903’ to get 1903°°. Divide 1903’ by

8 and round down to the nearest integer. This value N3 is the PFM_CLK divider.

Multiply N3 by 8 and subtract the product from 1903°’. The resulting value N4 is the
SCLK divider.

The maximum encoder count frequency in the application is 800 kHz, so the 1.2288 MHz
SCLK frequency is chosen. A pulse train up to 500 kHz needs to be generated, so the
2.4576 MHz PFM_CLK frequency is chosen. The default serial DACs and ADCs
provided by Delta Tau are used, so the default DAC CLK frequency of 4.9152 MHz and
the default ADC_CLK frequency of 2.4576 MHz are chosen. From the table:

.......................... SCLK Divider N: 5

.......................... PFM_CLK Divider N: 4

.......................... DAC_CLK Divider N: 3

.......................... ADC_CLK Divider N: 4

.......................... 1903=5+(8*4)+ (64 *3)+ (512 *4)=5+32+ 192 + 2048 =2277

1903 has been set to 3429. What clock frequencies does this set?

.......................... N1 =INT (3429/512) = 6 ADC_CLK = 611.44 kHz
.......................... 1903 = 3429 - (512%6) = 357

.......................... N2 = INT (357/64) = 5 DAC_CLK = 1.2288 MHz
.......................... 1903 = 357 - (64*5) = 37

.......................... N3 =INT (37/8) = 4 PFM_CLK = 2.4576 MHz
.......................... N4 =37-(8*4)=5 SCLK = 1.2288 MHz

1907, 1993

PMAC I-Variable Specification 135

PMAC 2 Software Reference

1904 PWM 1-4 Deadtime / PFM 1-4 Pulse Width Control {PMAC2 only}

Range
Units

Default

Remarks

Example

See Also

0..255

PWM Deadtime = [16 / PWM_CLK (MHz)] * 1904 = 0.135 usec * 1904
PFM Pulse Width =[1 / PFM_CLK (MHz)] * 1904

=PFM_CLK period (usec) * 1904
15

PWM Deadtime = 0.135 usec * 15 =2.03 usec
PFM Pulse Width =[1/9.8304 MHz] * 15 = 1.526 usec (with default 1903)

1904 controls the deadtime period between top and bottom on-times in PMAC2’s
automatic PWM generation for machine interface channels 1-4. In conjunction with 1903,
it also controls the pulse width for PMAC2’s automatic pulse-frequency modulation
generation for machine interface channels 1-4.

The PWM deadtime, which is the delay between the top signal turning off and the bottom
signal turning on, and vice versa, is specified in units of 16 PWM_CLK cycles. This
means that the deadtime can be specified in increments of 0.135 usec. The equation for
1904 as a function of PWM deadtime is:

DeadTime(u sec)
0.135 1 sec
The PFM pulse width is specified in PFM_CLK cycles, as defined by 1903. The equation
for 1904 as a function of PFM pulse width and PFM_CLK frequency is:
1904 = PFM _CLK _Freq(MHz)* PFM _ Pulse Width(u sec)

1904 =

In PFM pulse generation, the minimum off time between pulses is equal to the pulse width.
This means that the maximum PFM output frequency is

PFM CLK Freq(MHz)
2*%1904
A PWM deadtime of approximately 1 microsecond is desired:
1904 = 1 usec / 0.135 usec = 7
With a 2.4576 MHz PFM_ CLK frequency, a pulse width of 0.4 usec is desired:
1904 = 2.4576 MHz * 0.4 usec = 1

PFM Max Freq(MHz)=

1908, 1994

1905 DAC 1-4 Strobe Word {PMAC2 only}

Range $000000 .. SFFFFFF

Units Serial Data Stream (MSB first, starting on rising edge of phase clock)

Default $7FFFCO

Remarks 1905 controls the DAC strobe signal for machine interface channels 1-4. The 24-bit word
set by 1905 is shifted out serially on lines DAC_STROBI1-4, MSB first, one bit per
DAC_CLK cycle starting on the rising edge of the phase clock. The value in the LSB is
held until the next phase clock cycle.
The default 1905 value of $7FFFCO is suitable for the 18-bit DACs on the ACC-8E Analog
Interface Board. 1905 should not be changed from the default unless different DACs are
used.
For a 16-bit DAC, 1905 should be set to $7FFF00. For a 12-bit DAC, 1905 should be set to
$7FF000.

See Also 1909

136 PMAC I-Variable Specifiation

PMAC 2 Software Reference

1906 PWM 5-8 Frequency Control {PMAC2 only}

Range
Units
Default

Remarks

Example

See Also

0..32767
PWM Frequency = 117,964.8 kHz / [4*1906+6]

6257
PWM Frequency = 117,964.8 / 26114 = 4.5163 kHz

1906 controls the PWM frequency for machine interface channels 5-8. It does this by
setting the limits of the PWM up-down counter, which increments and decrements at the
PWMCLK frequency of 117,964.8 kHz (117.9648 MHz).

The PWM frequency determines the actual switching frequency of amplifiers connected to
any of PMAC?2’s first four machine interface channels with the direct PWM command.
The value of 1906 is only important if the direct PWM command signal format is used on
channels 5 to 8.

Generally, 1906 is set to the same value as 1900, which controls the frequency of channels
1 to 4. If a different PWM frequency is desired for channels 5 to 8, 1906 should be set so
that
2*PWM[5—8]Freq(kHz)
PhaseFreq

={ Integer}

This will keep the PWM hardware on channels 5-8 in synchronization with the software

algorithms driven by the PHASE clock, which is set by 1900, 1901, and 1902. For example

if the phase frequency is 10 kHz, the PWM frequency for channels 5 to 8 can be 5, 10, 15,

20, (etc.) kHz.

To set 1906 for a desired PWM frequency, the following formula can be used:
117,964.8(kHz)

1906 = —1 (rounded down)
4*PWM Freq(kHz)

A 30 kHz PWM frequency is desired for Channels 5-8:
1906 = (117,964.8 / [4 *30]) - 1 = 982

1900, 1992

1907 Hardware Clock Control Channels 5-8 {PMAC2 only}

Range
Units

Default

0 .. 4095

1907 = Encoder SCLK Divider
.......................... + 8 * PFM_CLK Divider
.......................... + 64 * DAC_CLK Divider
.......................... + 512 * ADC_CLK Divider

Encoder SCLK Frequency =39.3216 MHz / (2 ~ Encoder SCLK Divider)
PFM_CLK Frequency =39.3216 MHz / (2 * PFM_CLK Divider)
DAC_CLK Frequency =39.3216 MHz / (2 * DAC_CLK Divider)
ADC_CLK Frequency =39.3216 MHz / (2 * ADC_CLK Divider)

2258 =2+ (8 *2)+ (64 *3) + (512 * 4)

Encoder SCLK Frequency = 39.3216 MHz / (2 ~ 2) = 9.8304 MHz
PFM_CLK Frequency =39.3216 MHz / (2 ~ 2) = 9.8304 MHz
DAC_CLK Frequency =39.3216 MHz / (2 * 3) =4.9152 MHz
ADC_CLK Frequency =39.3216 MHz / (2~ 4) = 2.4576 MHz

PMAC I-Variable Specification 137

PMAC 2 Software Reference

Remarks

Example

See Also

1907 controls the frequency of four hardware clock frequencies for the second group of
four machine interface channels on PMAC2 (channels 5-8). It is a 12-bit variable
consisting of four independent 3-bit controls, one for each of the clocks. Each of these
clock frequencies can be divided down from a starting 39.3216 MHz frequency by powers
of 2, from 1 to 128 times.

This means that the possible frequency settings for each of these clocks are:

Frequency Divide by Divider N in
1/2~N

39.3216 MHz
19.6608 MHz
9.8304 MHz
4.9152 MHz 8
2.4576 MHz 16
1.2288 MHz 32

614.4 kHz 64

307.2 kHz 128 7

N =

AN [BR([W|IN (= O

Very few PMAC?2 users will be required to change the setting of 1907 from the default
value.

The encoder sample clock signal SCLK controls how often PMAC2’s digital hardware
looks at the encoder and flag inputs. PMAC2 can take at most one count per SCLK cycle,
so the SCLK frequency is the absolute maximum encoder count frequency. SCLK also
controls the signal propagation through the digital delay filters for the encoders and flags;
the lower the SCLK frequency, the greater the noise pulse that can be filtered out. The
SCLK frequency should optimally be set to the lowest value that can accept encoder
counts at the maximum possible rate.

The pulse-frequency-modulation clock PFM_CLK controls the PFM circuitry that is
commonly used for stepper drives. The maximum pulse frequency possible is 1/4 of the
PFM_CLK frequency. The PFM_CLK frequency should optimally be set to the lowest
value that can generate pulses at the maximum frequency required.

The DAC_CLK controls the serial data frequency into D/A converters. If these converters
are on Delta Tau-provided accessories, the DAC _CLK setting should be left at the default
value.

The ADC_CLK controls the serial data frequency from A/D converters. If these
converters are on Delta Tau-provided accessories, the ADC _CLK setting should be left at
the default value.

See 1903 Example
1903, 1993

138

PMAC I-Variable Specifiation

PMAC 2 Software Reference

1908 PWM 5-8 Deadtime / PFM 5-8 Pulse Width Control {PMAC2 only}

Range
Units

Default

Remarks

Example

See Also

0..255

PWM Deadtime = 0.135 usec * 1908
PFM Pulse Width =[1/PFM_CLK (MHz)] * 1908
=PFM_CLK period (usec) * 1908

15
PWM Deadtime = 0.135 usec * 15 =2.03 usec
PFM Pulse Width =[1/9.8304 MHz] * 15 = 1.526 usec (with default 1907)

1908 controls the deadtime period between top and bottom on-times in PMAC2’s
automatic PWM generation for machine interface channels 5-8. In conjunction with 1907,
it also controls the pulse width for PMAC2’s automatic pulse-frequency modulation
generation for machine interface channels 5-8.

The PWM deadtime, which is the delay between the top signal turning off and the bottom
signal turning on, and vice versa, is specified in units of 16 PWM_CLK cycles. This
means that the deadtime can be specified in increments of 0.135 usec. The equation for
1908 as a function of PWM deadtime is:
DeadTime(u sec)

0.135 1 sec
The PFM pulse width is specified in PFM_CLK cycles, as defined by 1907. The equation
for 1908 as a function of PFM pulse width and PFM_CLK frequency is:

1908 = PFM _CLK Freq(MHz)* PFM _ Pulse Width(u sec)

1904 =

In PFM pulse generation, the minimum off time between pulses is equal to the pulse width.
This means that the maximum PFM output frequency is
PFM CLK Freq(MHz)

2*%1904

PFM Max Freq(MHz)=

See 1904 Example.
1904, 1994

1909 DAC 5-8 Strobe Word {PMAC2 only}

Range
Units
Default

Remarks

See Also

$000000 .. SFFFFFF
Serial Data Stream (MSB first, starting on rising edge of phase clock)
$7FFFCO

1909 controls the DAC strobe signal for machine interface channels 5-8. The 24-bit word
set by 1909 is shifted out serially on lines DAC_STROBI1-4, MSB first, one bit per
DAC_CLK cycle starting on the rising edge of the phase clock. The value in the LSB is
held until the next phase clock cycle.

The default 1909 value of $7FFFCO is suitable for the 18-bit DACs on the ACC-8E Analog
Interface Board. 1909 should not be changed from the default unless different DACs are
used.

For a 16-bit DAC, 1909 should be set to $7FFF00. For a 12-bit DAC, 1909 should be set to
$7FF000.

1905

PMAC I-Variable Specification 139

PMAC 2 Software Reference

Channel-Specific Gate Array I-Variables

(For Channel n, where n =1 to 8)

I-Variables in the 1910s through 1980s control the hardware aspects of the “DSPGATE1” ASICs that
provide the machine interface for channels 1 through 8. Each DSPGATE1 ASIC controls four channels.
On an 8-channel PMAC?2 (one that includes Option 1), [-variables for all 8 channels can be used. On a 4-
channel PMAC2 (PMAC2-Lite or other PMAC2 without Option 1), only the I-variables for the first 4
channels can be used. On a PMAC2 Ultralite, there are no local machine interface channels, so none of
the I-variables in this range may be used.

Note:

In almost all cases, the machine interface channel n used for Motor x will be of the
same number as the motor number (that is, n = x). However, this does not
necessarily have to be the case, so it is a good idea to keep a clear distinction
between the software motor functions and the hardware channel functions.

There are no [-variables for the Channels 9 — 16 that come on an ACC-24P/V2 board. Setup of these
channels must be done with M-variables assigned to the appropriate control registers of these channels,
and values assigned to these M-variables after every board power-up.

I9n0 Encoder/Timer n Decode Control {PMAC2 only}

Range 0..15

Units None

Default 7

Remarks 1910 controls how the input signal for Encoder n is decoded into counts. As such, this

defines the sign and magnitude of a “count”. The following settings may be used to
decode an input signal.

Setting Meaning
Pulse and direction CW

x1 quadrature decode CW
x2 quadrature decode CW
x4 quadrature decode CW
Pulse and direction CCW
x1 quadrature decode CCW
x2 quadrature decode CCW
x4 quadrature decode CCW
Internal pulse and direction
(reserved for future use)
(reserved for future use)

x6 hall decode CW

MLDT pulse timer control
(reserved for future use)
(reserved for future use)

x6 hall decode CCW

|t | k| | | e
o e ey Y I = = S BT E- N (V) NS (8]) g F)

In any of the quadrature decode modes, PMAC?2 is expecting two input waveforms on
CHAn and CHBn, each with approximately 50% duty cycle, and approximately one-
quarter of a cycle out of phase with each other. Times-one (x1) decode provides one count
per cycle; x2 provides two counts per cycle; and x4 provides four counts per cycle. The
vast majority of users select x4 decode to get maximum resolution.

140 PMAC I-Variable Specifiation

PMAC 2 Software Reference

The clockwise (CW) and counterclockwise (CCW) options simply control which direction
counts up. If you get the wrong direction sense, simply change to the other option (e.g.
from 7 to 3 or vice versa).

Note:
Changing the direction sense of the decode for the feedback encoder
of a motor that is operating properly will result in unstable positive
feedback and a dangerous runaway condition in the absence of other
changes. The output polarity must be changed as well to re-
establish polarity match for stable negative feedback.

In the pulse-and-direction decode modes, PMAC?2 is expecting the pulse train on CHAn,
and the direction (sign) signal on CHBn. If the signal is unidirectional, the CHBn line can
be allowed to pull up to a high state, or it can be hardwired to a high or low state.

If I9n0 is set to &, the decoder inputs the pulse and direction signal generated by Channel
n’s pulse frequency modulator (PFM) output circuitry. This permits the PMAC2 to create
a phantom closed loop when driving an open-loop stepper system. No jumpers or cables
are needed to do this, the connection is entirely within the ASIC. The counter polarity
automatically matches the PFM output polarity.

If I9n0 is set to 11 or 15, the decoder looks at the 3-phase inputs on CHAn, CHBn, and
CHCn, and decodes 6 states per cycle. This permits the use of hall-style commutation
sensors for feedback. Each signal should be about 50% duty cycle, and 1/3-cycle offset
from the other signals. The direction sense of the decode changes between 19n0 = 11 and
I9n0 = 15. This mode is only supported on “B” and newer revisions of the DSPGATE1
IC.

If I9n0 is set to 12, the timer circuitry is set up to read magnetostrictive linear displacement
transducers (MLDTs) such as Temposonics™. In this mode, the timer is cleared when the
PFM circuitry sends out the excitation pulse to the sensor on PULSEn, and it is latched
into the memory-mapped register when the excitation pulse is received on CHAn.

I19n1 Position Compare n Channel Select {PMAC2 only}

Range
Units
Default

Remarks

0.1
None
0

I9n1 controls which encoder counter that Channel n’s position compare circuitry operates
with. When [9n1 is set to 0, the channel’s position compare register is tied to the channel’s
own encoder counter, and the position compare signal appears only on the EQUn output.

When 19n1 is set to 1, the channel’s position compare register is tied to the first encoder
counter on the ASIC — Encoder 1 for channels 1-4, or Encoder 5 for channels 5-8 — and the
position compare signal appears both on EQUn, and combined into the EQU output for the
first channel on the IC (EQU1 or EQUS); executed as a logical OR.

1911 and 1951 perform no effective function, so are always 1. They cannot be set to 0.

PMAC I-Variable Specification 141

PMAC 2 Software Reference

I9n2 Encoder n Capture Control {PMAC2 only}

Range 0..15

Units none

Default 1

Remarks This parameter determines which input signal or combination of signals for channel n, and

which polarity, triggers a hardware position capture of the counter for encoder n. If a flag
input (home, limit, or user) is used, I9n3 determines which flag. Proper setup of this
variable is essential for a successful home search, which depends on the position-capture
function. The following settings may be used:

Setting Meaning

Software Control (immediate capture)

Rising edge of CHCn (third channel)

Rising edge of Flag n (as set by Flag Select)

Rising edge of [CHCn AND Flag n] — Low true index, high true Flag

Software Control (immediate capture)

Falling edge of CHCn (third channel)

Rising edge of Flag n (as set by Flag Select)

Rising edge of [CHCn/ AND Flag n] — Low true index, high true Flag
Software Control (immediate capture)

Rising edge of CHCn (third channel)

Falling edge of Flag n (as set by Flag Select)

Rising edge of [CHCn AND Flag n/] — High true index, low true Flag
Software Control (immediate capture)

Falling edge of CHCn (third channel)

Falling edge of Flag n (as set by Flag Select)

Rising edge of [CHCn/ AND Flag n/] — Low true index, low true Flag

k| k| | k| |
GIRIDISIZISe|®|w|o|un|s|w||—|c

Note that only flags and index inputs of the same channel number as the encoder may be
used for hardware capture of that encoder’s position. This means that to use the hardware
capture feature for the homing search move, Ix25 must use flags of the same channel
number as the encoder that [x03 uses for position-loop feedback.

To do a software-controlled position capture, preset this parameter to 0 or 8; when the
parameter is then changed to 4 or 12, the capture is triggered (this is not of much practical
use).

The trigger is armed when the position capture register is read. After this, as soon as
PMAC?2 sees that the specified input lines are in the specified states, the trigger will occur
— it is level-triggered, not edge-triggered.

142 PMAC I-Variable Specifiation

PMAC 2 Software Reference

I9n3 Capture n Flag Select Control {PMAC2 only}

Range
Units
Default

Remarks

0.3
none
0

This parameter determines which of the “Flag” inputs will be used for position capture (if
one is used — see 1902 etc.):

.......................... 0: HMFLn (Home Flag n)
.......................... 1: PLIMn (Positive End Limit Flag n)
.......................... 2: MLIMn (Negative End Limit Flag n)
.......................... 3: USERn (User Flag n)

Typically, this parameter is set to zero, because in actual use the LIMn flags create other
effects that usually interfere with what is trying to be accomplished by the position
capture. If you wish to capture on the PLIMn or MLIMn flags, you probably will want to
disable their normal functions with Ix25, or use a channel n where none of the flags is used
for the normal axis functions.

I9n4 Encoder n Gated Index Select {PMAC2 only}

Range
Units
Default

Remarks

0..1
none
0

19n4 controls whether the “raw” encoder index signal is used for the position capture of the
channels’ encoder counter, or whether the quadrature signals of the encoder are first used
to create a pulse that is a single quadrature state wide. When 19n4 is set to 0, the encoder
index channel input (CHCn) is passed directly into the position capture circuitry.

When I9n4 is set to 1, the encoder index channel input (CHCn) is logically combined with
(“gated by”) the quadrature signals of Encoder n before going to the position capture
circuitry. The intent is to get a “gated index” signal exactly one quadrature state wide.
This provides a more accurate and repeatable capture, and makes the use of the capture
function to confirm the proper number of counts per revolution very straightforward.

In order for the gated index capture to work reliably, the index pulse must reliably span
one, but only one, “high-high” or “low-low” AB quadrature state of the encoder. 19n5
allows you to select which of these two possibilities is used.

Note:

If I9n4 is set to 1, but I9n2 bit 0 1s set to 0, so the index 1s not used
in the position capture, then the encoder position is captured on the
first edge of any of the U, V, or W flag inputs for the channel. In
this case, bits 0, 1, and 2 of the channel status word tell what hall-
state edge caused the capture.

PMAC I-Variable Specification 143

PMAC 2 Software Reference

I9n5 Channel n Encoder Index Gate State/Demux Control {PMAC2 only}

Range
Units
Default
Remarks

0-3

none

0

19n5 is a 2-bit variable that controls two functions for the index channel of the encoder.

When using the “gated index” feature of a PMAC2 Servo IC for more accurate position
capture (I9n4=1), bit 0 of 19n5 specifies whether the raw index-channel signal fed into
Encoder n is passed through to the position capture signal only on the “high-high”
quadrature state (bit 0 = 0), or only on the “low-low” quadrature state (bit 0 = 1).

Bit 1 of I9n5 controls whether the Servo IC “de-multiplexes” the index pulse and the 3
hall-style commutation states from the third channel based on the quadrature state, as with
Yaskawa incremental encoders. If bit 1 is set to 0, this de-multiplexing function is not
performed, and the signal on the “C” channel of the encoder is used as the index only. If
bit 1 is set to 1, the Servo IC breaks out the third-channel signal into four separate values,
one for each of the four possible AB-quadrature states. The de-multiplexed hall
commutation states can be used to provide power-on phase position using Ix81.

Note: The “B” revision or newer of the DSPGATE1 Servo IC is required to support this
hall de-multiplexing feature.

Note: Immediately after power-up, the Yaskawa encoder automatically cycles its AB
outputs forward and back through a full quadrature cycle to ensure that all of the hall
commutation states are available to the controller before any movement is started.
However, if the encoder is powered up at the same time as the PMAC?2, this will happen
before the Servo IC is ready to accept these signals. Bit 2 of the channel’s status word,
“Invalid De-multiplex”, will be set to 1 if the Servo IC has not seen all of these states when
it was ready for them. To use this feature, it is recommended that the power to the encoder
be provided through a software-controlled relay to ensure that valid readings of all states
have been read before using these signals for power-on phasing.

I9n5 has the following possible settings:

e 9n5 = 0: Gate index with “high-high” quadrature state (Gl = A & B & C), no demux
e [9n5 = 1: Gate index with “low-low” quadrature state (Gl = A/ & B/ & C), no demux
e [9n5 =2 or 3: De-multiplex hall and index from third channel, gating irrelevant

Note: Prior to firmware revision V1.17C, I9n5 was a single-bit I-variable controlling the
gating state only. The control bit for the de-multiplexing function had to be accessed
directly with an M-variable (it was stored to flash on a SAVE command and restored on
power-up/reset).

1I9n6 Output n Mode Select {PMAC2 only}

Range 0.3
Units none
Default 0
Remarks 0 = Outputs A & B are PWM; Output C is PWM
1 = Outputs A & B are DAC; Output C is PWM
2 = Outputs A & B are PWM; Output C is PFM
3 = Outputs A & B are DAC; Output C is PFM
1916 controls what output formats are used on the command output signal lines for
144 PMAC I-Variable Specifiation

PMAC 2 Software Reference

machine interface channel n. If a three-phase direct PWM command format is desired,
1916 should be set to 0. If signal outputs for (external) digital-to-analog converters are
desired, 19n6 should be set to 1 or 3. In this case, the C output can be used as a
supplemental (non-servo) output in either PWM or PFM form. For example, it can be used
to excite an MLDT sensor (e.g. Temposonics™) in PFM form.

19n7 Output n Invert Control {PMAC2 only}

Range 0.3
Units none
Default 0

Remarks 1917 controls the high/low polarity of the command output signals for Channel n. The
default non-inverted outputs are high true.

For PWM signals on Outputs A, B, and C, this means that the transistor-on signal is high.
Delta Tau PWM-input amplifiers, and most other PWM-input amplifiers, expect this non-
inverted output format. For such a 3-phase motor drive, [9n7 should be set to 0.

Note:

If the high/low polarity of the PWM signals is wrong for a
particular amplifier, what was intended to be deadtime between top
and bottom on-states as set by 1904 and 1908 becomes overlap. If
the amplifier input circuitry does not lock this out properly, this
causes an effective momentary short circuit between bus power and
ground. This would destroy the power transistors very quickly.

For PFM signals on Output C, non-inverted means that the pulse-on signal is high
(direction polarity is controlled by I9n8). During a change of direction, the direction bit
will change synchronously with the leading edge of the pulse, which in the non-inverted
form is the rising edge.

If the drive requires a set-up time on the direction line before the rising edge of the pulse,
the pulse output can be inverted so that the rising edge is the trailing edge, and the pulse
width (established by 1904 or 1908) is the set-up time.

For DAC signals on Outputs A and B, non-inverted means that a 1 value to the DAC is
high. DACs used on Delta Tau accessory boards, as well as all other known DACs always
expect non-inverted inputs, so I9n7 should always be set to 0 or 2 when using DACs on
Channel n.

Note:

Changing the high/low polarity of the digital data to the DACs has
the effect of inverting the voltage sense of the DACs’ analog
outputs. This changes the polarity match between output and
feedback. If the feedback loop had been stable with negative
feedback, this change would create destabilizing positive feedback,
resulting in a dangerous runaway condition that would only be
stopped when the motor exceeded Ix11 fatal following error.

19n8 Output n PFM Direction Signal Invert Control {PMAC2 only}

Range 0..1

Units none

Default 0

Remarks 0 = Do not invert direction signal (+ = low; - = high)

PMAC I-Variable Specification 145

PMAC 2 Software Reference

1 = Invert direction signal (- = low; + = high)
19n8 controls the polarity of the direction output signal in the pulse-and-direction format

for Channel n. It is active only if I9n6 has been set to 2 or 3 to use Output C as a pulse-
frequency-modulated (PFM) output.

If I9n8 is set to the default value of 0, a positive direction command provides a low output;
if I9n8 is set to 1, a positive direction command provides a high output.

I9n9 Channel n Hardware-1/T Control {PMAC2 only}

Range 0-1
Units none
Default 0

Remarks 19n9 controls whether the “hardware-1/T” functionality is enabled for a PMAC2 Servo IC
on Channel n. If I9n9 is set to the default value of 0, the hardware-1/T functionality is
disabled, permitting the use of the “software-1/T” position extension that is calculated by
default with encoder conversion method $0. If 19n9 is set to 1, the hardware-1/T
functionality is enabled (if present on the IC), and the software-1/T cannot be used.

The hardware-1/T functionality is present only on Revision D and newer of the PMAC2-
style DSPGATEL IC, released at the beginning of the year 2002. Setting [9n9 to 1 on an
older revision IC does nothing — software-1/T functions can still be used.

When the hardware-1/T functionality is enabled, the IC computes a new fractional-count
position estimate based on timers every SCLK (encoder sample clock) cycle. This permits
the fractional count data to be used for hardware capture and compare functions, enhancing
their resolution. This is particularly useful when the IC is used on an ACC-51 high-
resolution analog-encoder interpolator board. However, it replaces the timer registers at
the first two “Y” addresses for the channel with fractional count position data, so the
traditional software-1/T method of the conversion table cannot work if this is enabled.

If you enable the hardware-1/T functionality, and want to be able to use 1/T interpolation
in your servo loop, you must use the hardware-1/T extension method ($C method digit
with the mode switch bit set to 1) in the encoder conversion table.

PMAC2 DSPGATEZ2 I-Variables

I-Variables numbered in the 1990s control hardware aspects of the “DSPGATE2” ASIC. This IC controls
operation of the MACRO ring on all PMAC2 boards. On the Ultralite versions of the PMAC2, this IC
also controls the frequency of the clock signals on the board, because the “DSPGATE!1” ICs are not
present. On all of these boards, 1990 and 1991 control the decode of the handwheel encoder inputs on the
JHW port.

1990 Handwheel 1 Decode Control {PMAC2 only}

Range 0..15
Units none
Default 7

Remarks 1990 controls how the input signal for Handwheel 1 on the JHW port is decoded into
counts. As such, this defines the sign and magnitude of a “count”. The following settings
may be used to decode an input signal.

O e Pulse and direction CW
| R x1 quadrature decode CW
2% s x2 quadrature decode CW

146 PMAC I-Variable Specifiation

PMAC 2 Software Reference

See Also

3 x4 quadrature decode CW
4 Pulse and direction CCW

S e x1 quadrature decode CCW
6o e x2 quadrature decode CCW
T e x4 quadrature decode CCW
8 e Internal pulse and direction
9-11: i Not used

120 e, MLDT pulse timer control
13-15: e Not used

In any of the quadrature decode modes, PMAC?2 is expecting two input waveforms on
HWA1 and HWBI, each with approximately 50% duty cycle, and approximately one-
quarter of a cycle out of phase with each other. “Times-one” (x1) decode provides one
count per cycle; x2 provides two counts per cycle; and x4 provides four counts per cycle.
The vast majority of users select x4 decode to get maximum resolution.

The “clockwise” (CW) and “counterclockwise” (CCW) options simply control which
direction counts up. If you get the wrong direction sense, simply change to the other
option (e.g. from 7 to 3 or vice versa)

Note:

Changing the direction sense of the decode for the feedback encoder
of a motor that is operating properly will result in unstable positive
feedback and a dangerous runaway condition in the absence of other
changes. The output polarity must be changed as well to re-
establish polarity match for stable negative feedback.

In the pulse-and-direction decode modes, PMAC?2 is expecting the pulse train on HWAT,
and the direction (sign) signal on HWBI1. If the signal is unidirectional, the HWBI line
can be allowed to pull up to a high state, or it can be hardwired to a high or low state.

I£ 1990 is set to &, the decoder inputs the pulse and direction signal generated by Channel
1*’s pulse frequency modulator (PFM) output circuitry. This permits the PMAC2 to create
a phantom closed loop when driving an open-loop stepper system. No jumpers or cables
are needed to do this; the connection is entirely within the ASIC. The counter polarity
automatically matches the PFM output polarity. This mode is only supported on “B” and
newer revisions of the DSPGATE?2 IC.

I£ 1990 is set to 12, the timer circuitry is set up to read magnetostrictive linear displacement
transducers (MLDTs) such as Temposonics™. In this mode, the timer is cleared when the
PFM circuitry sends out the excitation pulse to the sensor on PULSEn, and it is latched
into the memory-mapped register when the excitation pulse is received on HWA1. This
mode is only supported on “B” and newer revisions of the DSPGATE?2 IC.

I9n0, 1991

1991 Handwheel 2 Decode Control {PMAC2 only}

Range
Units
Default
Remarks

0..15
none
7

1991 controls how the input signal for Handwheel 2 is decoded into counts. As such, this
defines the sign and magnitude of a “count”. The following settings may be used to
decode an input signal.

O e, Pulse and direction CW

PMAC I-Variable Specification 147

PMAC 2 Software Reference

| R x1 quadrature decode CW
2 e x2 quadrature decode CW

K x4 quadrature decode CW
4 Pulse and direction CCW
S e x1 quadrature decode CCW
6o e, x2 quadrature decode CCW
T e x4 quadrature decode CCW
8 e, Internal pulse and direction
9-11:.iinnn. Not used

120 i, MLDT pulse timer control
13-15: e Not used

In any of the quadrature decode modes, PMAC?2 is expecting two input waveforms on
HWAZ2 and HWB2, each with approximately 50% duty cycle, and approximately one-
quarter of a cycle out of phase with each other. “Times-one” (x1) decode provides one
count per cycle; x2 provides two counts per cycle; and x4 provides four counts per cycle.
The vast majority of users select x4 decode to get maximum resolution.

The “clockwise” (CW) and “counterclockwise” (CCW) options simply control which
direction counts up. If you get the wrong direction sense, simply change to the other
option (e.g. from 7 to 3 or vice versa)

Note:

Changing the direction sense of the decode for the feedback encoder
of a motor that is operating properly will result in unstable positive
feedback and a dangerous runaway condition in the absence of other
changes. The output polarity must be changed as well to re-
establish polarity match for stable negative feedback.

In the pulse-and-direction decode modes, PMAC?2 is expecting the pulse train on HWA2,
and the direction (sign) signal on HWB2. If the signal is unidirectional, the HWB2 line
can be allowed to pull up to a high state, or it can be hardwired to a high or low state.

If 1991 is set to 8, the decoder inputs the pulse and direction signal generated by Channel
2*’s pulse frequency modulator (PFM) output circuitry. This permits the PMAC?2 to create
a phantom closed loop when driving an open-loop stepper system. No jumpers or cables
are needed to do this; the connection is entirely within the ASIC. The counter polarity
automatically matches the PFM output polarity. This mode is only supported on “B” and
newer revisions of the DSPGATE2 IC.

If 1991 is set to 12, the timer circuitry is set up to read magnetostrictive linear displacement
transducers (MLDTs) such as Temposonics™. In this mode, the timer is cleared when the
PFM circuitry sends out the excitation pulse to the sensor on PULSEn, and it is latched
into the memory-mapped register when the excitation pulse is received on HWA2. This
mode is only supported on “B” and newer revisions of the DSPGATE2 IC.

See Also 19n0, 1990
1992 MaxPhase and PWM 1*-2* Frequency Control {PMAC2 only}
Range 0..32767
Units MaxPhase Frequency = 117,964.8 kHz / [2*¥1992+3]
PWM Frequency = 117,964.8 kHz / [4*¥1992+6]
Default 6527
MaxPhase Frequency = 117,964.8 / 13057 =9.0346 kHz
148 PMAC I-Variable Specifiation

PMAC 2 Software Reference

Remarks

Example

PWM Frequency = 117,964.8 / 26114 =4.5173 kHz

Note:
On PMAC?2 boards that are not “Ultralite”, 1992 does not control
the MaxPhase frequency; 1900 does. On all PMAC2 boards, the
PWM 1*-2* frequency is only important if you are using
supplemental PWM channels.

1992 controls the maximum phase clock frequency for the PMAC2 Ultralite, and the PWM
frequency for supplementary machine interface channels 1* and 2*. It does this by setting
the limits of the PWM up-down counter, which increments and decrements at the
PWMCLK frequency of 117,964.8 kHz (117.9648 MHz).

The actual phase clock frequency is divided down from the maximum phase clock
according to the setting of 1997. On the falling edge of the phase clock, PMAC2 Ultralite
starts transmission of a set of MACRO ring data and interrupts the processor to start any
necessary phase commutation and digital current-loop algorithms. Even if phasing and
current-loop algorithms are not used, the MaxPhase and Phase clock frequencies are
important because the servo clock is derived from the phase clock.

To set 1992 for a desired “maximum phase” clock frequency, the following formula can be
used:

1992 = (117,964.8 kHz / [2*MaxPhase (kHz)]) - 1 (rounded down)
On PMAC?2 boards that are not “Ultralite”, 1992 is generally set to the same value as 1900,

which controls the maximum phase frequency, and the PWM frequency of channels 1 to 4.
If a different PWM frequency is desired for channels 1* and 2%, 1992 should be set so that

2* PWM [1*-2*%] Freq(kHz)
PhaseFreq

= { Integer }

To set a PWM frequency of 10 kHz and therefore a MaxPhase clock frequency of 20 kHz:
1992 =(117,964.8 kHz / [4*10 kHz]) - 1 = 2948

To set a PWM frequency of 7.5 kHz and therefore a MaxPhase clock frequency of 15 kHz:

1992 =(117,964.8 kHz / [4*7.5 kHz]) - 1 = 3931

1993 Hardware Clock Control Channels 1*-2* {PMAC2 only}

Range
Units

Default

0 .. 4095

1993 = Encoder SCLK Divider
.......................... + 8 * PFM_CLK Divider
.......................... + 64 * DAC_CLK Divider
.......................... +512 * ADC_CLK Divider

Encoder SCLK Frequency =39.3216 MHz / (2 ~ Encoder SCLK Divider)
PFM_CLK Frequency =39.3216 MHz / (2 ~ PFM_CLK Divider)
DAC_CLK Frequency = 39.3216 MHz / (2 ~ DAC_CLK Divider)
ADC_CLK Frequency =39.3216 MHz / (2 ~ ADC_CLK Divider)

2258 =2+ (8 *2)+ (64 *3) + (512 * 4)

Encoder SCLK Frequency = 39.3216 MHz / (2 * 2) = 9.8304 MHz
PFM_CLK Frequency =39.3216 MHz / (2 * 2) = 9.8304 MHz
DAC_CLK Frequency =39.3216 MHz / (2 ~ 3) =4.9152 MHz

PMAC I-Variable Specification 149

PMAC 2 Software Reference

Remarks

ADC_CLK Frequency = 39.3216 MHz / (2 » 4) = 2.4576 MHz

1993 controls the frequency of three hardware clock frequencies — SCLK, PFM_CLK, and
ADC_CLK - for the supplemental machine interface channels 1* and 2* on PMAC2 or
PMAC?2 Ultralite (there is no DAC_CLK on the supplemental channels, but it is referred to
here for consistency with 1903 and 1907). It is a 12-bit variable consisting of four
independent 3-bit controls (the 3 bits for DAC CLK are “don’t care”), one for each of the
clocks. Each of these clock frequencies can be divided down from a starting 39.3216 MHz

frequency by powers of 2, 2N from 1 to 128 times (N=0 to 7). This means that the
possible frequency settings for each of these clocks are:

Frequency Divide by Divider N

in 1/2N
0

39.3216 MHz
19.6608 MHz
9.8304 MHz
4.9152 MHz 8
24576 MHz 16
1.2288 MHz 32

614.4 kHz 64

307.2 kHz 128 7

BN

AN |W| N~

Very few PMAC2 users will be required to change the setting of 1993 from the default
value.

The encoder sample clock signal SCLK controls how often PMAC?2’s digital hardware
looks at the handwheel encoder inputs. PMAC2 can take at most one count per SCLK
cycle, so the SCLK frequency is the absolute maximum encoder count frequency. SCLK
also controls the signal propagation through the digital delay filters for the encoders and
flags; the lower the SCLK frequency, the greater the noise pulse that can be filtered out.
The SCLK frequency should optimally be set to the lowest value that can accept encoder
counts at the maximum possible rate.

The pulse-frequency-modulation clock PFM_CLK controls the PFM circuitry that can
create pulse and direction outputs on the JHW connector. The maximum pulse frequency
possible is 1/4 of the PFM_CLK frequency. The PFM_CLK frequency should optimally
be set to the lowest value that can generate pulses at the maximum frequency required.

The ADC CLK controls the serial data frequency from A/D converters. These can only be
accessed as the alternate use of general-purpose I/O pins.

To determine the clock frequencies set by a given value of 1993, use the following
procedure:

1. Divide 1993 by 512 and round down to the nearest integer. This value N1 is the
ADC_CLK divider.

2. Multiply N1 by 512 and subtract the product from 1993 to get 1993°. Divide 1993° by
64 and round down to the nearest integer. This value N2 is the DAC_CLK divider
(not relevant here).

3. Multiply N2 by 64 and subtract the product from 1993’ to get 1993°°. Divide 1993’ by
8 and round down to the nearest integer. This value N3 is the PFM_CLK divider.

4. Multiply N3 by 8 and subtract the product from 1993°’. The resulting value N4 is the

150

PMAC I-Variable Specifiation

PMAC 2 Software Reference

Example

SCLK divider.

The maximum encoder count frequency in the application is 800 kHz, so the 1.2288 MHz
SCLK frequency is chosen. A pulse train up to 500 kHz needs to be generated, so the
2.4576 MHz PFM_CLK frequency is chosen. ADCs and DACs are not used, so the
default DAC_CLK frequency of 4.9152 MHz and the default ADC_CLK frequency of
2.4576 MHz are chosen. From the table:

.......................... SCLK Divider N: 5

.......................... PFM_CLK Divider N: 4

.......................... DAC CLK Divider N: 3

.......................... ADC_CLK Divider N: 4

.......................... 1993 =5+ (8*4)+ (64 *3)+(512*4)=5+32+ 192 + 2048 =2277

1993 has been set to 3429. What clock frequencies does this set?

.......................... N1 =INT (3429/512) = 6 ADC CLK = 611.44 kHz

.......................... 1993’ = 3429 - (512*6) = 357

.......................... N2 = INT (357/64) = 5 DAC_CLK = 1.2288 MHz

.......................... 1993°* = 357 - (64*5) = 37

.......................... N3 =INT (37/8) = 4 PFM_CLK = 2.4576 MHz
N4 =37-(8%4)=5 SCLK = 1.2288 MHz

1994 PWM 1*-2* Deadtime / PFM 1* Pulse Width Control {PMAC2 only}

Range
Units

Default

Remarks

Example

0..255

PWM Deadtime = [16 / PWM_CLK (MHz)] * 1994 = 0.135 usec * 1994
PFM Pulse Width =[1 / PFM_CLK (MHz)] * 1994
=PFM_CLK period (usec) * 1994

15
PWM Deadtime = 0.135 usec * 15 =2.03 usec
PFM Pulse Width =[1/9.8304 MHz] * 15 = 1.526 usec (with default 1993)

1994 controls the deadtime period between top and bottom on-times in PMAC2’s
automatic PWM generation for supplemental machine interface channels 1* and 2*. In
conjunction with 1993, it also controls the pulse width for PMAC2’s automatic pulse-
frequency modulation generation for supplemental machine interface channel 1*.

The PWM deadtime, which is the delay between the top signal turning off and the bottom
signal turning on, and vice versa, is specified in units of 16 PWM_CLK cycles. This
means that the deadtime can be specified in increments of 0.135 usec. The equation for
1994 as a function of PWM deadtime is:

DeadTime(u sec)

0.135u sec

The PFM pulse width is specified in PFM_CLK cycles, as defined by 1993. The equation
for 1994 as a function of PFM pulse width and PFM_CLK frequency is:

1994 =PFM CLK Freq(MHz)* PFM _ Pulse Width(u sec)

1994 =

In PFM pulse generation, the minimum off time between pulses is equal to the pulse width.
This means that the maximum PFM output frequency is:
PFM CLK Freq(MHz)

2%1994

A PWM deadtime of approximately 1 microsecond is desired:

PFM Max Freq(MHz) =

PMAC I-Variable Specification 151

PMAC 2 Software Reference

1994 = 1 usec/0.135 usec =7
With a 2.4576 MHz PFM_CLK frequency, a pulse width of 0.4 usec is desired:
1994 = 2.4576 MHz * 0.4 usec = 1

1995 MACRO Ring Configuration/Status {PMAC2 only}

Range
Units
Default

Remarks

$0000 .. $SFFFF (0 - 65,535)
none
0

1995 contains configuration and status bits for MACRO ring operation of the PMAC2.
There are 11 configuration bits and 5 status bits, as follows:

Bit# | Value Type | Function

1($1) Status Data Overrun Error (cleared when read)
2($2) Status Byte Violation Error (cleared when read)
4(84) Status Packet Parity Error (cleared when read)
8($8) Status Packet Underrun Error (cleared when read)
16(810) Config | Master Station Enable

32(820) Config | Synchronizing Master Station Enable
64(340) Status Sync Node Packet Received (cleared when read)
128($80) Config | Sync Node Phase Lock Enable

256($100) Config | Node 8 Master Address Check Disable
512(8200) Config | Node 9 Master Address Check Disable

10 1024(5400) Config | Node 10 Master Address Check Disable

11 2048($800) Config | Node 11 Master Address Check Disable

12 4096($1000) Config | Node 12 Master Address Check Disable

13 8192(52000) Config | Node 13 Master Address Check Disable

14 16384(34000) | Config | Node 14 Master Address Check Disable

15 32768(8$8000) | Config | Node 15 Master Address Check Disable

(o] BN} Ko | kU, INoNY JUS R § O}) Ken)

o

In most applications, the only important configuration bits are bits 4, 5, and 7. In every
MACRO ring, there must be one and only one synchronizing master. On this card, bits 4
and 5 should be set (1), but bit 7 should be clear (0). On this card, 1995 should be set to
$30, or $xx30 if any of the high bits are to be set.

If there are more that one PMAC?2 acting as a masters on the ring, these should not be
synchronizing masters, but they should enable “sync node phase lock” to stay
synchronized with the synchronizing master. One these cards, bit 4 should be set, bit 5
should be clear, and bit 7 should be set, so 1995 should be set to $90, or $xx90 if any of the
high bits are to be set.

Bits 8-15 can be set individually to disable the “master address check™ for their
corresponding node numbers. This capability is for multi-master broadcast and
synchronization. If the master address check is disabled, only the slave node number part
of the packet address must match for a packet to be latched in. In this way, the
synchronizing master can send the same data packet to multiple other master and slave
stations. This common packet can be used to keep multiple stations synchronized using
the sync lock function enabled with bit 7 of 1995; the packet number is specified in 1996
(packet 15 is suggested for this purpose).

152

PMAC I-Variable Specifiation

PMAC 2 Software Reference

1996 MACRO Node Activate Control {PMAC2 only}

Range $000000 .. SFFFFFF (0 to 8,388,607)
Units none
Default $0 (all nodes de-activated)

Remarks 1996 controls which of the 16 MACRO nodes on the card are activated. It also controls the
master station number, and the node number of the packet that creates a synchronization
signal. The bits of 1996 are arranged as follows:

Bit # Value Type Function
0 1($1) Config | Node 0 Activate
1 2($2) Config | Node 1 Activate
2 4(84) Config | Node 2 Activate
3 8($8) Config | Node 3 Activate
4 16($10) Config | Node 4 Activate
5 32($20) Config | Node 5 Activate
6 64(840) Config | Node 6 Activate
7 128($80) Config | Node 7 Activate
8 256($100) Config | Node 8 Activate
9 512(%5200) Config | Node 9 Activate

10 1024(8400) Config | Node 10 Activate

11 2048($800) Config | Node 11 Activate

12 4096($1000) Config | Node 12 Activate

13 8192($2000) Config | Node 13 Activate

14 16384(34000) | Config | Node 14 Activate

15 32768($8000) | Config | Node 15 Activate

16-19 | $X0000 Config | Packet Sync Node Slave Address (0 - 15)
20-23 | $X00000 Config | Master Station Number (0-15)

Bits 0 to 15 are individual control bits for the matching node number 0 to 15. If the bit is
set to 1, the node is activated; if the bit is set to 0, the node is de-activated.

Note:

If the use of an activated node n includes auxiliary register
functions, including servo flags, bit n of 11000 must also be set to 1.

If the PMAC?2 is a master station (likely) as determined by 1995, it will send out a packet
for each activated node every ring cycle (every phase cycle). When it receives a packet for
an activated node, it will latch in that packet and not pass anything on.

If the PMAC?2 is a slave station (unlikely but possible) as determined by 1995, when it
receives a packet for an activated node, it will latch in the contents of that packet into its
read registers for that node address, and automatically substitute the contents of its write
registers into the packet.

If a node is disabled, the PMAC2, whether master or slave, will still latch in the contents of
a packet it receives, but it will also pass on the packet unchanged. This feature is
particularly useful for the MACRO broadcast feature, in which multiple stations need to
receive the same packet.

PMAC I-Variable Specification 153

PMAC 2 Software Reference

Example

Bits 16-19 together specify the slave number part of the packet address (0-15) that will
cause a sync lock pulse on the card, if this function is enabled by 1995. This function is
useful for a PMAC?2 that is a slave or non-synchronizing master on the ring, to keep it
locked to the synchronizing master. If the master address check for this node is disabled
with 1995, only the slave number must match to create the sync lock pulse. If the master
address check is left enabled, the master number part of the packet address must match the
master number for the card, as set in bits 20-23 of 1996.

If this card is the synchronizing master, this function is not enabled, so the value of these
bits does not matter; they can be left at the default of 0.

Bits 20-23 specify the master number for the card (0-15). The number must be specified
whether the card is a master station or a slave station.

Hex ($) 0 0 0 0 0 0 ‘

oo | L L L PP

t Slave node Enables

Sync node Address (0-15)

Master Address (0-15)

Note:

On prototype PMAC2 boards that did not support multi-master
MACRO rings, 1996 contained only bits 0-15.

Master number 0; Sync node address 0
Activated nodes 0-5; De-activated nodes 6-15:
1996 =0000 0000 0000 0000 0011 1111 (binary) = $00003F
Master number 1; Sync node address 15 ($F)
Activated nodes 0, 2, 4, 6, 8, 10, 12; other nodes de-activated:
1996 =0001 1111 0001 0101 0101 0101 (binary) = $1F1555

1997 Phase Clock Frequency Control {PMAC2 only}

Range 0..15

Units PHASE Clock Frequency = MaxPhase Frequency / (1997+1)

Default 0

PHASE Clock Frequency = 9.0346 kHz / 1 = 9.0346 kHz
(with default value of 1992)

Remarks 1997, in conjunction with 1992, determines the frequency of the PHASE clock on PMAC2
Ultralite. Each cycle of the PHASE clock, a set of MACRO ring information is
transmitted, and any required motor phase commutation and digital current-loop
algorithms are performed for specified motors.

154 PMAC I-Variable Specifiation

PMAC 2 Software Reference

Example

Note:

On PMAC?2 boards that are not “Ultralite”, 1997 does not control
the Phase Clock frequency; [901 does. 1997 has no effect on non-
Ultralite versions of the PMAC?2.

Specifically, 1997 controls how many times the PHASE clock frequency is divided down
from the maximum phase clock, whose frequency is set by 1992. The PHASE clock
frequency is equal to the maximum phase clock frequency divided by (I1997+1). 1997 has a
range of 0 to 15, so the frequency division can be by a factor of 1 to 16. The equation for
1997 is:

MaxPhaseFreq(kHz) ;

PhaseFreq(kHz)

1997 =

The ratio of MaxPhase Freq. to PHASE Clock Freq. must be an integer.

Note:

If jumper E1 is ON, PMAC?2 Ultralite gets its PHASE clock signal
externally from a serial-port input, and 1997 is not used.

Note:

If the phase clock frequency is set too high, lower priority tasks
such as communications can be starved for time. If the background
tasks are completely starved, the watchdog timer will trip, shutting
down the board. If a normal reset of the board does not re-establish
a state where the watchdog timer has not tripped and
communications works well, it will be necessary to re-initialize the
board by powering up with the E3 re-initialization jumper on. This
restores default settings, so communication is possible, and 1992
and 1997 can be set to supportable values.

With a 20 kHz MaxPhase Clock frequency established by 1992, and a desired 6.67 kHz
PHASE clock frequency, the ratio between MaxPhase and PHASE is 3:
1997 = (20/6.67)-1=3-1=2

1998 Servo Clock Frequency Control {PMAC2 only}

Range
Units
Default

Remarks

0..15
Servo Clock Frequency = PHASE Clock Frequency / (I1998+1)
3

SERVOCIock Frequency = 9.0346 kHz / (3+1) = 2.2587 kHz
(with default values of 1992 and 1997)

1998, in conjunction with 1997 and 1992, determines the frequency of the SERVO clock on
PMAC?2 Ultralite. Each cycle of the SERVO clock, PMAC?2 Ultralite updates the
commanded position for each activated motor, and executes the servo algorithm to
compute the command output to the amplifier.

Note:

On PMAC?2 boards that are not “Ultralite”, 1998 does not control
the Servo Clock frequency; 1902 does. 1998 has no effect on non-
Ultralite versions of the PMAC2.

PMAC I-Variable Specification 155

PMAC 2 Software Reference

Example

Specifically, 1998 controls how many times the SERVO clock frequency is divided down
from the PHASE clock, whose frequency is set by 1992 and 1997. The SERVO clock
frequency is equal to the PHASE clock frequency divided by (I1998+1). 1998 has a range
of 0 to 15, so the frequency division can be by a factor of 1 to 16. The equation for 1998
is:

PhaseFreq(kHz) ;

1998 =
ServoFreq(kHz)
The ratio of PHASE Clock Freq. to SERVO Clock Freq. must be an integer.
Note:

If jumper E1 is ON, PMAC2 Ultralite gets its SERVO clock signal
externally from a serial-port input, and 1998 is not used.

For execution of trajectories at the proper speed, [10 must be set properly to tell the
trajectory generation software what the SERVO clock cycle time is. The formula for [10
is:
8,388,608

ServoFreq(kHz)

In terms of the variables that determine the SERVO clock frequency on a PMAC?2 Ultralite
board, the formula for I10 is:

110

110 = %(2 *1992+3)1997 +1)1998 + 1)

With a 6.67 kHz PHASE Clock frequency established by 1900 and 1997, and a desired 3.33
kHz SERVO Clock frequency:
1998 = (6.67/3.33)-1=2-1=1

1999 (Reserved for Future Use)
MACRO Software Setup I-Variables

11000 MACRO Node Auxiliary Register Enable

Range
Units
Default

Remarks

See Also

0 .. SFFFF (0 .. 65,535)
none
0

This parameter controls which MACRO nodes PMAC performs automatic copying into
and out of the auxiliary registers. Enabling this function for a node is required to use the
auxiliary register as the flag register for a motor.

11000 is a 16-bit variable. Bits 0 to 15 control the enabling of this copying function for
MACRO nodes 0 to 15, respectively. A bit value of 1 means the copying function is
enabled; a bit value of 0 means the copying function is disabled.

If the copying function is enabled for Node n (where n =0 to F hex or 0 to 15 decimal),
during each background “housekeeping” software cycle, PMAC copies the contents of
Y:$0F7n to the Node n auxiliary write register, and copies the contents of the Node n
auxiliary read register into X:$0F7n.

The copying function enabled by 11000 permits PLC and on-line-command auxiliary read
and write functions plus use of the auxiliary registers for command and status flags.

MACRO Setup
I-Variables 1x25, 1995, 1996
On-line commands

156

PMAC I-Variable Specifiation

PMAC 2 Software Reference

11001 MACRO Ring Check Period

Range
Units
Default

Remarks

See Also

0..255
servo cycles
0

11001 determines the period for PMAC to evaluate whether there has been a MACRO ring
failure. If 11001 is greater than 0, PMAC must receive a sufficient number of “sync node”
packets (the packet is specified by 1996), and not detect too many ring communications
errors, in [1001 servo cycles. If either of these conditions is not met, PMAC will consider
there to be a ring fault, and it will disable all of its slave MACRO nodes.

If 11001 is 0 at power-up/reset, PMAC does not perform these checks, even if the MACRO
ring is active. To start performing these checks, set [1001 to a value greater than 0, issue a
SAVE command, then reset the card with a $$$ command.

If 11001 is greater than 0 at power-up/reset, the check period can be changed immediately
by changing the value of [1001; there is no need to SAVE the new value and reset the card
to get the new value to take effect.

In PMAC firmware versions V1.16D and older, PMAC performs these checks during its
background “housekeeping” cycle, executed once between each scan of each background
uncompiled PLC (all compiled background PLCs execute a scan each between each
housekeeping cycle). Each cycle, it can detect at most one sync node packet and one
communications error. In these firmware versions, the number of sync node packets
required in an [1001 check period to continue operation is fixed at 2, and the number of
communications errors in an [1001 check period that will cause disabling of operations
over the ring is fixed at 2.

In PMAC firmware versions V1.16E and newer, PMAC performs these checks during its
“real-time” interrupt (RTI) tasks, every (I8 + 1) servo cycles. Each RTI, it can detect at
most one sync node packet and one communications error. In these firmware versions the
number of sync node packets required in an [1001 check period to continue operation is set
by 11005, and the number of communications errors in an 11001 check period that will
cause disabling of operations over the ring is set by 11004.

In all firmware, it is vital that 11001 be set large enough that enough checks of the ring can
be executed in the allotted 11001 check period.

With the default servo update of 2.25 kHz (440 usec), an 11001 value of 10 sets the check
period at 4.4 msec. An I1001 value of 20 sets the check period at 8.8 msec.

I-variables 1996, 11004, 11005

11002 MACRO Node Protocol Type Control

Range
Units
Default

Remarks

0 .. SFFFF (0 .. 65,535)
none
0

11002 controls for each MACRO node (0 — 15) whether the Type 0 or Type 1 MACRO
protocol is used on that node. 11002 is a 16-bit value; each bit 0 — 15 controls the protocol
type for the MACRO node of the same number. A value of 0 in the bit selects the Type 0
protocol for the matching MACRO node; a value of 1 in the bit selects the Type 1 protocol
for the node.

PMAC I-Variable Specification 157

PMAC 2 Software Reference

See Also

The key difference between Type 0 and Type 1 protocols is in which node register is used
for control and status flags. In the Type 0 protocol, the 1* register (24 bits) is used for the
flags; in the Type 1 protocol, the 4™ registers (16 bits) is used for the flags. The bits of
11002 must be set properly for any node whose auxiliary flag function is enabled by 11000.

The Type 0 protocol is generally used for older single-node MACRO devices, such as the
Performance Controls FLX Drive. The Type 1 protocol is generally used for multi-node
MACRO devices, such as Delta Tau’s MACRO Station (MACRO Stack or UMAC
MACRO). With the Delta Tau MACRO Station, 11002 is generally set to the same value
as 11000.

I-variables Ix25, 11000

11003 MACRO Type 1 Master/Slave Communications Timeout

Range
Units
Default

Remarks

See Also

0..255
servo cycles
0

11003 permits the enabling of MACRO Type 1 master-slave auxiliary communications
using Node 15, which are executed with the MS, MSR, and MSW commands. If 11003 is set
to 0, these communications are disabled. If 11003 is set to a value greater than 0, these
communications are enabled, and the value of 11003 sets the “timeout” value for the
auxiliary response, in PMAC servo cycles.

If PMAC has not received a response to the MACRO auxiliary communications command
within 11003 servo cycles, it will stop waiting and register a “MACRO Auxiliary
Communications Error”, setting Bit 5 of global status register X:$000006. A value of 32
for 11003 is suggested.

Bit 15 of 11000 must be set to 0 to disable Node 15’s Type 0 (node-specific) auxiliary
communications if 11003 is greater than 0. If a value of 11003 greater than 0 has been
saved into PMAC’s non-volatile memory, then at subsequent power-up/resets, bit 15 of
11000 is automatically forced to 0 by PMAC firmware, regardless of the value saved for
11000.

I-Variable 11000
On-line commands MACROSLV, MACROSLVREAD, MACROSLVWRITE
Program commands MACROSLVREAD, MACROSLVWRITE

11004 MACRO Ring Error Shutdown Count

Range 0..255

Units MACRO ring errors

Default 2

Remarks 11004 determines the number of MACRO communications errors detected in one ring
check period that will cause the PMAC to conclude that the ring operation is defective.
This check is only performed if the 11001 MACRO ring check period parameter is set
greater than 0 at power-up/reset. In this case, if PMAC detects 11004 or greater MACRO
communications errors in [1001 servo cycles, it will kill all of its motors.

158 PMAC I-Variable Specifiation

PMAC 2 Software Reference

See Also

PMAC can detect one ring communications error per real-time interrupt (I8+1 servo
cycles) even if more than one error has occurred. Valid settings of 11004 are less than
11001/(I8+1). Regardless of the setting of 11004, if a ring error is detected on every check
during the period, a “ring fault” is declared.

PMAC can detect four types of MACRO communications errors: byte “violation” errors,
packet checksum errors, packet overrun errors, and packet underrun errors.

I£ 11004 is set to 0 at power-on/reset, the PMAC will automatically set it to 2.
Before 11004 was implemented, a fixed value of 2 ring errors was used.

I-Variables 18, 1995, 11001, 11004

11005 MACRO Ring Sync Packet Shutdown Count

Range
Units
Default

Remarks

See Also

0..65,535
MACRO sync packets
4

11005 determines the minimum number of MACRO “sync node” communications packets
(“sync packets”) that must be detected in one ring check period for PMAC to conclude the
the ring is operating properly and permit normal machine operation to continue. This
check is only performed if the [1001 MACRO ring check period parameter is set greater
than 0. In this case, if PMAC detects fewer than 11005 MACRO sync packets in 11001
servo cycles, it will cause the PMAC to “kill” all of its motors.

PMAC can detect one MACRO sync packet per real-time interrupt (I8+1 servo cycles)
even if more than one sync packet has been received in that period. Valid settings of 11005
are less than or equal to 11001/(I8+1). Setting 11005 to a value greater than [1001/(I8+1)
means that PMAC will never receive enough sync packets and will always disable its slave
stations on the ring.

The node number 7, 0 to 15, of the sync packet is determined by bits 16 to 19 (the second
hex digit) of 1996. This node n must be activated by setting bit n of 1996 to 1; otherwise,
PMAC will immediately detect a ring communications error.

If 11005 is set to 0 at power-on/reset, the PMAC will automatically set it to 2.
Before 11005 was implemented, a fixed value of 2 sync packets was used.

I-Variables 18, 1995, 1996 11001, 11005

11010 Resolver Excitation Phase Offset {Geo PMAC only}

Range
Units
Default

Remarks

0-—255
1/256 cycle
0

11010 specifies the phase (time) offset for the AC excitation created by the Geo PMAC for
resolvers. The optimum setting of [1010 depends on the L/R time constant of the resolver
circuit. 11010 should be set interactively so as to maximize the magnitudes of the feedback
ADC values (Y:$FF00 and Y:$FFO01 for Resolver 1; Y:$FF20 and Y:$FF21 for Resolver
2).

11010 is only used if the Geo PMAC’s Feedback Option 1 for analog position feedback is
ordered.

PMAC I-Variable Specification 159

PMAC 2 Software Reference

11011 Resolver Excitation Gain {Geo PMAC only}

Range
Units
Default

Remarks

0-3
Gain-1
0

11011 specifies the gain of the AC excitation output created by the Geo PMAC for
resolvers, with the gain equal to (I1011 + 1). With a gain of 1, the nominal AC output has
peak voltages of +/-2.5V. The following table lists the possible values of 11011 and the
nominal output magnitudes they produce:

11011 Excitation Mag.
0 +/-2.5V
1 +/-5.0V
2 +/-7.5V
3 +/-10.0V

11011 is only used if the Geo PMAC’s Feedback Option 1 for analog position feedback is
ordered.

11012 Resolver Excitation Frequency Divider {Geo PMAC only}

Range
Units
Default

Remarks

0-3
none
0

11012 specifies the frequency of the AC excitation output created by the Geo PMAC for
resolvers as a function of the phase clock frequency set by 1900 and 1901. The following
table lists the possible values of 11012 and the excitation frequencies they produce:

11012 Excitation Freq.
0 PhaseFreq
1 PhaseFreq/2
2 PhaseFreq/4
3 PhaseFreq/6

11012 is only used if the Geo PMAC’s Feedback Option 1 for analog position feedback is
ordered.

11013 Motor Temperature Check Enable {Geo PMAC only}

Range
Units
Default

Remarks

0-3
none

0

11013 controls whether the motor temperature check function is enabled for the motor(s)
connected to the Geo PMAC. 11013 is a 2-bit value: bit 0 controls whether the
temperature check function is enabled for Motor 1, and bit 1 controls whether the
temperature check function is enabled for Motor 2. The following table shows the four
possible values of [1013 and the functions they produce:

160

PMAC I-Variable Specifiation

PMAC 2 Software Reference

11013 Motors to Check
Temperature

Neither

Motor 1 only

Motor 2 only

W= O

Motors 1 & 2

If the Geo PMAC is checking temperature for the motor, the motor thermal sensor must be
connected to pin 23 of the main encoder connector for the motor.

11015 SSI Clock Frequency Control {New, Geo PMAC only}

Range
Units
Default

Remarks

0-3
none
0

11015 specifies the frequency of the digital clock output for the SSI-encoder interfaces on
the Geop PMAC. The following table lists the possible values of I1015 and the clock
frequencies they produce:

11015 SSI Clock Freq.
0 153.6 kHz
1 307.2 kHz
2 614.4 kHz
3 1.2288 MHz

11015 is only used if the Geo PMAC’s Feedback Option 2 for absolute position feedback is
ordered.

11016 SSI Channel 1 Mode Control {Geo PMAC only}

Range
Units
Default

Remarks

0-3
None
3

11016 specifies the mode for interpreting data from the first SSI-encoder interface on a
Geo PMAC. The following table lists the possible values of 11016 and the data formats
they cause the Geo PMAC to expect:

11016 SSI Clock Freqg.
0 (Reserved)
1 (Reserved)
2 Numeric binary
3 Gray code

11016 is only used if the Geo PMAC’s Feedback Option 2 for absolute position feedback is
ordered.

PMAC I-Variable Specification 161

PMAC 2 Software Reference

11017 SSI Channel 1 Word Length Control {Geo PMAC only}

Range
Units
Default

Remarks

0-3
none
3

11017 specifies the word length in bits from the first SSI-encoder interface on a Geo
PMAC. The following table lists the possible values of 11017 and the word lengths they
cause the Geo PMAC to request:

11017 Word Length
0 12 bits
1 16 bits
2 20 bits
3 24 bits

11017 is only used if the Geo PMAC’s Feedback Option 2 for absolute position feedback is
ordered.

11018 SSI Channel 2 Mode Control {Geo PMAC only}

Range 0-3
Units None
Default 3
Remarks 11018 specifies the mode for interpreting data from the second SSI-encoder interface on a
Geo PMAC. The following table lists the possible values of [1018 and the data formats
they cause the Geo PMAC to expect:
11018 SSI Clock Freq.
0 (Reserved)
1 (Reserved)
2 Numeric binary
3 Gray code
11018 is only used if the Geo PMAC’s Feedback Option 2 for absolute position feedback is
ordered.
162 PMAC I-Variable Specifiation

PMAC 2 Software Reference

11019 SSI Channel 2 Word Length Control {Geo PMAC only}

Range 0-3
Units None
Default 3
Remarks 11019 specifies the word length in bits from the second SSI-encoder interface on a Geo
PMAC. The following table lists the possible values of 11019 and the word lengths they
cause the Geo PMAC to request:
11019 Word Length
0 12 bits
1 16 bits
2 20 bits
3 24 bits
11019 is only used if the Geo PMAC’s Feedback Option 2 for absolute position feedback is
ordered.
1020 Lookahead Length {Option 6L firmware only}
Range 0—-65,535
Units 113 segmentation periods
Default 0
Remarks 11020 controls the enabling of the lookahead buffering function for the coordinate system

that has a defined lookahead buffer, and if enabled, determines how far ahead the buffer
will look ahead.

I£ 11020 is set to 0 (the default), the buffered lookahead function is not used, even if a
lookahead buffer has been defined.

I£ 11020 is set to 1, points are stored in the lookahead buffer as they are calculated, but no
lookahead velocity or acceleration-limiting calculations are done. The stored points can
then be used to back up along the path as necessary.

I£ 11020 is set to a value greater than 1, PMAC will look 11020 segments ahead on
LINEAR and CIRCLE mode moves, provided that the PMAC is in segmentation mode
(I13 > 0) and a lookahead buffer has been defined. The lookahead algorithm can extend
the time for each segment in the buffer as needed to keep velocities under the Ix16 limits
and the accelerations under the Ix17 limits.

For proper lookahead control, 11020 must be set to a value large enough so that PMAC
looks ahead far enough that it can create a controlled stop from the maximum speed within
the acceleration limit. This required stopping time for a motor can be expressed as:

Vmax _ Ix16

StopTime =
max Ix] 7

All motors in the coordinate system should be evaluated to see which motor has the
longest stopping time. This motor’s stopping time will be used to compute 11020.

The average speed during this stopping time is V,,,,/2, so as the moves enter the lookahead
algorithm at V,,,, (the worst case), the required time to look ahead is StopTime/2.
Therefore, the required number of segments always corrected in the lookahead buffer can

PMAC I-Variable Specification 163

PMAC 2 Software Reference

Example

be expressed as:

StopTime(msec)/ 2 Ixl6
SegTime(m sec/ seg) 2*Ix17*113

SegmentsAhead =

Because PMAC does not completely correct the lookahead buffer as each segment is
added, the lookahead distance specified by 11020 must be slightly larger than this. The
formula for the minimum value of 11020 that guarantees sufficient lookahead for the
stopping distance is:

11020 = ;* SegmentsAhead

If a fractional value results, round up to the next integer. A value of 11020 less than this
amount will not result in velocity or acceleration limits being violated; however, the
algorithm will not permit maximum velocity to be reached, even if programmed.

11020 should not be set greater than the number of segments reserved in the DEFINE
LOOKAHEAD command. If the lookahead algorithm runs out of buffer space, PMAC will
automatically reduce 11020 to reflect the amount of space that is available.

The axes in a system have a maximum speed of 24,000 mm/min, or 400 mm/sec (900
in/min or 15 in/sec). They have a maximum acceleration of 0.1g or 1000 mm/sec” (40
in/sec?), and a count resolution of 1pm. A maximum block rate of 200 blocks/sec is
desired, so 113 is set to 5 msec. The parameters can be computed as:

e [Ix16 =400 mm/sec * 0.001 sec/msec * 1000 cts/mm = 400 cts/msec
e Ix17= 1000 mm/sec® * 0.001% sec’*/msec’ * 1000 cts/mm = 1.0 cts/msec’
e 11020 =[4/3] * [400 cts/msec / (2 * 1.0 cts/msec” *5 msec/seg)] = 54 segments

164

PMAC I-Variable Specifiation

PMAC 2 Software Reference

11021 Lookahead State Control {Option 6L Firmware Only}

Range
Units
Default

Remarks

0-15
none
0

11021 permits direct control of the state of lookahead execution, without going through

PMAC’s background command interpreter. This is useful for applications such as wire

EDM, which can require very quick stops and reversals.

e Setting [1021 to 4 is the equivalent of issuing the \ quick-stop command

e Setting 11021 to 7 is the equivalent of issuing the < back-up command

e Setting 11021 to 6 is the equivalent of resuming forward motion with the > resume
forward command.

If you are monitoring 11021 at other times, you will see that the “4’s” bit is cleared after
the command has been processed. Therefore, you will see the following values:

E3]

e 1021 = 0 when stopped with a quick-stop command
e 11021 =3 when running reversed in lookahead
e [1021 =2 when running forward in lookahead

Note:

In preliminary versions of the special PMAC lookahead firmware,
11021 served a different function. That variable value is now a
constant value (3) set by the firmware.

PMAC I-Variable Specification

165

PMAC 2 Software Reference

PMAC ON-LINE COMMAND SPECIFICATION

<CONTROL-A>

Function
Scope
Syntax

Remarks

See Also

Abort all programs and moves.
Global
ASCII Value 1D; $01

This command aborts all motion programs and stops all non-program moves on the card. It
also brings any disabled or open-loop motors to an enabled zero-velocity closed-loop state.
Each motor will decelerate at a rate defined by its own motor I-variable Ix15. However, a
multi-axis system may not stay on its programmed path during this deceleration.

A <CTRL-A> stop to a program is not meant to be recovered from gracefully, because the
axes will in general not stop at a programmed point. The next programmed move will not
behave properly unless a PMATCH command is given or 114 is set to 1 (these cause PMAC to
use the aborted position as the move start position). Alternately, an on-line J command may
be issued to each motor to cause it to move to the end point that was programmed when the
abort occurred. Then the program(s) can be resumed with an R (run) command.

To stop a motion sequence in a manner that can be recovered from easily, use instead the
Quit (Q or <CTRL-Q>) or the Hold (H or <CTRL-0>) command.

When PMAC is set up to power on with all motors killed (Ix80 = 0), this command can be
used to enable all of the motors (provided that they are not commutated by PMAC — in that
case, each motor should be enabled with the $§ command).

For multiple cards on a single serial daisy-chain, this command affects all cards on the chain,
regardless of the current software addressing.

Stop Commands (Making Your Application Safe)

On-line commands A, $, J=, PMATCH, H, <CTRL-0>, Q, <CTRL-Q>

I-variables I14, Ix15, Ix80.

<CONTROL-B>

Function
Scope
Syntax

Remarks

Example

See Also

Report status word for all motors.
Global
ASCII Value 2D; $02

This command causes PMAC to report the status words for all of the motors to the host in
hexadecimal ASCII form, 12 characters per motor starting with motor #1, with the characters
for each motor separated by spaces. The characters reported for each motor are the same as if
the ? command had been issued for that motor.

The detailed meanings of the individual status bits are shown under the ? command
description.

For multiple cards on a single serial daisy-chain, this command affects only the card
currently addressed in software (@n).
<CTRL-B>

812000804001 812000804001 812000A04001 812000B04001 050000000000
050000000000 050000000000 050000000000<CR>

On-line commands <CTRL-C>, <CTRL-G>, ?, @n
Memory-map registers X:$003D, X:$0079, etc., Y:$0814, Y:$08D4;
Suggested M-Variable definitions Mx30-Mx45.

166

PMAC On-Line Command Specification

PMAC 2 Software Reference

<CONTROL-C>

Function
Scope
Syntax

Remarks

Example

See Also

Report all coordinate system status words
Global
ASCII Value 3D, $03

This command causes PMAC to report the status words for all of the coordinate systems to
the host in hexadecimal ASCII form, 12 characters per coordinate system starting with
coordinate system 1, with the characters for each coordinate system separated by spaces. The
characters reported for each coordinate system are the same as if the ?? command had been
issued for that coordinate system.

The detailed meanings of the individual status bits are shown under the ?? command
description.

For multiple cards on a single serial daisy-chain, this command affects only the card
currently addressed in software (by the @n command).

<CTRL-C>
A80020020000 A80020020000 A80020020000 A80020020000 A80020000000
A80020000000 A80020000000 A80020000000<CR>

On-line commands <CTRL-B>, <CTRL-G>, ??;
Memory-map registers Y:$0817, Y:$08D7, etc., X:$0818, X:$08D8, etc.;
Suggested M-variable definitions Mx80-Mx90.

<CONTROL-D>

Function
Scope
Syntax

Remarks

Example

See Also

Disable all PLC programs.
Global
ASCII Value 4D; $04

This command causes all PLC programs to be disabled (i.e. stop executing). This is the
equivalent of DISABLE PLC 0..31 and DISABLE PLCC O0..31. Itis especially
useful if a CMD or SEND statement in a PLC has run amok.

For multiple cards on a single serial daisy-chain, this command affects all cards on the chain,
regardless of the current software addressing.

TRIGGER FOUND
TRIGTRIGER FOTRIGGER FOUND
TRTRIGTRIGGER FOUND (Out-of-control SEND message from PLC)
<CTRL-D>........ (Command to disable the PLCs)
(No more messages; can now edit PLC)
On-line commands DISABLE PLC, ENABLE PLC,DISABLE PLCC, ENABLE PLCC,
OPEN PLC
Program commands DISABLE PLC, ENABLE PLC, DISABLE PLCC, ENABLE PLCC,
COMMAND, SEND

PMAC On-Line Command Specification 167

PMAC 2 Software Reference

<CONTROL-F>

Function Report following errors for all motors.
Scope Global
Syntax ASCII Value 6D; $06

Remarks This command causes PMAC to report the following errors of all motors to the host. The
errors are reported in an ASCII string, each error scaled in counts, rounded to the nearest
tenth of a count. A space character is returned between the reported error for each motor.

Refer to the on-line F command for more detail as to how the following error is calculated.
For multiple cards on a single serial daisy-chain, this command affects only the card
currently addressed in software (by the @n command).

Example <CTRL-F>
0.5 7.2 -38.3 1.7 0 0 0 O<CR>

See Also I-variables Ix11, Ix12
On-line commands F, <CTRL-P>, <CTRL-V>

<CONTROL-G>

Function Report global status word.
Scope Global
Syntax ASCII Value 7D; $07

Remarks This command causes PMAC to report the global status words to the host in hexadecimal
ASCII form, using 12 characters. The characters sent are the same as if the ??? command
had been sent, although no command acknowledgement character (<ACK> or <LF>,
depending on 13) is sent at the end of the response.

The detailed meanings of the individual status bits are shown under the ??? command
description.

For multiple cards on a single serial daisy-chain, this command affects only the card
currently addressed in software (by the @n command).

Example <CTRL-G>
003000400000<CR>

See Also On-line commands <CTRL-B>, <CTRL-C>, ???
Memory-map registers X:$0003, Y:$0003.

<CONTROL-H>

Function Erase last character.
Scope Global
Syntax ASCII Value 8D; $08 (KBACKSPACE>).

Remarks This character, usually entered by typing the <KBACKSPACE> key when talking to PMAC in
terminal mode, causes the most recently entered character in PMAC’s command-line-receive
buffer to be erased.

See Also Talking to PMAC
On-line command <CTRL-0> (Feed Hold All)

<CONTROL-I>

Function Repeat last command line.

168 PMAC On-Line Command Specification

PMAC 2 Software Reference

Scope Global
Syntax ASCII Value 9D; $09 (XTAB>).

Remarks This character, sometimes entered by typing the <TAB> key, causes the most recently sent
alphanumeric command line to PMAC to be re-commanded. It provides a convenient way to
quicken a repetitive task, particularly when working interactively with PMAC in terminal
mode. Other control-character commands cannot be repeated with this command.

Note:

Internally generated commands from CMD " {command}"
statements in motion and PLC programs overwrite the last executed
command from the host, and so can alter the action of this character.

Note:

Most versions of the PMAC Executive Program “trap” a <CTRL-I>
or <TAB> for their own purposes, and do not send it on to PMAC,
even when in terminal mode

Example This example shows how the tab key can be used to look for some event:

PC<CR>

P1:10<CR>

<TAB>

P1:10<CR>

<TAB>

P1:10<CR>

<TAB>

P1:11<CR>

See Also On-line command <CONTROL-Y>.
<CONTROL-K>

Function Kill all motors.

Scope Global

Syntax ASCII Value 11D; $0B

Remarks This command kills all motor outputs by opening the servo loop, commanding zero output,
and taking the amplifier enable signal (AENAR) false (polarity is determined by jumper E17)
for all motors on the card. If any motion programs are running, they will automatically be
aborted. (For the motor-specific K (kill) command, if the motor is in a coordinate system that
is executing a motion program, the program execution must be stopped with either an A
(abort) or Q (quit) command before PMAC will accept the K command.)

For multiple cards on a single serial daisy-chain, this command affects all cards on the chain,
regardless of the current software addressing.

See Also On-line commands K, A, <CONTRCOL- A>.
<CONTROL-L>

Function Close open rotary buffer.
Scope Global
Syntax ASCII Value 12D; $0C

Remarks This character causes PMAC to close the open rotary program buffer on PMAC. It is exactly
equivalent in effect to the CLOSE command, but it is faster to send. The primary use of

PMAC On-Line Command Specification 169

PMAC 2 Software Reference

<CTRL-L> is when the rotary buffer needs to be opened and closed repeatedly. After
closing the rotary buffer, there is no chance that an on-line command can be mistaken for a
buffer command.

Example <CTRL-U> ; Open rotary buffer
X10 Y20 F5 M3 ; Put program line in buffer
X30 Y40 F5.... ; Put program line in buffer
<CTRL-L> ; Close rotary buffer
M1 ; On-line command for value of M1
1 ; PMAC responds
See Also Rotary Motion Program Buffers (Writing a Motion Program)
On-line commands <CTRL-U>, OPEN ROT, CLOSE
170 PMAC On-Line Command Specification

PMAC 2 Software Reference

<CONTROL-M>

Function Enter command line.

Scope Global

Syntax ASCII Value 13D; $0D (<CR>)

Remarks This character, commonly known as <CR> (carriage return), causes the alphanumeric
characters in the PMAC’s command-line-receive buffer to be interpreted and acted upon.
(Control-character commands do not require a <CR> character to execute.)

Note:
For multiple PMACs daisy-chained together on a serial interface, this
will act on all cards simultaneously, not just the software-addressed
card. For simultaneous action on multiple cards, it is best to load up
the command-line-receive buffers on all cards before issuing the
<CR> character.

Example #1J+<CR>
P1<CR>
@O0&1B1R@1&1B7R<CR> (This causes card 0 on the serial daisy-chain to have its CS 1

execute PROG 1 and card 1 to have its CS 1 execute
PROG 7 simultaneously.)

See Also Talking to PMAC

<CONTROL-N>

Function Report command line checksum.

Scope Global

Syntax ASCII Value 14D; $OE

Remarks This character causes PMAC to calculate and report the checksum of the alphanumeric
characters of the present command lines (i.e. since the most recent carriage-return character).
As typically used, the host computer would send the entire command line up to, but not
including, the carriage return. It would then send the <CTRL~-N> character, and PMAC
would return the checksum value. If this value agreed with the host’s internally calculated
checksum value, the host would then send the <CR> and PMAC would execute the command
line. If the values did not agree, the host would send a <CTRL-X> command to erase the
command line, then resend the line, repeating the process.

Note:
The PMAC Executive Program terminal mode will not display the
checksum values resulting from a <CTRL-N> command.

Example With I4=1 and 13=2:

Host sends:......... J+<CTRL-N>

PMAC sends:..... <117dec> (117=74[J] + 43[+]; correct)

Host sends:......... <CR>

PMAC sends:..... <ACK><117dec> (handshake and checksum again)
Host sends:......... J/<CTRL-N>

PMAC sends:..... <122dec> (122 '=74[J] +47[/]; incorrect)
Host sends:......... <CTRL-X> (Erase the incorrect command)
........................... J/<CTRL-N> (Send the command again)

PMAC On-Line Command Specification 171

PMAC 2 Software Reference

See Also

PMAC sends:..... <121dec> (121 = 74[J] + 47[/]; correct)

PMAC sends:..... <ACK><121dec> (handshake and checksum again)

Communications Checksum (Writing a Host Communications Program)
I-variables 13, 14
On-line commands <CTRL-M> (KCR>), <CTRL-X>

<CONTROL-0O>

Function
Scope
Syntax

Remarks

See Also

Feed hold on all coordinate systems.
Global
ASCII Value 15D; $OF

This command causes all coordinate systems in PMAC to undergo a feed hold. A feed hold
is much like a $0 command where the coordinate system is brought to a stop without
deviating from the path it was following, even around curves. However, with a feed hold, the
coordinate system slows down at a slew rate determined by [x95, and can be started up again
with an R (run)command. The system then speeds up at the rate determined by 1x95, until it
reaches the desired value (from internal or external timebase). From then on, any timebase
changes occur at a rate determined by [x94.

For multiple cards on a single serial daisy-chain, this command affects all cards on the chain,
regardless of the current software addressing.

On a flash memory PMAC that is in bootstrap mode (powered up with ES1 ON), the
<CTRL-0> command puts PMAC into its firmware reload command. All subsequent
characters sent to PMAC are interpreted as bytes of machine code for PMAC’s operational
firmware, overwriting the existing operational firmware in flash memory.

Resetting PMAC (Talking to PMAC)

I-variables 152, 1x94, 1x95

On-line commands <CTRL-H> (backspace) H (feedhold), R (run), % (feedrate override), \
(program hold).

Jumper E51

<CONTROL-P>

Function
Scope
Syntax

Remarks

Report positions of all motors.
Global
ASCII Value 16D; $10

This command causes the positions of all motors to be reported to the host. The positions are
reported as an ASCII string, scaled in counts, rounded to the nearest tenth of a count, with a
space character in between each motor’s position.

The position window in the PMAC Executive program works by repeatedly sending the
<CTRL-P> command and rearranging the response into the window.

PMAC reports the value of the actual position register plus the position bias register plus the
compensation correction register, and if bit 16 of Ix05 is 1 (handwheel offset mode), minus
the master position register.

For multiple cards on a single serial daisy-chain, this command affects only the card
currently addressed in software (by the @n command).

172

PMAC On-Line Command Specification

PMAC 2 Software Reference

Example <CTRL-P>
9999.5 10001.2 5.7 -2.1 0 0 O O<CR>

See Also On-line commands P, <CTRL-V>, <CTRL-F>.

<CONTROL-Q>

Function Quit all executing motion programs.

Scope Global

Syntax ASCII Value 17D; $11

Remarks This command causes any and all motion programs running in any coordinate system to stop
executing after the moves that have already been calculated are finished. Program execution
may be resumed from this point with the R (run) or S (step) commands.
For multiple cards on a single serial daisy-chain, this command affects all cards on the chain,
regardless of the current software addressing.

See Also On-line commands <CTRL-A>, <CTRL-K>, <CTRL-0>, <CTRL-R>, <CTRL-S>, Q
Motion-program command STOP.

<CONTROL-R>

Function Begin execution of motion programs in all coordinate systems.

Scope Global

Syntax ASCII Value 18D; $12

Remarks This command is the equivalent of issuing the R (run) command to all coordinate systems in
PMAC. Each active coordinate system (i.e. one that has at least one motor assigned to it) that
is to run a program must already be pointing to a motion program (initially this is done with a
B{prog num} command).
For multiple cards on a single serial daisy-chain, this command affects all cards on the chain,
regardless of the current software addressing.
For a flash memory PMAC that is in bootstrap mode (powered up with E51 ON), the
<CTRL-R> command puts PMAC into normal operational mode, but with factory default I-
variables, conversion table settings, and VME/DPRAM addresses.

Example &1B1&2B500<CR>
<CTRL-R>

See Also Executing a Motion Program (Writing a Motion Program)

Resetting PMAC (Talking to PMAC)
On-line commands R, B.
Jumper E51

PMAC On-Line Command Specification 173

PMAC 2 Software Reference

<CONTROL-S>

Function Step working motion programs in all coordinate systems.

Scope Global

Syntax ASCII Value 19D; $13

Remarks This command is the equivalent of issuing an S (step) command to all of the coordinate
systems in PMAC. Each active coordinate system (i.c. one that has at least one motor
assigned to it) that is to run a program must already be pointing to a motion program (initially
this is done with a B{ prog num} command).
A program that is not running will execute all lines down to and including the next motion
command (move or dwell), or if it encounters a BLOCKSTART command first, all lines down
to and including the next BLOCKSTOP command.
If a program is already running in continuous execution mode (from an R (run) command), an
S command will put the program in single-step mode, stopping execution after the next
motion command). In this situation, it has exactly the same effect as a Q (quit) command.
For multiple cards on a single serial daisy-chain, this command affects all cards on the chain,
regardless of the current software addressing.

See Also On-line commands <CTRL-A>, <CTRL-0>, <CTRL-Q>, <CTRL-R> A, H,O,Q,R, S;
Motion-program commands BLOCKSTART, BLOCKSTOP, STOP.
Control-panel port (JPAN) input STEP/.

<CONTROL-T>

Function Toggle serial port half/full duplex mode.

Scope Global

Syntax ASCII Value 20D; $14

Remarks This causes serial port communications to toggle between half duplex (PMAC will not echo
character back to host) and full duplex (PMAC will echo character back to host). The power-
up default is half duplex.
This command is invalid when multiple PMACs are daisy-chained on a single serial
interface.

See Also Data Integrity Checks (Writing a Host Communications Program)
On-line command <CTRL-Z>.

<CONTROL-U>

Function Open rotary program buffer(s).

Scope Global

Syntax ASCII Value 21D; $15

Remarks This character causes PMAC to open all existing rotary motion program buffers for entry. It
is exactly equivalent in effect to the OPEN ROTARY command, but it is faster to send.
Along with the <CTRL-L> command, it permits rapid opening and closing of the rotary
buffer, so that on-line commands can be sent with the buffer closed without chance that they
will be mistaken for buffer commands.

Example <CTRL-L>.... ; Close rotary buffer
o ; On-line command for value of M1

174 PMAC On-Line Command Specification

PMAC 2 Software Reference

L, ; PMAC responds
<CTRL-U>........ ; Open rotary buffer
X10 Y20 F5 M3 ; Put program line in buffer
X30 Y40 F5 ; Put program line in buffer
See Also Rotary Motion Program Buffers (Writing a Motion Program)
On-line commands <CTRL-L>, OPEN ROT, CLOSE
<CONTROL-V>
Function Report velocity of all motors.
Scope Global
Syntax ASCII Value 22D; $16
Remarks This command causes PMAC to report the velocities of all motors to the host. The velocity
units are in encoder counts per servo cycle, rounded to the nearest tenth. The <F7> velocity
window in the PMAC Executive program works by repeatedly issuing the <CTRL-V>
command and displaying the response on the screen.
To scale these values into counts/msec, multiply the response by 8,388,608*(1x60+1)/110
(servo cycles/msec).
Note:
The velocity values reported here are obtained by subtracting positions
of consecutive servo cycles. As such, they can be very noisy. For
purposes of display, it is probably better to use averaged velocity
values held in registers Y:$082A, Y:$08EA, etc., accessed with M-
variables
For multiple cards on a single serial daisy-chain, this command affects only the card
currently addressed in software (@n).
See Also I-variable 110, Ix60
On-line commands <CTRL-F>, <CTRL-P>, V
Memory registers X:$0033, X:$006F, etc.
Suggested M-variable definitions Mx66
<CONTROL-X>
Function Cancel in-process communications.
Scope Global
Syntax ASCII Value 24D; $18
Remarks This command causes the PMAC to stop sending any messages that it had started to send,

even multi-line messages. This also causes PMAC to empty the command queue from the
host, so it will erase any partially sent commands.

It can be useful to send this before sending a query command for which you are expecting an
exact response format, if you are not sure what PMAC has been doing before, because it
makes sure nothing else comes through before the expected response. As such, it is often the
first character sent to PMAC from the host when trying to establish initial communications.
In addition, many Delta Tau communications routines start by sending a <CTRL-X>
command to ensure that there is no previously pending response that could confuse the host
software.

PMAC On-Line Command Specification 175

PMAC 2 Software Reference

If 163 is set to 0, there is no acknowledgment of the completion of the <CTRL-X>

command. If163 is set to 1, PMAC acknowledges the completion of the command with a
<CTRL-X> to the host, permitting the host to know that it is safe to send the next command.
PCOMM32 versions 10.21 and newer can take advantage of this feature to improve the speed
of communications.

Note:

This command empties the command queue in PMAC RAM, but it
cannot erase the 1 or 2 characters already in the response port. A
robust algorithm for clearing responses would include 2 character-read
commands that can time-out if necessary.

For multiple cards on a single serial daisy-chain, this command affects all cards on the chain,
regardless of the current software addressing.

See Also On-line commands <CTRL-H>, <CTRL-Z>
<CONTROL-Y>
Function Report last command line.
Scope Global
Syntax ASCII Value 25D; $19
Remarks This causes PMAC to report the last command line to the host (with no trailing <CR>) and to
re-enter the line into the command queue ready to execute upon the next receipt of <CR>.
This allows a user communicating with PMAC in terminal mode to recall the last command
and to be able to edit it with the backspace and typing in desired changes. The command will
be re-executed when the host sends a <CR>.
Note:
Internally generated commands from CMD " {command}"
statements in motion and PLC programs overwrite the last executed
command from the host, and so can alter the action of this character.
Example P123=5<CR> . ; Set the first value
P124=7<CR>... ;Set the second value
P123<CR>........ ;Query the first value
S e ;PMAC responds with value
<CTRL-Y>........ ;Tell PMAC to report last command
PI123uiiiiinnn. ;PMAC reports last command
<BACKSPACE>4<CR> ;Modify to P124 and send
7 ;PMAC tells value of P124
See Also On-line command <CONTROL-I>.
<CONTROL-Z>
Function Set PMAC in serial port communications mode.
Scope Global
Syntax ASCII Value 26D; $1A
Remarks This command causes PMAC’s serial port to become the active communications output port.
All PMAC responses directed to the host will be sent over the serial port. This mode will
continue until a command is received over the bus (parallel) port, which will make the bus
port the active communications output port. PMAC powers up/resets with the serial port the
176 PMAC On-Line Command Specification

PMAC 2 Software Reference

active port.

If you are trying to establish communications with PMAC over the serial port, it is a good
idea to send this character before any query commands to make sure PMAC will try to
respond over the serial port.

Regardless of which is the active output port, PMAC can accept commands over either port.
It is the user’s responsibility not to garble commands by simultaneously commanding over
both ports.

Example Serial host sends: Pl
PMAC responds to serial port: 12
Bus host sends: .. P1=P1+1
Serial host sends: Pl
PMAC responds to bus port: 13
(Serial host gets no response)
Serial host sends: <CTRL-Z>P1
PMAC responds to serial port: 13
See Also On-line commands <CTRL-T>, <CTRL-X>;
Jumpers E44-E47.
#
Function Report currently addressed motor
Scope Global
Syntax # Ask PMAC which motor is addressed
Remarks This causes PMAC to return the number of the motor currently addressed by the host — the
one that acts upon motor-specific commands from the host.
Note:
A different motor may be hardware selected from the control panel
port for motor-specific control panel inputs, and that different motors
may be addressed from programs within PMAC for COMMAND
statements.
Example #
2 PMAC reports that motor 2 is addressed
See Also Control-Panel Port Inputs (Connecting PMAC to the Machine)
On-line commands # {constant}, &, &{constant}, @{constant}
Program commands ADDRESS, COMMAND
#{constant}
Function Address a motor.
Scope Global
Syntax #{constant)
where:
e {constant} is an integer from 1 to &, representing the number of the motor to be
addressed
Remarks This command makes the motor specified by {constant} the addressed motor (the one on

which on-line motor commands will act). The addressing is modal, so all further motor-
specific commands will affect this motor until a different motor is addressed. At power-

PMAC On-Line Command Specification 177

PMAC 2 Software Reference

Example

See Also

up/reset, Motor 1 is addressed.

Note:

A different motor may simultaneously be hardware selected from the
control panel port for motor-specific control panel inputs, and that
different motors may be addressed from programs within PMAC for
COMMAND statements.

#1T+..o. ;Command Motor 1 to jog positive
T e ;Command Motor 1 to jog negative
#2T+..., ;Command Motor 2 to jog positive
J/ ;Command Motor 2 to stop jogging

Control-Panel Port Inputs (Connecting PMAC to the Machine)
Addressing commands (Talking to PMAC)

Program commands COMMAND, ADDRESS

On-line commands #, & &{constant}, @{constant}

#{constant}->

Function
Scope
Syntax

Remarks

Example

See Also

Report the specified motor’s coordinate system axis definition.
Coordinate-system specific

#{constant

where:
e {constant} is an integer from 1 to 8 representing the number of the motor whose axis
definition is requested

This command causes PMAC to report the current axis definition of the specified motor in
the currently addressed coordinate system. If the motor has not been defined to an axis in the
currently addressed system, PMAC will return a 0 (even if the motor has been assigned to an
axis in another coordinate system). A motor can have an axis definition in only one
coordinate system at a time.

&1l i ; Address Coordinate System 1

#1->. ; Request Motor 1 axis definition in C.S. 1

10000X.ccccunee. ; PMAC responds with axis definition

&2 e ; Address Coordinate System 2

#1->.is ; Request Motor 1 axis definition in C.S. 2

0 ; PMAC shows no definition in this C.S.

Axes, Coordinate Systems (Setting Up a Coordinate System)

On-line commands # {constant}->0, #{constant}->{axis definition},
UNDEFINE, UNDEFINE ALL.

#{constant}->0

Function
Scope
Syntax

Remarks

Clear axis definition for specified motor.

#{constant}->0

where:

® {constant} is an integer from 1 to 8 representing the number of the motor whose axis
definition is to be cleared

This command clears the axis definition for the specified motor if the motor has been defined
to an axis in the currently addressed coordinate system. If the motor is defined to an axis in
another coordinate system, this command will not be effective. This allows the motor to be

178

PMAC On-Line Command Specification

PMAC 2 Software Reference

redefined to another axis in this coordinate system or a different coordinate system.

Compare this command to UNDEFINE, which erases all the axis definitions in the addressed
coordinate system, and to UNDEFINE ALL, which erases all the axis definitions in all
coordinate systems.

Example This example shows how the command can be used to move a motor from one coordinate
system to another:

&l .. ; Address C.S. 1
#4->.. ; Request definition of #4
5000A ...ccveneenn. ; PMAC responds
#4->0 ; Clear definition

&2 i, ; Address C.S. 2
#4->5000A...... ; Make new definition in C.S. 2

See Also Axes, Coordinate Systems (Setting Up a Coordinate System)
On-line commands UNDEFINE, UNDEFINE ALL, #{constant}->{axis
definition}.

#{constant}->{axis definition}
Function Assign an axis definition for the specified motor.

Scope Coordinate-system specific
Syntax #{constant}->{axis definition}
where:

® {constant} is an integer from 1 to 8 representing the number of the motor whose axis
definition is to be made;

® {axis definition} consists of:
e 1to3sectsof [{scale factor}]{axis}, separated by the + character, in
which:
= the optional {scale factor} is a floating-point constant representing the
number of motor counts per axis unit (engineering unit); if none is specified,
PMAC assumes a value of 1.0;
= {axis}isaletter (X, Y, Z, A, B, C, U, V, W) representing the axis to which
the motor is to be matched;
e [+{offset}] (optional)is a floating-point constant representing the difference
between axis zero position and motor zero (home) position, in motor counts; if
none is specified, PMAC assumes a value of 0.0

Note:

No space is allowed between the motor number and the arrow double
character.

Remarks This command assigns the specified motor to a set of axes in the addressed coordinate
system. It also defines the scaling and starting offset for the axis or axes.

In the vast majority of cases, there is a one-to-one matching between PMAC motors and
axes, so this axis definition statement only uses one axis name for the motor.

A scale factor is typically used with the axis character, so that axis moves can be specified in
standard units (e.g. millimeters, inches, degrees). This number is what defines what the user
units will be for the axis. If no scale factor is specified, a user unit for the axis is one motor

count. Occasionally an offset parameter is used to allow the axis zero position to be different

PMAC On-Line Command Specification 179

PMAC 2 Software Reference

from the motor home position. (This is the starting offset; it can later be changed in several
ways, including the PSET, {axis}=, ADIS, and IDIS commands).

If the specified motor is currently assigned to an axis in a different coordinate system, PMAC
will reject this command (reporting an ERRO03 if 16=1 or 3). If the specified motor is
currently assigned to an axis in the addressed coordinate system, the old definition will be
overwritten by this new one.

To undo a motor’s axis definition, address the coordinate system in which it has been
defined, and use the command # {constant}->0. To clear all of the axis definitions
within a coordinate system, address the coordinate system and use the UNDEFINE command.
To clear all axis definitions in a// coordinate systems, use UNDEFINE ALL.

For more sophisticated systems, two or three cartesian axes may be defined as a linear
combination of the same number of motors. This allows coordinate system rotations and
orthogonality corrections, among other things. One to three axes may be specified (if only
one, it amounts to the simpler definition above). All axes specified in one definition must be
from the same triplet set of cartesian axes: XYZ or UVW. If this multi-axis definition is
used, a command to move an axis will result in multiple motors moving.

Example #1->X ; User units = counts
#4->2000 A . ; 2000 counts/user unit
#8->3333.333Z-666.667 ; Non-integers OK
#3->Y .. ; 2 motors may be assigned to the same axis;
#2->Y .. ; both motors move when a Y move is given
#1->8660X-5000Y ;This provides a 300 rotation of X and Y...
#2->5000X+8660Y ;with 10000 cts/unit — this rotation does
#3->20002-6000 ;not involve Z, but it could have
This example corrects for a Y axis 1 arc minute out of square:
#5->100000X ;100000 cts/in
#6->-29.1X+100000Y ;sin and cos of 1/60

See Also Axes, Coordinate Systems (Setting Up a Coordinate System)
On-line commands # {constant}->, #{constant}->0, UNDEFINE, UNDEFINE
ALL.

180 PMAC On-Line Command Specification

PMAC 2 Software Reference

$

Function
Scope
Syntax

Remarks

Example

See Also

$$$

Function
Scope
Syntax

Remarks

Reset motor

Motor specific
$

This command causes PMAC to initialize the addressed motor, performing any required
commutation phasing and full reading of an absolute position sensor, leaving the motor in a
closed-loop zero-velocity state. (For a non-commutated motor with an incremental encoder,
the J/ command may also be used.)

This command is necessary to initialize a PMAC-commutated motor after power-up/reset if
Ix80 for the motor is set to 0. If [x80 is 1, the initialization will be done automatically during
the power-up/reset cycle.

This command will not be accepted if the motor is executing a move.

I180....cccceuunen. ; Request value of #1 power-on mode variable

0 e ; PMAC responds with 0; powers on unphased and killed
S$8S e, ; Reset card; motor is left in killed state

#1$; Initialize motor, phasing and reading as necessary

Absolute Sensors (Setting Up a Motor)

Power-on Phasing (Setting Up PMAC Commutation)
I-variables Ix10, 1x73, Ix74, 1x75, Ix80, Ix81

On-line commands $$$, 3/

Full card reset.
Global
$S5$

This command causes PMAC to do a full card reset. The effect of $$$ is equivalent to that
of cycling power on PMAC, or taking the INIT/ line low, then high.

With jumper E51 in its default state (OFF for PMAC-PC, -Lite, -VME, ON for PMAC-STD),
this command does a standard reset of the PMAC. On PMACs without the Option CPU
section (not option 4A, 5A, or 5B), I-variable values, conversion-table settings, and DPRAM
and VMEDbus addresses stored in permanent memory (EAROM) by the last SAVE command
are reloaded into active memory (RAM). All information stored in battery backed RAM
such as P-variable and Q-variable values, M-variable definitions, and motion and PLC
programs are not changed by this command.

On PMAC:s with the Option CPU section (option 4A, SA, or 5B), PMAC copies the contents
of the flash memory into active memory during a normal reset cycle, overwriting any current
contents. This means that anything changed in PMAC’s active memory that was not saved to
flash memory will be lost. Even the last saved P-variable and Q-variable values, M-variable
definitions, and motion and PLC programs are copied from flash to RAM during the reset
cycle.

PMAC On-Line Command Specification 181

PMAC 2 Software Reference

Example

See Also

$$$***

With jumper E51 in non-default state (ON for PMAC-PC, -Lite, -VME, OFF for PMAC-
STD), this command does a reset and re-initialization of the PMAC. On PMACs without the
Option CPU section (not option 4A, 5A, or 5B), factory default [-variable values, conversion-
table settings, and DPRAM and VMEDbus addresses stored in the firmware (EPROM) are
copied into active memory (RAM). (Values stored in EAROM are not lost; they are simply
not used.)

On PMACs with the Option CPU section (option 4A, 5A, or 5B), PMAC enters a special re-
initialization mode called “bootstrap mode” that permits the downloading of new firmware
(see PMAC PROM SOFTWARE UPDATE LISTING for details of this mode). In this
bootstrap mode, there are very few command options. To bypass the download operation in
this mode, send a <CONTROL-R> character to PMAC. This puts PMAC in the normal
operational mode with the existing firmware. Factory default values for [-variables,
conversion table settings, and bus addresses for DPRAM and VME are copied from the
firmware section of flash memory into active memory. The saved values of these values are
not used, but they are still kept in the user section of flash memory.

Because this command immediately causes PMAC to enter its power-up/rest cycle, there is
no acknowledging character (KRACK> or <LF>) returned to the host.

I130=60000 ... ; Change #1 proportional gain

SAVE................. ; SAVE I-variables to EAROM

I130=80000... ; Change gain again

SS8S e ; Reset card

I130..cccciiccene ; Request value of parameter

60000 ..ccuueene... ; PMAC reports current value, which is SAVEd value
(Put E51 on)

SS8S e, ; Reset card

I130..ccccieienne ; Request value of parameter

2000 ; PMAC reports current value, which is default

Resetting PMAC (Talking to PMAC)

PMAC PROM SOFTWARE UPDATE LISTING

Control-Panel Port INIT/ Input (Connecting PMAC to the Machine)
On-line command $$$***

I-variables I5, 1x80

JPAN Connector Pin 15

Jumper ES1.

Function Global card reset and re-initialization.

Scope Global

Syntax EEEL A

Remarks This command performs a full reset of the card and reinitializes the memory. All programs
and other buffers are erased. All I-variables, encoder conversion table entries, and VME and
DPRAM addressing parameters are returned to their factory defaults. (Previously SAVEd
values for these parameters are still held in EAROM, and can be brought into active memory
with a subsequent $$$ command). It will also recalculate the firmware checksum reference
value and eliminate any PASSWORD that might have been entered.

182 PMAC On-Line Command Specification

PMAC 2 Software Reference

Example

See Also

$*
Function
Scope
Syntax

Remarks

M-variable definitions, P-variable values, Q-variable values, and axis definitions are not
affected by this command. They can be cleared by separate commands (e.g. MO. .1023-
>* P0..1023=0,Q00..1023=0, UNDEFINE ALL).

This command is particularly useful if the program buffers have become corrupted. It clears
the buffers and buffer pointers so the files can be re-sent to PMAC. Regular backup of
parameters and programs to the disk of a host computer is strongly encouraged so this type of
recovery is possible. The PMAC Executive program has Save Full PMAC Configuration and
Restore Full PMAC Configuration functions to make this process easy.

With jumper E51 in non-default state (ON for PMAC-PC, -Lite, -VME, OFF for PMAC-
STD), a PMAC with the Option CPU section (option 4A, 5A, or 5B) enters a special re-
initialization mode called “bootstrap mode” when this command is given. This mode permits
the downloading of new firmware (see PMAC PROM SOFTWARE UPDATE LISTING for
details of this mode). In this mode, there are very few command options. To bypass the
download operation in this mode, send a <CONTROL-R> character to PMAC. This puts
PMAC in the normal operational mode with the existing firmware. Factory default values for
I-variables, conversion table settings, and bus addresses for DPRAM and VME are copied
from the firmware section of flash memory into active memory. The saved values of these
values are not used, but they are still kept in the user section of flash memory.

I130=60000... ; Set #1 proportional gain

SAVE.................. ; Save to non-volatile memory

SESx*x . ; Reset and re-initialize card

I130...cccerrnnnne ; Request value of 1130

2000 e, ; PMAC reports current value, which is default

$8S .. ; Normal reset of card

I130.ciiiiiiienns ; Request value of 1130

60000 ; PMAC reports current value, which is SAVEd value

On-line command $$$;

PMAC PROM Software Update Listing

Jumper E51

PMAC Executive Program Save/Restore Full Configuration.

Read motor absolute position

Motor specific
$*
The $* command causes PMAC to perform a read of the absolute position for the addressed

motor, as defined by Ix10 for the motor. It performs the same actions that are normally
performed during the board’s power-up/reset cycle.

The $* command performs the following actions on the addressed motor:

e The motor is killed (servo loop open, zero command, amplifier disabled).

e Ifthe motor is set up for local hardware encoder position capture by input flags, with bit
16 of Ix03 set to 0 to specify hardware capture, and bit 18 of [x25 set to 0 to specify local,
not MACRO, flag operation (these are default values), the hardware encoder counter for
the same channel as the flag register specified by I1x25 is set to 0 (e.g. if x25 specifies
flags from channel 3, then encoder counter 3 is cleared).

e The motor home complete status bit is cleared.

PMAC On-Line Command Specification 183

PMAC 2 Software Reference

e The motor position bias register, which contains the difference between motor and axis
zero positions, is set to 0.

e [fIx10 for the motor is greater than 0, specifying an absolute position read, the sensor is
read as specified by Ix10 to set the motor actual position. The actual position value is set
to the sensor value minus the [x26 “home offset” parameter. Unless the read is
determined to be unsuccessful, the motor “home complete” status bit is set to 1.

e IfIx10 for the motor is set to 0, specifying no absolute position read, the motor actual
position register is set to 0.

e Because the motor is “killed” the actual position value is automatically copied into the
command position register for the motor.

e There are several things to note with regard to this command:

e The motor is left in the “killed” state at the end of execution of this command. To enable
the motor, a $ command should be used if this is a PMAC-commutated motor and a
phase reference must be established; otherwise a J/, A, or <CTRL-A> command should
be used to enable the motor and close the loop.

e Ifbit 2 of Ix80 is set to 1, PMAC will not attempt an absolute position read at the board
power-on/reset; in this case, the $* command must be used to establish the absolute
sensor. If bit 2 of Ix80 is set to 0 (the default), PMAC will attempt an absolute position
read at the board power-on/reset.

e With Ix10 set to 0, the action of $* is very similar to that of the HOMEZ command. There
are a few significant differences, however:

e $* always kills the motor; HOMEZ leaves the servo in its existing state.

e $* sets the present actual position to be zero; HOMEZ sets the present commanded
position to be zero.

e $* zeros the hardware encoder counter in most cases; HOMEZ does not change the
hardware encoder counter.

See Also I-variables Ix03, Ix10, Ix25, Ix80, 1x81
On-line commands $, $$$, HOMEZ

%

Function Report the addressed coordinate system’s feedrate override value.

Scope Coordinate-system specific

Syntax %

Remarks This command causes PMAC to report the present feedrate-override (time-base) value for the
currently addressed coordinate system. A value of 100 indicates “‘real time”*; i.e. move
speeds and times occur as specified.

PMAC will report the value in response to this command, regardless of the source of the
value (even if the source is not the $ {constant} command)

Example %.....cccooe Request feedrate-override value
100 e, ; PMAC responds: 100 means real time
2 ; Command a feed hold
S ; Request feedrate-override value
0 ; PMAC responds: 0 means all movement frozen

184 PMAC On-Line Command Specification

PMAC 2 Software Reference

See Also

Time-Base Control (Synchronizing PMAC to External Events)
I-Variables 110, 1x93, 1x94, 1x95

On-line commands % {constant}, H

Memory map registers X:$0808, X:$08CS8, etc.

%{constant}

Function
Scope
Syntax

Remarks

Example

See Also

Set the addressed coordinate system’s feedrate override value.
Coordinate-system specific

%{constant}

where:

e {constant} is a non-negative floating point value specifying the desired feedrate
override (time-base) value (100 represents real-time)

This command specifies the feedrate override value for the currently addressed coordinate
system. The rate of change to this newly specified value is determined by coordinate system
I-variable 1x94.

I-variable 1x93 for this coordinate system must be set to its default value (which tells to
coordinate system to take its time-base value from the % -command register) in order for this
command to have any effect.

The maximum % value that PMAC can implement is equal to (223/110)*100 or the (servo
update rate in kHz)*100. If you specify a value greater than this, PMAC will saturate at this
value instead.

To control the time base based on a variable value, assign an M-variable (suggested M197) to
the commanded time base register (X:$0806, X:$08C6, etc.), then assign a variable value to
the M-variable. The value assigned here should be equal to the desired % value times
(110/100).

%0 e ; Command value of 0, stopping motion
%$33.333 ; Command 1/3 of real-time speed
%$100.....ccccceuenn. ; Command real-time speed
%500......cccceeeene ; Command too high a value

B e ; Request current value

225.88230574 ; PMAC responds; this is max allowed value
M197->X:$0806,24 ; Assign variable to C.S. 1 % command reg.
M197=P1*I10/100 ; Equivalent to &1% (P1)

Time-Base Control (Synchronizing PMAC to External Events)
I-Variables 110, 1x93, 1x94, Ix95

On-line commands %, H

Memory map registers X:$0806, X:$08C6, etc.

PMAC On-Line Command Specification 185

PMAC 2 Software Reference

&{constant}

Function
Scope
Syntax

Remarks

Example

See Also

&

Function
Scope
Syntax

Remarks

Example

See Also

Address a coordinate system.
Global

&{constant}
where:

® {constant} is an integer from 1 to 8, representing the number of the coordinate
system to be addressed

This command makes the coordinate system specified by { constant} the addressed
coordinate system (the one on which on-line coordinate-system commands will act). The
addressing is modal, so all further coordinate-system-specific commands will affect this
coordinate system until a different coordinate system is addressed. At power-up/reset,
Coordinate System 1 is addressed.

Note:

A different coordinate system may simultaneously be hardware

selected from the control panel port for coordinate-system-specific
control panel inputs, and that different coordinate systems may be
addressed from programs within PMAC for COMMAND statements.

If the control-panel inputs are disabled by 12=1, the host-addressed coordinate system also
controls the indicator lines for the in-position, warning-following-error, and fatal-following-
error functions. These indicator lines connect to both control-panel port outputs (all PMAC
versions), and to the interrupt controller (PMAC-PC, PMAC-Lite, PMAC-STD). (If 12=0,
the hardware-selected coordinate system controls these lines.)

&1B4R............... ; C.S.1 point to Beginning of Prog 4 and Run
Qe ; C.S.1 Quit running program
&3B6R............... ; C.S.3 point to Beginning of Prog 5 and Run
A, ; C.S.3 Abort program

I-variable 12

On-line commands #, # {motor number}, &

Program commands ADDRESS, COMMAND

Report currently addressed coordinate system.
Global
&

This command causes PMAC to return the number of the coordinate system currently
addressed by the host.

Note that a different coordinate system may be hardware selected from the control panel port
for coordinate-system-specific control panel inputs, and that different coordinate systems
may be addressed from programs within PMAC for COMMAND statements.

& oo, ; Ask PMAC which C.S. is addressed

4 ; PMAC reports that C.S. 4 is addressed
[-variable 12

On-line commands #, #{motor number},&{C.S. number};
Program commands ADDRESS, COMMAND,;

186

PMAC On-Line Command Specification

PMAC 2 Software Reference

< {Option 6L firmware only}

Function
Scope
Syntax
Remarks

Back-up through Lookahead Buffer
Coordinate-system specific
<

This command causes the PMAC to start reverse execution in the lookahead buffer for the
addressed coordinate system. If the program is currently executing in the forward direction, it
will be brought to a quick stop (the equivalent of the \ command) first.

Execution proceeds backward through points buffered in the lookahead buffer, observing

velocity and acceleration constraints just as in the forward direction. This execution continues

until one of the following occurs:

e Reverse execution reaches the beginning of the lookahead buffer — the oldest stored point
still remaining in the lookahead buffer — and it comes to a controlled stop at this point,
observing acceleration limits in decelerating to a stop.

e The \ quick-stop command is given, which causes PMAC to come to the quickest possible
stop in the lookahead buffer.

e The > resume-forward, R run, or S step command is given, which causes PMAC to resume
normal forward execution of the program, adding to the lookahead buffer as necessary.

e An error condition occurs, or a non-recoverable stopping command is given.

If any motor has been jogged away from the quick-stop point, and not returned with a J=
command, PMAC will reject the < back-up command, reporting ERR017 if 16 is set to 1 or 3.
This same functionality can be obtained from within a PMAC program by setting 11021 to 7,
which executes more quickly than CMD &n<.

If the coordinate system is not currently in the middle of a lookahead sequence, PMAC will
treat this command as an H feed-hold command.

> {Option 6L firmware only}

Function
Scope
Syntax
Remarks

Resume Forward Execution in Lookahead Buffer

Coordinate-system specific
>

This command causes the PMAC to resume forward execution in the lookahead buffer for the
addressed coordinate system. It is typically used to resume normal operation after a \ quick-
stop command, or a < back-up command. If the program is currently executing in the

backward direction, it will be brought to a quick stop (the equivalent of the \ command) first.

If previous forward execution had been in continuous mode (started with the R command),
the > command will resume it in continuous mode. If previous forward execution had been
in single-step mode (started with the S command), the > command will resume it in single-
step mode. The R and S commands can also be used to resume forward execution, but they
may change the continuous/single-step mode.

Deceleration from a backward move (if any) and acceleration in the forward direction
observe the Ix17 acceleration limits.

If any motor has been jogged away from the quick-stop point, and not returned with a J=
command, PMAC will reject the > resume command, reporting ERR0O17 if 16 is set to 1 or 3.

This same functionality can be obtained from within a PMAC program by setting 11021 to 6,
which executes more quickly than CMD &n>.

If the coordinate system is not currently in the middle of a lookahead sequence, PMAC will
treat this command as an R run command.

PMAC On-Line Command Specification 187

PMAC 2 Software Reference

/

Function
Scope
Syntax

Remarks

Example

See Also

Halt program execution at end of currently executing move

Coordinate-system specific
/

This command causes PMAC to halt the execution of the motion program running in the
currently addressed coordinate system at the end of the currently executing move, provided
PMAC is in segmentation mode (113>0). If PMAC is not in segmentation mode (113=0), the
/ command has the same effect as the Q command, halting execution at the end of the latest
calculated move, which can be 1 or 2 moves past the currently executing move.

If the coordinate system is currently executing moves with the special lookahead function
(Option 6L firmware only), motion will stop at the end of the move currently being added to
the lookahead buffer. This is not necessarily the move that is currently executing from the
lookahead buffer, and there can be a significant delay before motion is halted. Acceleration
limits will be observed while ramping down to a stop at the programmed point.

Once halted at the end of the move, program execution can be resumed with the R command.
In the meantime, the individual motors may be jogged way from this point, but they must all
be returned to this point using the J= command before program execution may be resumed.
An attempt to resume program execution from a different point will result in an error
(ERRO17 reported if 16 = 1 or 3). If resumption of this program from this point is not
desired, the A (abort) command should be issued before other programs are run.

&1B5R............... ; Command C.S. 1 to start PROG 5

[e ; Halt execution of program

#1T+..n. ; Jog Motor 1 positive

T/ i ; Stop jogging
= e ; Return to prejog position

> S ; Resume execution of PROG 5

[o ; Halt program execution

#2T- ., ; Jog Motor 2 negative

T/ e ; Stop jogging

2 SR ; Try to resume execution of PROG 5

<BELL>ERRO017 ; PMAC reports error; not at position to resume
= e ; Return to prejog position

R ; Resume execution of PROG 5

I-variables 16, 113
On-line commands R, J=, Q, A, \, H

188

PMAC On-Line Command Specification

PMAC 2 Software Reference

?
Function
Scope
Syntax

Remarks

Report motor status

Motor specific

?

This command causes PMAC to report the motor status bits as an ASCII hexadecimal word.
PMAC returns twelve characters, representing two status words. Each character represents
four status bits. The first character represents Bits 20-23 of the first word; the second shows
Bits 16-19; and so on, to the sixth character representing Bits 0-3. The seventh character
represents Bits 20-23 of the second word; the twelfth character represents Bits 0-3.

The value of a bit is 1 when the condition is true; 0 when it is false. The meaning of the
individual bits is:

FIRST WORD RETURNED (X:$003D, X:$0079, etc.):

First character returned:

Bit 23 Motor Activated: This bit is 1 when 1x00 is 1 and the motor calculations are
active; it is 0 when Ix00 is 0 and motor calculations are deactivated.

Bit 22 Negative End Limit Set: This bit is 1 when motor actual position is less than
the software negative position limit (Ix14), or when the hardware limit on this end (+LIMn —
note!) has been tripped; it is 0 otherwise. If the motor is deactivated (bit 23 of the first motor
status word set to zero) or killed (bit 14 of the second motor status word set to zero) this bit is
not updated.

Bit 21 Positive End Limit Set: This bit is 1 when motor actual position is greater
than the software positive position limit (Ix13), or when the hardware limit on this end (-
LIMn — note!) has been tripped; it is 0 otherwise. If the motor is deactivated (bit 23 of the
first motor status word set to zero) or killed (bit 14 of the second motor status word set to
zero) this bit is not updated.

Bit 20 Handwheel Enabled: This bit is 1 when Ix06 is 1 and position following for
this axis is enabled; it is 0 when 1x06 is 0 and position following is disabled.

Second character returned:

Bit 19 Phased Motor: This bit is 1 when Ix01 is 1 and this motor is being
commutated by PMAC; it is 0 when Ix01 is 0 and this motor is not being commutated by
PMAC.

Bit 18 Open Loop Mode: This bit is 1 when the servo loop for the motor is open,
either with outputs enabled or disabled (killed). (Refer to Amplifier Enabled status bit to
distinguish between the two cases.) It is 0 when the servo loop is closed (under position
control, always with outputs enabled).

Bit 17 Running Definite-Time Move: This bit is 1 when the motor is executing any
move with a predefined end-point and end-time. This includes any motion program move
dwell or delay, any jog-to-position move, and the portion of a homing search move after the
trigger has been found. It is 0 otherwise. It changes from 1 to 0 when execution of the
commanded move finishes.

Bit 16 [Integration Mode: This bit is 1 when Ix34 is 1 and the servo loop integrator
is only active when desired velocity is zero. It is 0 when 1x34 is 0 and the servo loop
integrator is always active.

PMAC On-Line Command Specification 189

PMAC 2 Software Reference

Third character returned:

Bit 15 Dwell in Progress: This bit is 1 when the motor’s coordinate system is
executing a DWELL instruction. It is 0 otherwise.

Bit 14 Data Block Error: This bit is 1 when move execution has been aborted
because the data for the next move section was not ready in time. This is due to insufficient
calculation time. It is 0 otherwise. It changes from 1 to 0 when another move sequence is
started. This is related to the Run Time Error Coordinate System status bit.

Bit 13 Desired Velocity Zero: This bit is 1 if the motor is in closed-loop control and
the commanded velocity is zero (i.e. it is trying to hold position). It is zero either if the motor
is in closed-loop mode with non-zero commanded velocity, or if it is in open-loop mode.

Bit 12 Abort Deceleration: This bit is 1 if the motor is decelerating due to an Abort
command, or due to hitting hardware or software position (overtravel) limits. It is O
otherwise. It changes from 1 to 0 when the commanded deceleration to zero velocity
finishes.

Fourth character returned:

Bit 11 Block Request: This bit is 1 when the motor has just entered a new move
section, and is requesting that the upcoming section be calculated. It is 0 otherwise. It is
primarily for internal use.

Bit 10 Home Search in Progress: This bit is set to 1 when the motor is in a move
searching for a trigger: a homing search move, a jog-until trigger, or a motion program move-
until-trigger. It becomes 1 as soon as the calculations for the move have started, and
becomes zero again as soon as the trigger has been found, or if the move is stopped by some
other means. This is not a good bit to observe to see if the full move is complete, because it
will be 0 during the post-trigger portion of the move. Use the Home Complete and Desired
Velocity Zero bits instead.

Bits 8-9 These bits are used to store a pointer to the next data block for motor
calculations. They are primarily for internal use.

Fifth and sixth characters returned:

Bits 0-7 These bits are used to store a pointer to the next data block for motor
calculations. They are primarily for internal use.

SECOND WORD RETURNED (Y:$0814. Y:$08D4, etc.):

Seventh character returned:

Bit 23 Assigned to C.S.: This bit is 1 when the motor has been assigned to an axis in
any coordinate system through an axis definition statement. It is 0 when the motor is not
assigned to an axis in any coordinate system.

Bits 20-22 (C.S. - 1) Number: These three bits together hold a value equal to the
(Coordinate System number minus one) to which the motor is assigned. Bit 22 is the MSB,
and bit 20 is the LSB. For instance, if the motor is assigned to an axis in C. S. 6, these bits
would hold a value of 5: bit 22 =1, bit 21 =0, and bit 20 = 1.

Eighth character returned:
Bits 16-19 (Reserved for future use)
Ninth Character Returned:

190

PMAC On-Line Command Specification

PMAC 2 Software Reference

Bit 15 (Reserved for future use)

Bit 14 Amplifier Enabled: This bit is 1 when the outputs for this motor’s amplifier
are enabled, either in open-loop or closed-loop mode (refer to Open-Loop Mode status bit to
distinguish between the two cases). It is 0 when the outputs are disabled (killed).

Bits 12-13 (Reserved for future use)
Tenth Character Returned:

Bit 11 Stopped on Position Limit: This bit is 1 if this motor has stopped because of
either a software or a hardware position (overtravel) limit, even if the condition that caused
the stop has gone away. It is 0 at all other times, even when into a limit but moving out of it.

Bit 10 Home Complete: This bit, set to 0 on power-up or reset, becomes 1 when the
homing move successfilly locates the home trigger. At this point in time the motor is usually
decelerating to a stop or moving to an offset from the trigger determined by [x26. If a second
homing move is done, this bit is set to 0 at the beginning of the move, and only becomes 1
again if that homing move successfully locates the home trigger. Use the Desired Velocity
Zero bit and/or the In Position bit to monitor for the end of motor motion.

Bit9 (Reserved for future use)

Bit 8 Phasing Search Error: This bit is set to 1 if the phasing search move for a
PMAC-commutated motor has failed due to amplifier fault, overtravel limit, or lack of
detected motion. It is set to 0 if the phasing search move did not fail by any of these
conditions (not an absolute guarantee of a successful phasing search).

Eleventh Character Returned:

Bit 7 Trigger Move: This bit is set to 1 at the beginning of a jog-until-trigger or
motion program move-until-trigger. It is set to 0 at the end of the move if the trigger has
been found, but remains at 1 if the move ends with no trigger found. This bit is useful to
determine whether the move was successful in finding the trigger.

Bit 6 Integrated Fatal Following Error: This bit is 1 if this motor has been
disabled due to an integrated following error fault, as set by Ix11 and Ix63. The fatal
following error bit (bit 2) will also be set in this case. Bit 6 is zero at all other times,
becoming 0 again when the motor is re-enabled.

Bit5 I'T Amplifier Fault Error: This bit is 1 if this motor has been disabled by an
integrated current fault. The amplifier fault bit (bit 3) will also be set in this case. Bit5is 0
at all other times, becoming 0 again when the motor is re-enabled.

Bit4 Backlash Direction Flag: This bit is 1 if backlash has been activated in the
negative direction. It is 0 otherwise.

Twelfth Character Returned:

Bit3 Amplifier Fault Error: This bit is 1 if this motor has been disabled because of
an amplifier fault signal, even if the amplifier fault signal has gone away, or if this motor has
been disabled due to an I'T integrated current fault (in which case bit 5 is also set). Itis 0 at
all other times, becoming 0 again when the motor is re-enabled.

Bit2 Fatal Following Error: This bit is 1 if this motor has been disabled because
it exceeded its fatal following error limit (Ix11) or because it exceeded its integrated
following error limit (Ix63; in which case bit 6 is also set). It is O at all other times, becoming
0 again when the motor is re-enabled.

PMAC On-Line Command Specification 191

PMAC 2 Software Reference

Example

See Also

??
Function
Scope
Syntax

Remarks

Bit 1 Warning Following Error: This bit is 1 if the following error for the motor
exceeds its warning following error limit (Ix12). It stays at 1 if the motor is killed due to
fatal following error. It is O at all other times, changing from 1 to 0 when the motor’s
following error reduces to under the limit, or if killed, is re-enabled.

Bit 0 In Position: This bit is 1 when five conditions are satisfied: the loop is
closed, the desired velocity zero bit is 1 (which requires closed-loop control and no
commanded move); the program timer is off (not currently executing any move, DWELL, or
DELAY), the magnitude of the following error is smaller than [x28.and the first four
conditions have been satisfied for (I7+1) consecutive scans.

$12 ., ; Request status of Motor 1
812000804401 ... ; PMAC responds with 12 hex digits representing 48 bits
........................... ; The following bits are true (all others are false)
........................... ; Word 1 Bit 23: Motor Activated
........................... ; Bit 16: Integration Mode
........................... ; Bit 13: Desired Velocity Zero
........................... ; Word 2 Bit 23: Assigned to Coordinate System
........................... ; (Bits 20-22 all 0 — assigned to C.S.1)
........................... ; Bit 14: Amplifier Enabled
........................... ; Bit 10: Home Complete

; Bit 0: In Position

On-line commands <CTRL-B>, ??, ???

Memory map registers X:$003D, X:$0079, etc. Y:$0814, Y:$08D4, etc.
Suggested M-variable definitions Mx30-Mx45

Report the status words of the addressed coordinate system.

Coordinate-system specific

??

This causes PMAC to report status bits of the addressed coordinate system as an ASCII
hexadecimal word. PMAC returns twelve characters, representing two status words. Each
character represents four status bits. The first character represents bits 20-23 of the first
word; the second shows bits 16-19; and so on, to the sixth character representing bits 0-3.
The seventh character represents bits 20-23 of the second word; the twelfth character
represents its 0-3.

The value of a bit is 1 when the condition is true; 0 when it is false. The meanings of the
individual bits are:

FIRST WORD RETURNED (X:$0818, X:$08D8, etc.)

First character returned:

Bit 23 Z-Axis Used in Feedrate Calculations: This bit is 1 if this axis is used in the
vector feedrate calculations for F-based moves in the coordinate system; it is O if this axis is
not used. See the FRAX command.

Bit 22 Z-Axis Incremental Mode: This bit is 1 if this axis is in incremental mode —
moves specified by distance from the last programmed point. It is 0 if this axis is in absolute
mode — moves specified by end position, not distance. See the INC and ABS commands.

Bit 21 Y-Axis Used in Feedrate Calculations: (See bit 23 description.)

192

PMAC On-Line Command Specification

PMAC 2 Software Reference

Bit 20 Y-Axis Incremental Mode: (See bit 22 description.)

Second character returned:
Bit 19 X-Axis Used in Feedrate Calculations: (See bit 23 description.)
Bit 18 X-Axis Incremental Mode: (See bit 22 description.)
Bit 17 W-Axis Used in Feedrate Calculations: (See bit 23 description.)
Bit 16 W-Axis Incremental Mode: (See bit 22 description.)

Third character returned:
Bit 15 V-Axis Used in Feedrate Calculations: (See bit 23 description.)
Bit 14 V-Axis Incremental Mode: (See bit 22 description.)
Bit 13 U-Axis Used in Feedrate Calculations: (See bit 23 description.)
Bit 12 U-Axis Incremental Mode: (See bit 22 description.)

Fourth character returned:
Bit 11 C-Axis Used in Feedrate Calculations: (See bit 23 description.)
Bit 10 C-Axis Incremental Mode: (See bit 22 description.)
Bit9 B-Axis Used in Feedrate Calculations: (See bit 23 description.)
Bit 8 B-Axis Incremental Mode: (See bit 22 description.)

Fifth character returned:
Bit 7 A-Axis Used in Feedrate Calculations: (See bit 23 description.)
Bit 6 A-Axis Incremental Mode: (See bit 22 description.)

Bit5 Radius Vector Incremental Mode: This bit is 1 if circle move radius vectors
are specified incrementally (i.e. from the move start point to the arc center). It is 0 if circle
move radius vectors are specified absolutely (i.e. from the XYZ origin to the arc center). See
the INC (R) and ABS (R) commands.

Bit4 Continuous Motion Request: This bit is 1 if the coordinate system has
requested of it a continuous set of moves (e.g. with an R command). It is O if this is not the
case (e.g. not running program, Ix92=1, or running under an S command).

Sixth character returned:

Bit3 Move-Specified-by-Time Mode: This bit is 1 if programmed moves in this
coordinate system are currently specified by time (TM or TA), and the move speed is
derived. Itis 0 if programmed moves in this coordinate system are currently specified by
feedrate (speed; F) and the move time is derived.

Bit2 Continuous Motion Mode: This bit is 1 if the coordinate system is in a
sequence of moves that it is blending together without stops in between. It is 0 if it is not
currently in such a sequence, for whatever reason.

Bit 1 Single-Step Mode: This bit is 1 if the motion program currently executing in
this coordinate system has been told to “step” one move or block of moves, or if it has been
given a Q (Quit) command. It is O if the motion program is executing a program by an R
(run) command, or if it is not executing a motion program at all.

Bit0 Running Program: This bit is 1 if the coordinate system is currently
executing a motion program. It is 0 if the C.S. is not currently executing a motion program.
Note that it becomes 0 as soon as it has calculated the last move and reached the final
RETURN statement in the program, even if the motors are still executing the last move or two

PMAC On-Line Command Specification 193

PMAC 2 Software Reference

that have been calculated. Compare to the motor Running Program status bit.

SECOND WORD RETURNED (Y:$0817, Y:$08D7, etc.)

Seventh character returned:

Bit 23 Program Hold Stop: This bit is | when a motion program running in the
currently addressed Coordinate System is stopped using the \ © command from a segmented
move (LINEAR or CIRCLE mode with 113 > 0).

Bit 22 Run-Time Error: This bit is 1 when the coordinate system has stopped a
motion program due to an error encountered while executing the program (e.g. jump to non-
existent label, insufficient calculation time, etc.)

Bit 21 Circle Radius Error: This bit is 1 when a motion program has been stopped
because it was asked to do an arc move whose distance was more than twice the radius (by an
amount greater than [x96).

Bit 20 Amplifier Fault Error: This bit is 1 when any motor in the coordinate system
has been killed due to receiving an amplifier fault signal. It is O at other times, changing
from 1 to 0 when the offending motor is re-enabled.

Eighth character returned:

Bit 19 Fatal Following Error: This bit is 1 when any motor in the coordinate
system has been killed due to exceeding its fatal following error limit (Ix11). Itis O at other
times. The change from 1 to 0 occurs when the offending motor is re-enabled.

Bit 18 Warning Following Error: This bit is 1 when any motor in the coordinate
system has exceeded its warning following error limit (Ix12). It stays at 1 if a motor has been
killed due to fatal following error limit. It is O at all other times. The change from 1 to 0
occurs when the offending motor’s following error is reduced to under the limit, or if killed
on fatal following error as well, when it is re-enabled.

Bit 17 In Position: This bit is 1 when all motors in the coordinate system are “in
position”. Five conditions must apply for all of these motors for this to be true:, the loops
must be closed, the desired velocity must be zero for all motors, the coordinate system cannot
be in any timed move (even zero distance) or DWELL, all motors must have a following
error smaller than their respective [x28 in-position bands, and the above conditions must have
been satisfied for (I7+1) consecutive scans.

Bit 16 Rotary Buffer Request: This bit is 1 when a rotary buffer exists for the
coordinate system and enough program lines have been sent to it so that the buffer contains at
least I17 lines ahead of what has been calculated. Once this bit has been set to 1 it will not be
set to 0 until there are less than 116 program lines ahead of what has been calculated. The
‘PR’ command may be used to find the current number of program lines ahead of what has
been calculated.

Ninth character returned:

Bit 15 Delayed Calculation Flag: (for internal use)

Bit 14 End of Block Stop: This bit is 1 when a motion program running in the
currently addressed Coordinate System is stopped using the * / © command from a segmented
move (Linear or Circular mode with 113 > 0).

Bit 13 Synchronous M-variable One-Shot: (for internal use)

194

PMAC On-Line Command Specification

PMAC 2 Software Reference

Bit 12 Dwell Move Buffered: (for internal use)

Tenth character returned:

Bit 11 Cutter Comp Outside Corner: This bit is 1 when the coordinate system is
executing an added outside corner move with cutter compensation on. It is 0 otherwise.

Bit 10 Cutter Comp Move Stop Request: This bit is 1 when the coordinate system is
executing moves with cutter compensation enabled, and has been asked to stop move
execution. This is primarily for internal use.

Bit9 Cutter Comp Move Buffered: This bit is 1 when the coordinate system is
executing moves with cutter compensation enabled, and the next move has been calculated
and buffered. This is primarily for internal use.

Bit 8 Pre-jog Move Flag: This bit is 1 when any motor in the coordinate system is
executing a jog move to “pre-jog” position (J= command). It is 0 otherwise.

Eleventh character returned:

Bit 7 Segmented Move in Progress: This bit is 1 when the coordinate system is
executing motion program moves in segmentation mode (I13>0). It is 0 otherwise. This is
primarily for internal use.

Bit 6 Segmented Move Acceleration: This bit is 1 when the coordinate system is
executing motion program moves in segmentation mode (I13>0) and accelerating from a
stop. It is 0 otherwise. This is primarily for internal use.

Bit5 Segmented Move Stop Request: This bit is 1 when the coordinate system is
executing motion program move in segmentation mode (113>0) and it is decelerating to a
stop. It is 0 otherwise. This is primarily for internal use.

Bit4 PVT/SPLINE Move Mode: This bit is 1 if this coordinate system is in either
PVT move mode or SPLINE move mode. (If bit 0 of this word is 0, this means PVT mode; if
bit 0 is 1, this means SPLINE mode.) This bit is O if the coordinate system is in a different
move mode (LINEAR, CIRCLE, or RAPID). See the table below.

Twelfth character returned:

Bit 3 Cutter Compensation Left: This bit is 1 if the coordinate system has cutter
compensation on, and the compensation is to the left when looking in the direction of motion.
It is 0 if compensation is to the right, or if cutter compensation is off.

Bit2 Cutter Compensation On: This bit is 1 if the coordinate system has cutter
compensation on. It is O if cutter compensation if off.

Bit 1 CCW Circle\Rapid Mode: When bit 0 is 1 and bit 4 is 0, this bit is set to 0 if
the coordinate system is in CIRCLE1 (clockwise arc) move mode and 1 if the coordinate
system is in CIRCLE2 (counterclockwise arc) move mode. If both bits 0 and 4 are 0, this bit
is set to 1 if the coordinate system is in RAPID move mode. Otherwise, this bit is 0. See the
table below.

Bit0 CIRCLE/SPLINE Move Mode: This bit is 1 if the coordinate system is in
either CIRCLE or SPLINE move mode. (If bit 4 of this word is 0, this means CIRCLE
mode; if bit 4 is 1, this means SPLINE mode.) This bit is 0 if the coordinate system is in a
different move mode (LINEAR, PVT, or RAPID.). See the table below.

PMAC On-Line Command Specification 195

PMAC 2 Software Reference

The states of bits 4, 1, and 0 in the different move modes are summarized in the following
table:

Mode Bit4 | Bit1 | Bit 0
Linear 0 0 0
Rapid 0 1 0
Spline 1 0 1
Circlel 0 0 1
Circle2 0 1 1
PVT 1 1 0

Example ??............ ; Request coordinate system status words

A8002A020010 ; PMAC responds; the following bits are true:
........................... ; Word 1 Bit 23: Z-axis used in feedrate calcs
........................... ; Bit 21: Y-axis used in feedrate calcs
........................... ;. Bit 19: X-axis used in feedrate calcs
........................... ; Bit 5: Radius vector incremental mode
........................... ; Bit 3: Move specified by time
........................... ; Bit 1: Single-step mode

........................... ; Word 2 Bit 17: In-position
; Bit4: PVT/Spline mode

See Also On-line commands <CONTROL-C>, ?, ???

Memory-map registers X:$0818, X:$08D8, etc.; Y:$0817, Y:$08D7, etc.
Suggested M-variable definitions Mx80-Mx90

?27?

Function Report global status words.

Scope Global

Syntax ???

Remarks This command causes PMAC to return the global status bits in ASCII hexadecimal form.
PMAC returns twelve characters, representing two status words. Each character represents
four status bits. The first character represents Bits 20-23 of the first word, the second shows
Bits 16-19; and so on, to the sixth character representing Bits 0-3. The seventh character
represents Bits 20-23 of the second word; the twelfth character represents Bits 0-3 of the
second word.

A bit has a value of 1 when the condition is true; 0 when false. The meaning of the
individual status bits is:

FIRST WORD RETURNED (X:$0003):

First character returned:

Bit 23 Real-Time Interrupt Active: This bit is 1 if PMAC is currently executing a
real-time interrupt task (PLC 0 or motion program move planning). Itis 0 if PMAC is
executing some other task. Note: Communications can only happen outside of the real-time
interrupt, so polling this bit will always return a value of 0. This bit is for internal use.

Bit 22 Real-Time Interrupt Re-entry: This bit is 1 if a real-time interrupt task has

196 PMAC On-Line Command Specification

PMAC 2 Software Reference

taken long enough so that it was still executing when the next real-time interrupt came (18+1
servo cycles later). It stays at 1 until the card is reset, or until this bit is manually changed to
0. If motion program calculations cause this, it is not a serious problem. If PLC 0 causes this
(no motion programs running), it could be serious.

Bit 21 Servo Active: This bitis 1 if PMAC is currently executing servo update
operations. Itis 0 if PMAC is executing other operations. Note that communications can
only happen outside of the servo update, so polling this bit will always return a value of 0.
This bit is for internal use.

Bit 20 Servo Error: This bit is 1 if PMAC could not properly complete its servo
routines. This is a serious error condition. It is 0 if the servo operations have been
completing properly.

Second character returned:

Bit 19 Data Gathering Function On: This bit is 1 when the data gathering function
is active; it is 0 when the function is not active.

Bit 18 Data Gather to Start on Servo: This bit is 1 when the data gathering
function is set up to start on the next servo cycle. It is 0 otherwise. It changes from 1 to 0 as
soon as the gathering function actually starts.

Bit 17 Data Gather to Start on Trigger: This bit is 1 when the data gathering
function is set up to start on the rising edge of Machine Input 2. It is 0 otherwise. It changes
from 1 to 0 as soon as the gathering function actually starts.

Bit 16 (Reserved for future use)

Third character returned:

Bit 15 (Reserved for future use)

Bit 14 Leadscrew Compensation On: This bit is 1 if leadscrew compensation is
currently active in PMAC. It is 0 if the compensation is not active

Bitl3 Any Memory Checksum Error: This bit is 1 if a checksum error has been
detected for either the PMAC firmware or the user program buffer space. Bit 12 of this word
distinguishes between the two cases.

Bitl2 PROM Checksum Error: This bit is 1 if a firmware checksum error has been
detected in PMAC’s memory. It is 0 if a user program checksum error has been detected, or
if no memory checksum error has been detected. Bit 13 distinguishes between these two
cases.

Fourth character returned:

Bit 11 DPRAM Error: This bit is 1 if PMAC has detected an error in DPRAM
communications. It is 0 otherwise.

Bit 10 EAROM Error: This bit is 1 if PMAC detected a checksum error in reading
saved data from the EAROM (in which case it replaces this with factory defaults). Itis O
otherwise.

Bits 8-9 (for internal use)

fifth character returned:

Bit 7 (for internal use)

Bit6 TWS Variable Parity Error: This bit is 1 if the most recent TWS-format M-

PMAC On-Line Command Specification 197

PMAC 2 Software Reference

variable read or write operation with a device supporting parity had a parity error; it is 0 if the
operation with such a device had no parity error. The bit status is indeterminate if the
operation was with a device that does not support parity.

Bit5 MACRO Auxiliary Communications Error: This bit is 1 if the most recent
MACRO auxiliary read or write command has failed. It is set to O at the beginning of each
MACRO auxiliary read or write command.

Bit4 MACRO Ring Check Error: This bit is 1 if the MACRO ring check function
is enabled (11001 > 0) and PMAC has either detected 11004 ring communication errors in an
11001 servo-cycle period, or has failed to detect the receipt of 11005 ring sync packet.

Sixth character returned:

Bits 2-3 (Reserved for future use)

Bit 1 All Cards Addressed: This bit is set to 1 if all cards on a serial daisychain
have been addressed simultaneously with the @@ command. It is 0 otherwise.

Bit0 This Card Addressed: This bit is set to 1 if this card is on a serial daisychain
and has been addressed with the @n command. It is 0 otherwise.

SECOND WORD RETURNED (Y:$0003)

Seventh character returned:

Bit 23 (For internal use)

Bit 22 Host Communication Mode: This bit is 1 when PMAC is prepared to send its
communications over the “host port” (PC bus or STD bus). It is 0 when PMAC is prepared
to send its communications over the VMEbus or the serial port. It changes from 0 to 1 when
it receives an alphanumeric command over the host port. It changes from 1 to 0 when it
receives a <CTRL-Z> over the serial port.

Bits 20-21 (For Internal Use)
Eighth character returned:

Bit 19 Motion Buffer Open: This bit is 1 if any motion program buffer (PROG or
ROT) is open for entry. It is 0 if none of these buffers is open.

Bit 18 Rotary Buffer Open: This bit is 1 if the rotary motion program buffer(s)
(ROT) is (are) open for entry. It is O if this is (these are) closed.

Bit 17 PLC Buffer Open: This bit is 1 if a PLC program buffer is open for entry. It
is 0 if none of these buffers is open.

Bit 16 PLC Command: This bit is 1 if PMAC is processing a command issued from
a PLC or motion program through a CMD” “ statement. It is 0 otherwise. It is primarily for
internal use.

Ninth character returned:

Bit 15 VME Communication Mode: This bit is 1 when PMAC is prepared to send its
communications over the VME bus “mailbox” port. It is 0 when PMAC is prepared to send
its communications over the “host port” (PC bus or STD bus) or the serial port. It changes
from 0 to 1 when it receives an alphanumeric command over the VME bus mailbox port. It
changes from 1 to 0 when it receives a <CTRL-Z> over the serial port.

198

PMAC On-Line Command Specification

PMAC 2 Software Reference

Bits 12-14 (For Internal use)
Tenth character returned:

Bit 11 Fixed Buffer Full: This bit is 1 when no fixed motion (PROG) or PLC
buffers are open, or when one is open but there are less than 118 words available. It is 0
when one of these buffers is open and there are more than 118 words available.

Bits 8-10 (Internal use)

Eleventh and twelfth characters returned:

Bits 0-7 (Reserved for future use)
Example ???........... ; Ask PMAC for global status words
003000400000 ; PMAC returns the global status words

........................... ; 1st word bit 13 (Any checksum error) is true;
........................... ; 1st word bit 12 (PROM checksum error) is true;
........................... ; 2nd word bit 23 (for internal use) is true;

; All other bits are false

See Also On-line commands ?, ??, <CTRL-G>
Memory registers X:$0003, Y:$0003.

@

Function Report currently addressed card on serial daisy-chain
Scope Global
Syntax @

Remarks This command causes the addressed PMAC on a serial daisy-chain to report its number to the
host. If all cards are addressed, card @0 will return an @ character.

I1 must be set to 2 or 3 for this command to be accepted. Otherwise, ERR003 is reported.

Example @ ;Ask PMAC chain which card is addressed
4 ;PMAC @4 reports that it is addressed

See Also Addressing Commands (Talking to PMAC)
Multiple-Card Applications (Synchronizing PMAC to External Events)
I-variable 11
On-line commands #, #{constant}, & &{constant}, @{constant}
Jumpers E40-E43 (PMAC-PC, -Lite, -VME)
Switches SW1-1to SW1-4 (PMAC-STD)

@{card}

Function Address a card on the serial daisy-chain.
Scope Global
Syntax @{card}
where:
e {card} is a hexadecimal digit (0 to 9, A to F), representing the number of the card on

the serial daisychain to be addressed; or the @ character, denoting that all cards are to be
addressed simultaneously.

Remarks This command makes the PMAC board specified by {card} the addressed board on the
serial daisychain. (the one on which subsequent commands will act). The addressing is
modal, so all further commands will affect this board until a different board is addressed. At

PMAC On-Line Command Specification 199

PMAC 2 Software Reference

power-up/reset, Board @0 is addressed.
I1 must be set to 2 or 3 for this command to be accepted. Otherwise, ERR003 is reported.

To address all cards simultaneously, use the @@ command. Query commands (those
requiring a data response) will be rejected in this mode.

This command should be used only when multiple PMAC cards are connected on a single
serial cable. In this case, I-variable 11 should be set to 2 or 3 on all boards. A board’s card
number is selected by jumpers E40-E43 (PMAC-PC, -Lite, -VME) or switches SW1-1 to
SW1-4 (PMAC-STD).

Note:

While not required, it is best to give a <CR> after an @ {card}
command before any other command, in order to give the formerly
addressed card time to “tri-state” its outputs so as not to interfere with
responses from the newly addressed card.

Example I1=2@0...... ; This sequence can be used the first time talking to multiple cards
........................... on a chain to put them in the proper configuration
@o
$#1T+..nen. ; Jog motor 1 of Card 0.

@5
P20 ... ; Request the value of P20 on card @5
@QRR ; All cards, addressed C.S. run active program

See Also Addressing Commands (Talking to PMAC)

Multiple-Card Applications (Synchronizing PMAC to External Events)
I-variable 12

On-line commands #, &, & {constant}, @

Jumpers E40-E43 (PMAC-PC, -Lite, -VME)

Switches SW1-1to SW1-4 (PMAC-STD)

\

Function Do a program hold (permitting jogging while in hold mode)

Scope Coordinate-system specific

Syntax \

Remarks This command causes PMAC to do a program hold of the currently addressed coordinate
system in a manner that permits jogging of the motors in the coordinate system while in hold
mode, provided PMAC is in a segmented move (LINEAR or CIRCLE mode with [13>0). If
PMAC is in segmentation mode (113=0, or other move mode), the \ command has the same
effect as the H command, bringing the motors to a stop in the same way, but not permitting
any moves while in feed hold mode.
The rate of deceleration to a stop in program hold mode, and from a stop on the subsequent R
command, is controlled by I-variable 152. This global I-variable controls the rate for all
coordinate systems.
Once halted in hold mode, program execution can be resumed with the R command. In the
meantime, the individual motors may be jogged way from this point, but they must all be
returned to this point using the J= command before program execution may be resumed. An
attempt to resume program execution from a different point will result in an error (ERR017
reported if 16 = 1 or 3). If resumption of this program from this point is not desired, the A
(abort) command should be issued before other programs are run.

200 PMAC On-Line Command Specification

PMAC 2 Software Reference

Example

See Also

A

Function
Scope
Syntax
Remarks

Example

If PMAC is executing moves inside the special lookahead buffer when this command is
received (Option 6L firmware only), the rate of deceleration is the fastest that does not
exceed the Ix17 acceleration limit or any motor. In lookahead mode, reversal along the path
is also then possible with the < command.

&1B5SR............... ; Command C.S. 1 to start PROG 5

\ ; Command feed hold of program

#1T+..en. ; Jog Motor 1 positive

T/ e, ; Stop jogging (examine part here)
IO ; Return to prejog position

> S ; Resume execution of PROG 5

\ ; Halt program execution

#2T- ..o, ; Jog Motor 2 negative

T/ e ; Stop jogging

2 S ; Try to resume execution of PROG 5

<BELL>ERR017 ; PMAC reports error; not at position to resume
= e ; Return to prejog position

R ; Resume execution of PROG 5

Stop Commands (Making Your Application Safe)
I-variables 16, 113, 152, Ix95
On-line commands R, J=,Q,A, /,H

Abort all programs and moves in the currently addressed coordinate system.
Coordinate-system specific
A

This command causes all axes defined in the current coordinate system to begin immediately
to decelerate to a stop, aborting the currently running motion program (if any). It also brings
any disabled (killed) or open-loop motors (defined in the current coordinate system) to an
enabled zero-velocity closed-loop state.

If moving, each motor will decelerate its commanded profile at a rate defined by its own
motor [-variable Ix15. If there is significant following error when the A command is issued,
it may take a long time for the actual motion to stop. Although the command trajectory is
brought to a stop at a definite rate, the actual position will continue to catch up to the
commanded position for a longer time.

Note that a multi-axis system may not stay on its programmed path during this deceleration.
Note:

Abort commands are not meant to be recovered from gracefully. If
you wish to resume easily, us the H, Q, /, or \ command instead.

Motion program execution may resume (if a motion program was in fact aborted) by issuing
either an Ror S command, but two factors must be considered. First, the starting positions
for calculating the next move will be the original end positions of the aborted move unless
the PMATCH command is issued or [14=1. Second, the move from the aborted position to the
next move end position may not be possible or desirable. The J= command may be used to
jog each motor in the coordinate system to the original end position of the aborted move,
provided 113 is 0 (no segmentation mode).

BlR....coooooienne ; Start Motion Program 1

. R ; Abort the program

#1J=H#20=........ ; Jog motors to original move-end position
R ; Resume program with next move

PMAC On-Line Command Specification 201

PMAC 2 Software Reference

See Also Stop Commands (Making Your Application Safe)

Control-Panel Port STOP/ Input (Connecting PMAC to the Machine)
I-variables 113, 114, Ix15

On-line commands <CONTROL-A>, H, J/, K, Q

JPAN connector pin 10

ABS

Function Select absolute position mode for axes in addressed coordinate system.

Scope Coordinate-system specific

Syntax ABS
ABS ({axis}|[,{axis}...])
where:

e ({axis}isaletter (X,Y,Z, A, B, C, U, V, W) representing the axis to be specified, or
the character R to specify radial vector mode
Note:
No spaces are permitted in this command.

Remarks This command, without any arguments, causes all subsequent positions for all axes in the
coordinate system in motion commands to be treated as absolute positions (this is the default
condition). An ABS command with arguments causes the specified axes to be in absolute
mode, and all others to remain unchanged.

If R is specified as one of the ‘axes’, the I, J, and K terms of the circular move radius vector
specification will be specified in absolute form (i.e. as a vector from the origin, not from the
move start point). An ABS command without any arguments does not affect this vector
specification. The default radial vector specification is incremental.

If a motion program buffer is open when this command is sent to PMAC, the command will
be entered into the buffer for later execution.

Example ABS(X,Y) ... ; X & Y made absolute — other axes and radial vector left unchanged
ABS....ccoocieenne ; All axes made absolute — radial vector left unchanged
ABS (R) ; Radial vector made absolute — all axes left unchanged

See Also Circular Moves (Writing a Motion Program)

On-line command INC
Program commands ABS, INC

{axis}={constant}

Function Re-define the specified axis position.

Scope Coordinate-system specific

Syntax {axis}={constant}
where:

e {axis} isaletter from the set (X, Y, Z, U, V, W, A, B, C) specifying the axis whose
present position is to be re-named;

e {constant} is a floating-point value representing the new name value for the axis’
present position

Remarks This command re-defines the current axis position to be the value specified in
{constant}, in user units (as defined by the scale factor in the axis definition). It can be
used to relocate the origin of the coordinate system. This does not cause the specified axis to

202 PMAC On-Line Command Specification

PMAC 2 Software Reference

Example

See Also

B

Function
Scope
Syntax

Remarks

Example

See Also

move; it simply assigns a new value to the position..

Internally, a position bias register is written to which creates this new position offset. PSET
is the equivalent motion program command.

=0 e ; Call axis X’s current position zero
Z=5000 ; Re-define axis Z’s position as 5000

Axes, Coordinate Systems (Setting Up a Coordinate System)
On-line command 2

Program commands PSET, ADIS, IDIS.

B{constant}

Point the addressed coordinate system to a motion program.
Coordinate-system specific

B{constant}

where:

e {constant} is a floating point value from 0.0 to 32767.99999 representing the
program and location to point the coordinate system to; with the integer part representing
the program number, and the fractional part multiplied by 100,000 representing the line
label (zero fractional part means the top of the program).

This command causes PMAC to set the program counter of the addressed coordinate system
to the specified motion program and location. It is usually used to set the program counter to
the Beginning of a motion program. The next R or S command will start execution at this
point.

If {constant} is an integer, the program counter will point to the beginning of the
program whose number matches {constant}. Fixed motion program buffers (PROG) can
have numbers from 1 to 32,767. The rotary motion program carries program number 0 for
the purpose of this command.

If {constant} is not an integer, the fractional part of the number represents the line label
(N or O) in the program to which to point. The fractional value multiplied by 100,000
determines the number of the line label to which to point (it fills the fraction to 5 decimal
places with zeros).

Note:

If a motion program buffer (including ROTARY) is open when this
command is sent to PMAC, the command is entered into the buffer for
later execution, to be interpreted as a B-axis move command.

B7 i ;points to the top of PROG 7

2] 0 ;points to the top of the rotary buffer
Bl2.6.............. ;points to label N60000 of PROG 12
B3.025R ;points to label N2500 of PROG 3 and runs

On-line commands DEFINE ROT,R, S
Program commands B{data}, N{constant}, O{constant}.

PMAC On-Line Command Specification 203

PMAC 2 Software Reference

CHECKSUM

Function
Scope
Syntax

Remarks

Example

See Also
CLEAR

Function
Scope
Syntax

Remarks

Example

See Also

Report the firmware checksum value.
Global

CHECKSUM
CHKS

This command causes PMAC to report the reference checksum value of the firmware
revision that it is using. The value is reported as a hexadecimal ASCII string. This value was
computed during the compilation of the firmware. It is mainly used for troubleshooting
purposes.

The comparative checksum value that PMAC is continually computing by scanning the
firmware in active memory is stored in X:$0794. As long as there is no checksum error, this
comparative value is continually changing as PMAC continues its calculations. However, if
during any pass of the checksum calculations, if the final comparative checksum value does
not agree with the reference value, the calculations stop, and the final erroneous value is held
in X:$0794.

CHECKSUM ; Request firmware reference checksum value
9FA263 ; PMAC returns hex value

On-line commands DATE, VERSION

Erase currently opened buffer.
Global (Coordinate-system specific for rotary motion program buffers)

CLEAR
CLR

This command empties the currently opened program, PLC, rotary, etc. buffer Typically, as
you create a buffer file in your host computer, you will start with the OPEN {buffer} and
CLEAR commands (even though these lines are technically not part of the buffer), and follow
with your actual contents. This will allow you to easily edit buffers from your host and
repeatedly download the buffers, erasing the old buffer’s contents in the process.

OPEN PROG 1. ; Open motion program buffer 1
CLEAR.............. ; Clear out this buffer
F1000............... ; Program really starts here!
X2500............... ;...and ends on this line!

CLOSE ; This closes the program buffer
OPEN PLC 3 CLEAR CLOSE ; This erases PLC 3

Program Buffers (Talking to PMAC)
On-line commands OPEN, CLOSE, DELETE.

204

PMAC On-Line Command Specification

PMAC 2 Software Reference

CLEARFAULT
Function Clear Geo PMAC fault display

Scope Global

Syntax CLEARFAULT
CLRF

Remarks This command clears the seven-segment fault display on the Geo PMAC controller/amplifier
package. After this command is issued, the fault display will show a “0”. However, if the
fault-causing condition is still present, the fault display will immediately show that fault
number again.

CLOSE

Function Close the currently opened buffer.
Scope Global

Syntax CLOSE
CLsS

Remarks This closes the currently OPENed buffer. This should be used immediate after the entry of a
motion, PLC, rotary, etc. buffer. If the buffer is left open, subsequent statements that are
intended as on-line commands (e.g. P1=0) will get entered into the buffer instead. It is good
practice to have CLOSE at the beginning and end of any file to be downloaded to PMAC.

When PMAC receives a CLOSE command, it automatically appends a RETURN statement to
the end of the open program buffer.

If any PROGRAM or PLC in PMAC is improperly structured (e.g. no ENDIF or ENDWHILE
to match an IF or WHILE), PMAC will report an ERR003 at the CLOSE command for any
buffer until the problem is fixed.

Example CLOSE.............. ; This makes sure all buffers are closed
OPEN PROG 1. ; Open motion program buffer 1
CLEAR....ccceeeeree ; Clear out this buffer
F1000 ..ccccevureueee ; Program actually starts here!...
X2500 ;...and ends on this line!
CLOSE ..ccceevueenes ; This closes the program buffer
LIST PROG 1. ; Request listing of closed program
F1000.............. ; PMAC starts listing
X2500...............
RETURN ; This was appended by the CLOSE command

See Also Program Buffers (Talking to PMAC)
On-line commands OPEN, CLEAR, <CTRL-L>, <CTRL-U>

{constant}
Function Assign value to variable PO, or to table entry.

Scope Global

Syntax {constant}
where:

® {constant} is a floating point value

PMAC On-Line Command Specification 205

PMAC 2 Software Reference

Remarks

Example

See Also
DATE

Function
Scope
Syntax

Remarks

Example

See Also

This command is the equivalent of PO={constant}. That is, a value entered by itself on a
command line will be assigned to P-variable P0O. This allows simple operator entry of
numeric values through a dumb terminal interface. Where the value goes is hidden from the
operator; the PMAC user program must take PO and use it as appropriate.

Note:

If a special table on PMAC (e.g. STI MJLUS, COVP) has been defined
but not filled, a constant value will be entered into this table, not into
PO.

In a motion program:

PO=-1............. ; Set PO to an “illegal” value
SEND”Enter number of parts in run:”

........................... ; Prompt operator at dumb terminal
........................... ; Operator simply needs to type in number

WHILE (PO<1l) WAIT ; Hold until get legal response

P1=0.....c.cc....... ; Initialize part counter

WHILE (PO<P1) ; Loop once per part
P1=P1+1

On-line commands OPEN COMP, OPEN STIMULUS, P{constant}={expression}

Report PROM firmware revision date.
Global

DATE

DAT

This command causes PMAC to report the revision date of the PROM firmware revision it is
using. The date is reported in the American style: mm/dd/yy (month/day/year).

DATE ;Ask PMAC for firmware revision date
07/22/92 ;PMAC responds with July 22, 1992

On-line command VERSION, TYPE

DEFINE BLCOMP

Function
Scope
Syntax

Remarks

Define backlash compensation table
Motor specific

DEFINE BLCOMP {entries}, {count length}

DEF BLCOMP {entries}, {count length}

where:

e {entries} is a positive integer constant representing the number of values in the table;

e {count length} is a positive integer representing the span of the table in encoder
counts of the motor.
This command establishes a backlash compensation table for the addressed motor. The next
{entries} constants sent to PMAC will be placed into this table. The last item on the
command line {count length} specifies the span of the backlash table in encoder counts
of the motor. In use, if the motor position goes outside of the range 0 to count-length, the
position is rolled over to within this range before the compensation is computed. The spacing
between entries in the table is {count length} divided by {entries}.

206

PMAC On-Line Command Specification

PMAC 2 Software Reference

See Also

On succeeding lines will be given the actual entries of the table as constants separated by
spaces and or carriage return characters. The units of these entries are 1/16 count, and the
entries must be integer values. The first entry is the correction at one spacing from the motor
zero position (as determined by the most recent home search move or power-up/reset), the
second entry is the correction two spacings away, and so on. The correction from the table at
motor zero position is zero by definition.

The correction is the amount subtracted (added in the negative direction) from the nominal
commanded position when the motor is moving in the negative direction to get the corrected
position. The correction from the backlash table is added to the Ix86 constant backlash
parameter before adjusting the motor position. Corrections from any leadscrew
compensation tables that have this motor as the target motor are always active in both
directions.

The last entry in the table represents the correction at { count length} distance from the
motor’s zero position. Since the table has the capability to roll over, this entry also represents
the correction at the motor’s zero position. For this reason, the last entry should virtually
always be set to zero.

Note:

PMAC will reject this command, reporting an ERR003 if [6=1 or 3, if
any BLCOMP buffer exists for a lower numbered motor, or if any
TBUF, ROTARY, or GATHER buffer exists. Any of these buffers
must be deleted first. BLCOMP buffers must be defined from high-
numbered motor to low-numbered motor, and deleted from low-
numbered motor to high-numbered motor.

I51 must be set to 1 to enable the table.

Backlash Compensation (Setting Up a Motor)
Leadscrew Compensation (Setting Up a Motor)
I-variables 199, Ix85, Ix86

On-line commands DEFINE COMP, DELETE BLCOMP

DEFINE COMP (one-dimensional)

Function
Scope
Syntax

Define Leadscrew Compensation Table
Motor specific

DEFINE COMP {entries}, [#{source}[D], [#{target},]] {count

length}

where:

e {entries} is a positive integer constant representing the number of numbers in the
table;

e {source} (optional) is a constant from 1 to 8 representing the motor whose position
controls which entries in the table are used for the active correction; if none is specified,
PMAC assumes the source is the addressed motor; if a D is specified after the source
motor number, the desired position of the motor is used to calculate the correction;
otherwise the actual position is used;

e {target} (optional) is a constant from 1 to 8 representing the motor that receives the

PMAC On-Line Command Specification 207

PMAC 2 Software Reference

Remarks

Example

correction; if none is specified, PMAC assumes the target is the addressed motor;
e {count length} is apositive integer representing the span of the table in
encoder counts of the source motor.

This command establishes a leadscrew (position) compensation table assigned to the
addressed motor. The next {entries} constants sent to PMAC will be placed into this
table. Once defined, the tables are enabled and disabled with the variable I51.

The table “belongs” to the currently addressed motor, and unless otherwise specified in the
command line, it will use the addressed motor both for source position data and as the target
for its corrections. Each motor can only have one table that “belongs” to it (for a total of 8
tables in one PMAC), but it can act as a source or a target for multiple motors.

Note:
PMAC will reject this command, reporting an ERR003 if 16=1 or 3, if
any COMP buffer exists for a lower numbered motor, or if any
TCOMP, BLCOMP, TBUF, ROTARY, or GATHER buffer exists.
Any of these buffers must be deleted first. COMP buffers must be
defined from high-numbered motor to low-numbered motor, and
deleted from low-numbered motor to high-numbered motor.

It is possible to directly specify a source motor (with #{source}), or source and target
motors (with # { source}, #{target}), in this command. Either or both of them may be
different from the motor to which the table belongs. (In other words, just because a table
belongs to a motor does not necessarily mean that it affects or is affected by that motor’s
position.)

The table can operate as a function of either the desired (commanded) or actual position of
the source motor. If a D is entered immediately after the source motor number (which must
be explicitly declared here), the table operates as a function of the desired position of the
source motor; if no D is entered, the table operates as a function of the actual position of the
source motor.

The last item on the command line, { count length}, specifies the span of the
compensation table in encoder counts of the source motor. In use, if the source motor
position goes outside of the range 0 to count-length, the source position is “rolled over” to
within this range before the correction is computed. The spacing between entries in the table
is {count length} divided by {entries}.

On succeeding lines will be given the actual entries of the table. The units of these entries
are 1/16 count, and the entries must be integer values. The first entry is the correction at one
spacing from the motor zero position (as determined by the most recent home search move or
power-up/reset), the second entry is the correction two spacings away, and so on. The
correction is the amount added to the nominal position to get the corrected position. The
correction at the zero position is zero by definition.

The last entry in the table represents the correction at {count length} distance from the
source motor’s zero position. Since the table has the capability to roll over, this entry also
represents the correction at the source motor’s zero position. For this reason, the last entry
should virtually always be set to zero.

#1 DEFINE COMP 4,2000 ; Create table for motor 1

208

PMAC On-Line Command Specification

PMAC 2 Software Reference

ERROO03 ; PMAC rejects this command

DELETE GATHER ; Clear other buffers to allow loading
DELETE ROTARY

#8DEFINE COMP 500,20000 ; Uses motor 8 actual position as source and

; motor 8 as target, ; 500 entries, spacing
; of 40 counts

#7DEFINE COMP 256, #3D,32768 ; Belongs to motor 7, uses motor 3 desired
; position as source, motor 7 as target, 256
; entries, spacing of 128 counts

#6 DEFINE COMP 400,#5,#4,40000 ; Belongs to motor 6, uses #5 as source, #4 as
; target, 400 entries, spacing of 100 counts

#5 DEFINE COMP 200, #1D,#1,30000 ; “Belongs” to motor 5, uses #1 desired position
; as source and target, 200 entries, spacing of
; 150 count

I51=1 ; Enable compensation tables

See Also Leadscrew compensation (Setting Up a Motor)
I-variable 151
On-line commands {constant}, LIST COMP, LIST COMP DEF, DELETE COMP,
DELETE GATHER, DELETE ROTARY, SIZE

DEFINE COMP (two-dimensional)
Function Define two-dimensional leadscrew compensation table.
Scope Motor specific
Syntax DEFINE COMP {Rows}.{Columns}, #{RowMotor}[D],
[#{ColumnMotor} [D], [#{TargetMotor}]],
{RowLength}, {ColumnLength}

DEF COMP. ..

where:

e {Rows} is a positive integer constant representing the number of rows in the table,
where each row represents a fixed location of the second (column) source motor;

e {Columns} is a positive integer constant representing the number of columns in the
table, where each column represents a fixed location of the first (row) source motor;

e {RowMotor} is an integer constant from 1 to 8 representing the number of the first
source motor; defaults to addressed motor; if a D is specified after the source motor
number, the desired position of the motor is used to calculate the correction; otherwise
the actual position is used;

e {ColumnMotor} is an integer constant from 1 to 8 representing the number of the
second source motor; if a D is specified after the source motor number, the desired
position of the motor is used to calculate the correction; otherwise the actual position is
used;

e {TargetMotor} is an integer constant from 1 to 8 representing the number of the
target motor; defaults to addressed motor;

e {RowSpan} is the span of the table, in counts, along the first (row) source motor’s
travel;

e {ColumnSpan} is the span of the table, in counts, along the second (column) source
motor’s travel.

PMAC On-Line Command Specification 209

PMAC 2 Software Reference

Remarks

This command establishes a two-dimensional position compensation table assigned to the
addressed motor. The next (Rows+1)*(Columns+1)-1 constants sent to PMAC will be
placed into this table. This type of table is usually used to correct a motor position (X, Y, or
Z-axis) as a function of the planar position of two motors (e.g. X and Y axes). Once defined,
the tables are enabled and disabled with the variable I51.

The table belongs to the currently addressed motor, and unless otherwise specified in the
command line, it will use the addressed motor both as the first-motor source position data and
as the target for its corrections. Each motor can only have one table that belongs to it (for a
total of eight tables in one PMAC), but it can act as a source and/or a target for multiple
tables.

Note:

PMAC will reject this command, reporting an ERR003 if 16=1 or 3, if
any COMP buffer exists for a lower numbered motor, or if any
TCOMP, BLCOMP, TBUF, ROTARY, or GATHER buffer exists.
Any of these buffers must be deleted first. COMP buffers must be
defined from high-numbered motor to low-numbered motor, and
deleted from low-numbered motor to high-numbered motor.

The first source motor must be specified in the command line with # {RowMotor}. The
second source motor may be specified in the command line with #{ColumnMotor}; if it is
not specified, PMAC assumes that the second source motor is the currently addressed motor.

The target motor may be specified with # { TargetMotor}; if it is not specified, PMAC
assumes that the target motor is the currently addressed motor.

In other words, if only one motor is specified in the command line, it is the first (row) source
motor, and the second (column) source and target motors default to the addressed motor. If
two motors are specified in the command line, the first one specified is the first (row) source
motor, the second is the second (column) source motor, and the target motor defaults to the
addressed motor. If three motors are specified, the first is the first (row) source motor, the
second is the second (column) source motor, and the third is the target motor. None of these
motors is required to be the addressed motor.

It is strongly recommended that you explicitly specify both source motors and the target
motor in this command, to prevent possible confusion.

The table can operate as a function of either the desired (commanded) or actual position of
the source motors. If a D is entered immediately after the source motor number (which must
be explicitly declared here), the table operates as a function of the desired position of the
source motor; if no D is entered, the table operates as a function of the actual position of the
source motor. If the target motor is also one of the source motors, it is recommended that
desired position be used, especially in high-gain systems, to prevent interaction with the
servo dynamics.

The last two items on the command line, {RowSpan} and {ColumnSpan}, specify the
span of the compensation table for the two source motors, row and column respectively,
expressed in encoder counts of those motors. In use, if the source motor position goes
outside of the range 0 to {Span}, the source position is “rolled over” to within this range
along this axis before the correction is computed.

The count spacing between columns in the table is {RowSpan} divided by {Columns}.
The count spacing between rows in the table is { ColumnSpan} divided by {Rows}. Note
carefully the interaction between the row parameters and the column parameters.

On succeeding command lines will be given the actual correction entries of the table, given

210

PMAC On-Line Command Specification

PMAC 2 Software Reference

as integer numerical constants in text form. The units of these entries are 1/16 count, and the
entries must be integer values. The first entry is the correction at one column spacing from
the zero position of the RowMotor, and the zero position of the ColumnMotor. The
second entry is the correction at two column spacings from the zero position of the
RowMotor, and the zero position of the ColumnMotor, and so on. Entry number
Columns is the correction at RowSpan counts of the RowMotor, and at the zero position
of the ColumnMotor (this entry should be zero if you wish to use the table along the edge,
to match the implied zero correction at the origin). These entries should be considered as
constituting “Row 0 of the table.

The next entry (entry Columns+1, the first entry of Row 1) is the correction at the zero
position of the RowMotor, and one row spacing of the ColumnMotor. The following
entry is the correction at one column spacing of the RowMotor and one row spacing of the
ColumnMotor. The entry after this is the correction at two column spacing of the
RowMotor and one row spacings of the ColumnMotor., and so on. The last entry of Row
1 (entry 2*Columns+1) is the correction at one row spacing of the RowMotor, and
RowSpan counts of the ColumnMotor.

Subsequent rows are added in this fashion, with the corrections of the entries for Row n being
at n row spacings from the zero position of the ColumnMotor. The last row (row Rows)
contains corrections at ColumnSpan counts of the ColumnMotor.

The size of the table is limited only by available data buffer space in PMAC’s memory.

The following chart shows the order of entries into a 2D table with » rows and ¢ columns,
covering a span along the row motor of RowSpan, and along the column motor of ColSpan:

Column Motor
Position v Col 0 Col 1 Col 2 (Col) Col ¢
Row Motor 0 RowSpan | 2*RowSpan RowSpan
Position > c c
Row 0 0 [0] E[Ez cee Ec
Row 1 ColSpan Ec+l Ec+2 Ec+3 e E2c+]
r
Row 2 Z*Colslgan E2c+2 E20+3 E20+4 cee E3c+2
r
(ROW 1) (Eicﬂﬂ') ...
Row r ColSpan Erc+r Erc+r+1 Erc+r+2 Erc+r+c

There are several important details to note in the entry of a 2D table:

e The number of rows and number of columns is separated by a period, not a comma.

e The correction to the target motor at the zero position of both source motors is zero by
definition. This is an implied entry at the beginning of the table (shown by [0] in the
above chart); it should not be explicitly entered.

e Consecutive entries in the table are in the same row (except at row’s end) separated by
one column spacing of the position of the first source (row) motor.

e Both Row 0 and Row » must be entered into the table, so effectively you are entering
(r+1) rows. If there is any possibility that you may go beyond an edge of the table,
matching entries of Row 0 and Row r should have the same value to prevent a
discontinuity in the correction. Row r in the table may simply be an added row beyond
your real range of concern used just to prevent possible discontinuities at the edges of
your real range of concern.

e Both Column 0 and Column ¢ must be entered into the table, so effectively you are

PMAC On-Line Command Specification 211

PMAC 2 Software Reference

Example

See Also

entering (c+1) columns. If there is any possibility that you may go beyond an edge of the
table, matching entries of Column 0 and Column ¢ should have the same value to prevent
a discontinuity in the correction. Column c in the table may simply be an added column
beyond your real range of concern used just to prevent possible discontinuities at the
edges of your real range of concern.

e Because the outside rows and outside columns must match each other to prevent edge

discontinuities, the three explicitly entered corner corrections must be zero to match the
implicit zero correction at the first corner of the table.

#1 DEFINE COMP 40.30,#1,#2,#3,300000,400000

........................... ; Create table belonging to Motor 1

ERROQ7..cuuvuennn ; PMAC rejects this command

DELETE GATHER ; Clear other buffers to allow loading

&1 DELETE ROTARY

&2 DELETE ROTARY

#2 DELETE COMP

#3 DELETE COMP

#4 DEFINE COMP 30.40,#1,#2,#3,400000,300000

........................... ; Create same table, now belonging to Motor 4;
........................... ; #1 & #2 are sources, #3 is target;

........................... ; 30 rows x 40 columns, spacing of 10,000 counts
(1270 entries)..... ; (30+1)*(40+1)-1 entries of constants

#3 DEFINE COMP 25.20,#2,#3,#1,200000,250000

........................... ; Create table belonging to Motor 3;

........................... ; #2 and #3 are sources, #1 is target;

........................... ; 25 rows x 20 columns, spacing of 10,000 counts
(545 entries)....... ;(25+1)*(20+1)-1 entries of constants

#2 DEFINE COMP 10.10,#1,#4,10000,20000

........................... ; Create table belonging to Motor 2; #1 and #4 are
........................... ; sources, #2 (default) is target; 10 rows x10 columns,
........................... ; spacing of 1000 cts between columns; pacing of
........................... ; 2000 cts between rows

(120 entries)....... ; (10+1)*(10+1)-1 entries of constants

#1 DEFINE COMP 12.10,#4,1280,1200

........................... ; Create table belonging to Motor 1, #4 and #1 (default)
........................... ; are sources, #1 (default) is target 12 rows x 10 columns
........................... ; spacing of 128 cts between columns spacing of 100 cts
........................... ; between rows

(142 entries)....... ; (12+1)*(10+1)-1 entries of constants

I51=1 Enable compensation tables

Leadscrew compensation (Setting Up a Motor)

I-variable 151

On-line commands {constant}, LIST COMP, LIST COMP DEF, DELETE COMP,
DELETE GATHER, DELETE ROTARY, SIZE

DEFINE GATHER

Function Create a data gathering buffer.
Scope Global
Syntax DEFINE GATHER [{constant}]
DEF GAT [{constant}]
where:
e {constant} is a positive integer representing the number of words of memory to be
reserved for the buffer
212 PMAC On-Line Command Specification

PMAC 2 Software Reference

Remarks

Example

See Also

This command reserves space in PMAC’s memory or in DPRAM depending upon the setting
of I45 for the data gathering buffer and prepares it for collecting data at the beginning of the
buffer. If a data gathering buffer already exists, its contents are not erased but the Data
Gather Buffer Storage address (Y : $0F20) is reinitialized to the Data Gather Buffer Start
address (X: $0F20) and the LIST GATHER command will no longer function. Data
collection will again start at the beginning of the buffer when the command GATHER is
issued.

If Data Gathering is in progress (an ENDGATHER command has not been issued and the
gather buffer has not been filled up) PMAC will report an error on receipt of this command.

The optional {constant} specifies the number of long words to be reserved for the data
gathering buffer, leaving the remainder of PMAC’s memory available for other buffers such
as motion and PLC programs. If {constant} is not specified, all of PMAC’s unused
buffer memory is reserved for data gathering. Until this buffer is deleted (with the DELETE
GATHER command), no new motion or PLC programs may be entered into PMAC.

Note:

If 145 =2 or 3 the {size} requested in the DEFINE GATHER
{size} command refers to a DPRAM long word (32-bits). If the
{size} is smaller than required to hold an even multiple of the
requested data, the actual data storage will go beyond the requested
{size} to the next higher multiple of memory words required to
hold the data. For example, if you are gathering one 24-bit value and
one 48-bit value you will need 3 DPRAM long words of memory. If
the {size} you specify is 4000 words (not a multiple of 3), the
actual storage size will be 4002 words (the next higher multiple of 3).

The number of long words of unused buffer memory can be found by issuing the SIZE
command.

DEFINE GATHER
DEFINE GATHER 1000

I-variables 119-145
On-line commands GATHER, DELETE GATHER, <CTRL-G>, SIZE

DEFINE LOOKAHEAD {Option 6L firmware only}

Function
Scope
Syntax

Create lookahead buffer

Coordinate-system specific

DEFINE LOOKAHEAD {constant}, {constant}

DEF LOOK {constant}, {constant}

where:

e the first {constant} is a positive integer representing the number of move segments
that can be stored in the buffer;

e the second {constant} is a positive integer representing the number of synchronous

PMAC On-Line Command Specification 213

PMAC 2 Software Reference

Remarks

M-variable assignments that can be stored in the buffer

This command establishes a lookahead buffer for the addressed coordinate system. It
reserves memory to buffer both motion equations and “synchronous M-variable” output
commands for the lookahead function.

PMAC can only have one lookahead buffer at a time. The coordinate system that is
addressed when the lookahead buffer is defined is the only coordinate system that can
execute the special lookahead function.

Segment Buffer Size: The first constant value in the command determines the number of
motion segments that can be stored in the lookahead buffer. Each motion segment takes 113
milliseconds at the motion program speeds and acceleration times (the velocity and
acceleration limits may extend these times).

However, it is the variable 11020 for the coordinate system that determines how many motion
segments the coordinate system will actually look ahead in operation.

The lookahead buffer should be sized large enough to store all of the lookahead segments
calculated, which means that this constant value must be greater than or equal to 11020. If
backup capability is desired, the buffer must be sized to be large enough to contain the
desired lookahead distance plus the desired backup distance.

The method for calculating the number of segments that must be stored ahead is explained in
the 11020 specification and in the PMAC User’s Guide section on Lookahead. The

fundamental equation is:
11020 = L5 10| 5 _1
3 Ixl7), 2*113

If backup capability is desired, the buffer must be able to store an additional number of
segments for the entire distance to be covered in reversal. This number of segments can be
calculated as:

BackupDist(units)* 1 000(m sec/ sec)

Vinax (units / sec)* SegTime(m sec/ seg)

BackSegments =

The total number of segments to reserve for the buffer is simply the sum of the forward and
back segments you wish to be able to hold:

TotalSegments = 11020+ BackSegments

Memory Requirements: For each segment PMAC is told to reserve space for in the lookahead
buffer, PMAC will reserve (2x+4) 48-bit words of memory from the main buffer memory
space, where x is the number of motors in the coordinate system at the time that the buffer is
defined. For example, if there are 5 motors in the coordinate system, a command to reserve
space for 50 segments will reserve 50*(2*5 + 4) = 700 words of memory.

Once a lookahead buffer has been defined for a coordinate system, motors cannot be added
to, or removed from, the coordinate system without upsetting the structure of the lookahead
buffer. Attempting to do this will result in a “run-time” error on the next lookahead move.

If it is desired to add a motor to the coordinate system, or remove one, the lookahead buffer
must first be erased with the DELETE LOOKAHEAD command, then re-defined after the
change to the coordinate system has been made.

Output Buffer Size: The second constant value in the command determines the number of

214

PMAC On-Line Command Specification

PMAC 2 Software Reference

synchronous M-variable assignments that can be stored in the lookahead buffer. Because
these are evaluated at lookahead time, but not actually implemented until move execution
time, they must be buffered. This section of the buffer must be large enough to store all of
the assignments that could be made in the lookahead distance. Synchronous M-variable
assignments are not made during backup, so there is no need to reserve memory to store
assignments for the backup distance as well as the lookahead distance.

Memory Requirements: For each synchronous M-variable assignment PMAC is told to
reserve space for in the lookahead buffer, PMAC will reserve two 48-bit words of memory.

There are no performance penalties for making the lookahead buffer larger than required, but
this does limit the amount of PMAC memory free for other features.

A lookahead buffer is never retained through a power-down or board reset, so this command
must be issued after every power-up/reset if the lookahead function is to be used.

To erase a lookahead buffer and free up the memory for other use, issue a DELETE
LOOKAHEAD command, or reset the card.

PMAC will reject the DEFINE LOOKAHEAD command, reporting an ERR003if 16 =1 or 3,
if any lookahead buffer exists, or if a GATHER buffer exists. Any existing lookahead buffers
and gather buffers must be deleted before a lookahead buffer can be defined.

DEFINE ROTARY

Function
Scope
Syntax

Remarks

Example

Define a rotary motion program buffer

Coordinate-system specific

DEFINE ROTARY{constant}

DEF ROT{constant}

where:

e {constant} is a positive integer representing the number of long words of memory to
be reserved for the buffer

This command causes PMAC to create a rotary motion program buffer for the addressed
coordinate system, allocating the specified number of long words of memory. Rotary buffers
permit the downloading of program lines during the execution of the program.

The buffer should be large enough to allow it to hold safely the number of lines you
anticipate downloading to PMAC ahead of the executing point. Each long word of memory
can hold one sub-block of a motion program (i.e. X1000 Y1000 is considered as two sub-
blocks). The allocated memory for this coordinate system’s rotary buffer remains resident
until the buffer is deleted with DELETE ROT.

Note:

PMAC will reject this command, reporting an ERR003 if [6=1 or 3, if
any ROTARY buffer exists for a lower numbered coordinate system,
or if a LOOKAHEAD or GATHER buffer exists. Any of these
buffers must be deleted first. ROTARY buffers must be defined from
high-numbered coordinate system to low-numbered coordinate system
and deleted from low-numbered coordinate system to high-numbered
coordinate system.

DELETE GATHER ; Ensure open memory

PMAC On-Line Command Specification 215

PMAC 2 Software Reference

&2DEFINE ROT 100 ; Create buffer for C.S. 2
&1DEFINE ROT 100 ; Create buffer for C.S. 1
&1B0 &2BO...... ; Point to these buffers

OPEN ROT........ ; Open these buffers for entry

; enter program lines here

See Also Rotary Program Buffers (Writing a Motion Program)
On-line commands OPEN ROTARY, DELETE ROTARY, DELETE GATHER

216 PMAC On-Line Command Specification

PMAC 2 Software Reference

DEFINE TBUF

Function
Scope
Syntax

Remarks

Example

See Also

Create a buffer for axis transformation matrices.

Global

DEFINE TBUF {constant}

DEF TBUF {constant}

where:

e {constant} is a positive integer representing the number of transformation matrices to
create

This command reserves space in PMAC’s memory for one or more axis transformation

matrices. These matrices can be used for real-time translation, rotation, scaling, and

mirroring of the X, Y, and Z axes of any coordinate system. A coordinate system selects

which matrix to use with the TSELn command, where n is an integer from 1 to the number of

matrices created here.

Note:

PMAC will reject this command, reporting an ERR003 if 16=1 or 3, if
any ROTARYor GATHER buffer exists. Any of these buffers must
be deleted first.

The number of long words of unused buffer memory can be found by issuing the SIZE
command. Each defined matrix takes 21 words of memory.
DELETE GATHER

DEF TBUF 1
DEFINE TBUF 8

Axis Transformation Matrices (Writing a Motion Program)
On-line commands DELETE TBUF, DELETE GATHER, SIZE.
Program commands TSEL, ADIS, AROT, IDIS, IROT, TINIT

DEFINE TCOMP

Function
Scope
Syntax

Remarks

Define torque compensation table

Motor specific

DEFINE TCOMP {entries}, {count length}

DEF TCOMP {entries}, {count length}

where:

e {entries} is a positive integer constant representing the number of values in the table;

e {count length} is a positive integer representing the span of the table in encoder
counts of the motor.

This command establishes a torque compensation table for the addressed motor. The next
{entries} constants sent to PMAC will be placed into this table. The last item on the
command line {count length} specifies the span of the torque compensation table in
encoder counts of the motor. In use, if the motor position goes outside of the range 0 to
count-length, the position is “rolled over” to within this range before the compensation is
computed. The spacing between entries in the table is {count length} divided by
{entries}.

On succeeding lines will be given the actual entries of the table as constants separated by
spaces and or carriage return characters. The entries are signed 24-bit integer values, with a
range of —8,388,608 to +8,388,607. The full range of these entries corresponds to the full
range of the 16-bit torque output of the servo loop, -32,768, to +32,767.

PMAC On-Line Command Specification 217

PMAC 2 Software Reference

See Also

Therefore, an entry in the torque compensation table is numerically 256 times bigger than the
corresponding servo-loop torque output.

The first entry is the correction at one spacing from the motor zero position (as determined by
the most recent home search move or power-up/reset), the second entry is the correction two
spacings away, and so on. PMAC computes corrections for positions between the table
entries by a first-order interpolation between adjacent entries. The correction from the table
at motor zero position is zero by definition.

The correction is the magnitude added to PMAC’s servo loop output at that position. If
PMAC’s command is positive, a positive value from the table will increase the magnitude of
the output; a negative value will decrease the magnitude of the output. If PMAC’s command
is negative, a positive value from the table will decrease the magnitude of the output in the
negative direction; a negative value will increase the magnitude of the output.

The last entry in the table represents the correction at {count length} distance from the
motor’s zero position. Since the table has the capability to roll over, this entry also represents
the correction at the motor’s zero position. For this reason, the last entry should virtually
always be set to zero.

Note:

PMAC will reject this command, reporting an ERR003 if [6=1 or 3, if
any TCOMP buffer exists for a lower numbered motor, or if any
BLCOMP, TBUF, ROTARY, or GATHER buffer exists. Any of
these buffers must be deleted first. TCOMP buffers must be defined
from high-numbered motor to low-numbered motor, and deleted from
low-numbered motor to high-numbered motor.

I51 must be set to 1 to enable the table.

Torque Compensation (Setting Up a Motor)
[-variables I51
On-line command DELETE TCOMP

DEFINE UBUFFER

Function
Scope
Syntax

Remarks

Create a buffer for user variable use.
Global

DEFINE UBUFFER {constant}

DEF UBUF {constant}

where:

e {constant} is a positive integer representing the number of 48-bit words of PMAC
memory to reserve for this purpose

This command reserves space in PMAC’s memory for the user’s discretionary use. This
memory space will be untouched by any PMAC automatic functions. User access to this
buffer is through M-variables, or possibly through on-line W (write) and R (read) commands.

The buffer starts at PMAC memory address $9FFF and continues back toward the beginning
of memory ($0000) for the number of long (48-bit) words specified by {constant}. This
memory space can be subdivided any way the user sees fit. On PMACs with battery backup,
the values in the buffer at power-down will still be there at power-up. On PMACs with flash
backup, the values in the buffer at the last SAVE command will be copied from the flash
memory into the buffer at power-up or reset.

218

PMAC On-Line Command Specification

PMAC 2 Software Reference

Example

See Also

All other buffers except for fixed motion programs (PROG) and PLC programs must be
deleted before PMAC will accept this command. There can be no rotary motion program,
leadscrew compensation table, transformation matrix, data gathering or stimulus buffers in
PMAC memory (any buffer created with a DEFINE command) for this command to be
accepted. It is usually best to reinitialize the card with a $$$*** command before sending
the DEFINE UBUFFER command.

The address of the end of unreserved memory is held in register X:$0F3F. This register must
hold the address $A000, signifying no defined buffers, in order for PMAC to be able to create
a user buffer. Immediately after the user buffer has successfully been defined, this register
will hold the address of the start of the buffer (the end of the user buffer is always at $9FFF).
However, after other buffers have been defined, the end of unreserved memory will not
match the beginning of the user buffer.

To free up this memory for other uses, the DEFINE UBUFFER O command should be used
(there is no DELETE UBUFFER command). It may be more convenient simply to re-
initialize the board with a $$$*** command.

RHX: $0F3F ; Look for end of unreserved memory
008A3D ; Reply indicates some reserved
SSSxx*x ; Re-initialize card to clear memory
RHX: $0F3F ; Check end of unreserved memory
00A000 ; Reply indicates none reserved
DEFINE UBUFFER 256 ; Reserve memory for buffer

RHX: $0F3F ; Check for beginning of buffer
009F00 ; Reply confirms 256 words reserved
M1000->D:$9F00 ; Define M-variable to first word
M1010->Y:$9F80,12,1 ; Define M- variable to a middle word
M1023->X:$9FFF,b 24,8 ; Define M- variable to last word

User Buffer, M-Variables (Computational Features)
On-line commands $$$*** R[H] {address}, W{address}

DELETE BLCOMP

Function
Scope
Syntax

Remarks

Example

Erase backlash compensation table
Motor specific

DELETE BLCOMP
DEL BLCOMP

This command causes PMAC to erase the compensation table for the addressed motor,
freeing that memory for other use.

Note:

PMAC will reject this command, reporting an ERR003 if 16=1 or 3, if
any BLCOMP buffer exists for a lower numbered motor, or if any
TBUF, ROTARY, or GATHER buffer exists. Any of these buffers
must be DELETEA first. BLCOMP buffers must be DEFINEd from
high-numbered motor to low-numbered motor, and DELETEd from
low-numbered motor to high-numbered motor.

#2 DEL BLCOMP ; Erase table belonging to Motor 2
ERROOS3...cccu.. ; PMAC rejects this command

#1 DEL BLCOMP ; Erase table belonging to Motor 1
#2 DEL BLCOMP ; Erase table belonging to Motor 2

PMAC On-Line Command Specification 219

PMAC 2 Software Reference

See Also

Backlash Compensation (Setting Up a Motor)
I-variables 199, Ix85, 1x86
On-line command DEFINE BLCOMP

DELETE COMP

Function
Scope
Syntax

Remarks

Example

See Also

Erase leadscrew compensation table
Motor specific

DELETE COMP
DEL COMP

This command causes PMAC to erase the compensation table belonging to the addressed
motor, freeing that memory for other use.

Note:

PMAC will reject this command, reporting an ERR003 if 16=1 or 3, if
any COMP buffer exists for a lower numbered motor, or if any
TCOMP, BLCOMP, TBUF, ROTARY, or GATHER buffer exists.
Any of these buffers must be deleted first. COMP buffers must be
defined from high-numbered motor to low-numbered motor, and
deleted from low-numbered motor to high-numbered motor.

Remember that a compensation table belonging to a motor does not necessarily affect that
motor or is not necessarily affected by that motor. The command LIST COMP DEF will
tell which motors it affects and is affected by.

#2DEL COMP ... ; Erase table belonging to Motor 2
ERROO3...ccceuuee ; PMAC rejects this command

#1 DELETE COMP ; Erase table belonging to Motor 1
#2 DELETE COMP ; Erase table belonging to Motor 2

Leadscrew compensation (Setting Up a Motor)
I-variable 151
On-line commands {constant}, LIST COMP, LIST COMP DEF, DEFINE COMP

DELETE GATHER

Function
Scope
Syntax

Remarks

Erase the data gather buffer.
Global

DELETE GATHER
DEL GAT

This command causes the data gathering buffer to be erased. The memory that was reserved
is now de-allocated and is available for other buffers (motion programs, PLC programs,
compensation tables, etc.). If data gathering is in progress (an ENDGATHER command has
not been issued and the gather buffer has not been filled up) PMAC will report an error on
receipt of this command.

PMAC’s Executive Program automatically inserts this command at the top of a file when it
uploads a buffer from PMAC into its editor, so the next download will not be hampered by an
existing gather buffer. It is strongly recommended that you use this command as well when
you create a program file in the editor (see Examples, below).

220

PMAC On-Line Command Specification

PMAC 2 Software Reference

Note:

When the executive program’s data gathering function operates, it
automatically reserves the entire open buffer space for gathered data.
When this has happened, no additional programs or program lines may
be entered into PMAC’s buffer space until the DELETE GATHER
command has freed this memory.

Example CLOSE.......cc..... ; Make sure no buffers are open
DELETE GATHER 5 Free memory
OPEN PROG 50 ; Open new buffer for entry
CLEAR...ccccorruueen ; Erase contents of buffer

; Enter new contents here

See Also Buffered Commands (Talking to PMAC)
On-line commands GATHER, DEFINE GATHER, SIZE

DELETE LOOKAHEAD {Option 6L firmware only}

Function Erase lookahead buffer

Scope Coordinate-system specific
Syntax: DELETE LOOKAHEAD
DEL LOOK

Remarks This command erases the lookahead buffer for the addressed coordinate system, freeing the
memory for other uses. It also permits a motor to be added to, or removed from, the
coordinate system, which cannot be done while there is a defined lookahead buffer for the
coordinate system.

PMAC will reject the DELETE LOOKAHEAD command, reporting an ERR0O03if 16 =1 or 3,
if a data gathering buffer exists. An existing data gathering buffer must be erased with a
DELETE GATHER command before the lookahead buffer may be deleted.

DELETE PLCC

Function Erase specified compiled PLC program
Scope Global

Syntax DELETE PLCC {constant}
DEL PLCC {constant}
where:

e {constant} is an integer from 0 to 31, representing the program number

Remarks This command causes PMAC to erase the specified compiled PLC program. Remember that
because all of the compiled PLC programs must be downloaded to PMAC together, the only
way to restore this PLC is to download the entire set of compiled PLCs.

Only one PLCC program can be deleted in one command. Ranges and lists of PLCC
program numbers are not permitted in this command.

To perform the same function for an uncompiled PLC program, the command sequence
would be OPEN PLC n CLEAR CLOSE.

Example DELETE PLCC 5 ; Erase compiled PLC program 5
DEL PLCC O ; Erase compiled PLC program 0

See Also Compiled PLCs (Writing a PLC Program)
I-variable 15
On-line commands DISABLE PLCC, ENABLE PLCC, CLEAR

PMAC On-Line Command Specification 221

PMAC 2 Software Reference

DELETE ROTARY

Function Delete rotary motion program buffer of addressed coordinate system
Scope Coordinate-system specific
Syntax DELETE ROTARY
DEL ROT
Remarks This command causes PMAC to erase the rotary buffer for the currently addressed coordinate
system and frees the memory that had been allocated for it.
Note:
PMAC will reject this command, reporting an ERR003 if [6=1 or 3, if
the ROTARY buffer for this coordinate system is open or executing,
or if any ROTARY buffer exists for a lower numbered coordinate
system, or if a GATHER buffer exists. Any of these buffers must be
deleted first. ROTARY buffers must be defined from high-numbered
coordinate system to low-numbered coordinate system, and deleted
from low-numbered motor to high-numbered motor.
Example &2 DELETE ROTARY ; Try to erase C.S. 2’s rotary buffer
ERROO3....cc....ee. ; PMAC rejects this; C.S. 1 still has a rotary
&1 DELETE ROTARY ; Erase C.S. 1’s rotary buffer
&2 DELETE ROTARY ; Erase C.S. 2’s rotary buffer; OK now
See Also Rotary Program Buffers (Writing a Motion Program)
On-line commands DEFINE ROTARY, OPEN ROTARY.
DELETE TBUF
Function Delete buffer for axis transformation matrices.
Scope Global
Syntax DELETE TBUF
DEL TBUF
Remarks This command frees up the space in PMAC’s memory that was used for axis transformation
matrices. These matrices can be used for real-time translation, rotation, scaling, and
mirroring of the X, Y, and Z axes of any coordinate system.
PMAC will reject this command, reporting an ERR007 if [6=1 or 3, if any ROTARYor
GATHER buffer exists. Any of these buffers must be DELETEA first.
Example DEL TBUF
DELETE TBUF
See Also Axis Transformation Matrices (Writing a Motion Program)
On-line commands DEFINE TBUF
Program commands TSEL, ADIS, AROT, IDIS, IROT, TINIT
222 PMAC On-Line Command Specification

PMAC 2 Software Reference

DELETE TCOMP

Function

Erase torque compensation table

Scope Motor specific

Syntax DELETE TCOMP
DEL TCOMP

Remarks This command causes PMAC to erase the torque compensation table for the addressed motor,
freeing that memory for other use.
PMAC will reject this command, reporting an ERR003 if 16=1 or 3, if any TCOMP buffer
exists for a lower numbered motor, or if any BLCOMP, TBUF, ROTARY, or GATHER
buffer exists. Any of these buffers must be deleted first. TCOMP buffers must be defined
from high-numbered motor to low-numbered motor, and deleted from low-numbered motor
to high-numbered motor.

Example #2 DEL TCOMP ; Erase table belonging to Motor 2
ERROOS3...cccu. ; PMAC rejects this command
#1 DEL TCOMP ; Erase table belonging to Motor 1
#2 DEL TCOMP ; Erase table belonging to Motor 2

See Also Torque Compensation (Setting Up a Motor)
I-variables I51
On-line command DEFINE TCOMP

DELETE TRACE

Function Formerly: Erase the motion program trace buffer.

Scope Global

Syntax DELETE TRACE
DEL TRAC

Remarks The TRACE buffer feature on PMAC has been removed. DELETE TRACE is still a valid
command and will not cause an error when sent to PMAC, but it causes no operation to be
performed.

Example CLOSE......cce..... ; Make sure no buffers are open
DELETE GATHER DELETE TRACE ; Free memory
OPEN PLC 17. ; Open new buffer for entry
CLEAR...ccccorruueen ; Erase contents of buffer

; Enter new contents here

See Also On-line commands DELETE GATHER.

DISABLE PLC

Function Pause execution of specified PLC program(s).

Scope Global

Syntax DISABLE PLC {constant}[, {constant}...]

DIS PLC {constant}[, {constant}...]
DISABLE PLC {constant}[..{constant}]
DIS PLC {constant}[..{constant}]
where:

e {constant} is an integer from 0 to 31, representing the program number

PMAC On-Line Command Specification 223

PMAC 2 Software Reference

Remarks

Example

See Also

This command causes PMAC to disable (stop executing) the specified uncompiled PLC
program or programs. Execution can subsequently be resumed at the top of the program with
the ENABLE PLC command. Ifitis desired to restart execution at the stopped point,
execution should be stopped with the PAUSE PLC command, and restarted with the
RESUME PLC command

The on-line DISABLE PLC command can only suspend execution of a PLC program at the
end of a scan, which is either the end of the program, or after an ENDWHILE statement in the
program.

PLC programs are specified by number, and may be specified in a command singularly, in a
list (separated by commas), or in a range of consecutively numbered programs. PLC
programs can be re-enabled by using the ENABLE PLC command.

If a motion or PLC program buffer is open when this command is sent to PMAC, the
command will be entered into that buffer for later execution.

DISABLE PILC 1

DIS PLC 5

DIS PLC 3,4,7

DISABLE PLC 0..31

I-variable 15

On-line commands ENABLE PLC, OPEN PLC, PAUSE PLC, RESUME PLC, LIST PLC,
<CONTROL-D>.

Program commands DISABLE PLC, ENABLE PLC, PAUSE PLC, RESUME PLC

DISABLE PLCC

Function Disable compiled PLC program(s).
Scope Global
Syntax DISABLE PLCC {constant} [, {constant}]
DIS PLCC {constant}[, {constant}]
DISABLE PLCC {constant}..{constant}
DIS PLCC {constant}..{constant}
where:
e {constant} is an integer from O to 31, representing the compiled PLC program
number
Remarks This command causes PMAC to disable (stop executing) the specified compiled PLC
program or programs. Compiled PLC programs are specified by number, and may be
specified in a command singularly, in a list (separated by commas), or in a range of
consecutively numbered programs. PLC programs can be re-enabled by using the ENABLE
PLCC command.
If a motion or PLC program buffer is open when this command is sent to PMAC, the
command will be entered into that buffer for later execution.
Example DISABLE PLCC 1
DIS PLCC 5
DIS PLCC 3,4,7
DISABLE PLCC 0..31
See Also [-variable 15
On-line commands DISABLE PLC, ENABLE PLC, ENABLE PLCC, OPEN PLC,
<CONTROL-D>.
Program commands DISABLE PLC,DISABLE PLCC, ENABLE PLC, ENABLE PLCC
224 PMAC On-Line Command Specification

PMAC 2 Software Reference

EAVERSION

Function Report full specification of firmware version

Scope Global

Syntax EAVERSION
EAVER

Remarks This command causes PMAC to report the full version of the firmware version that it is
using. It always returns an 8-digit response, with the following meanings to the digits.

Digit # Meaning Settings

1 PMAC Type 0=PMAC(1)
1 =PMAC2
2 = Ultralite PMAC
3 =PMAC2-VME
4 = Ultralite PMAC2-VME

2 Memory backup type | 0 = Battery backup
1 = AMD-style flash backup
2 = Intel-style flash backup

3 Options 0 = Standard
1 =ESA
2 = Lookahead
3 =ESA + Lookahead

4 Test version 0 = Released
1 = 1* test version
2 = 2" test version, etc.

5 Revision suffix 0 = First released version of
revision number
1 = A version
2 = B version, etc.

6-38 Released version 3-digit representation without
number decimal point (e.g. 116 for 1.16)
Example EAVERSION
01007116 ; PMAC(1), AMD-flash backup,

EAVER
41138116

; Standard firmware, released,
; G revision of 1.16

; Ultralite PMAC2-VME, AMD-flash,
; ESA firmware, 3¢ test version,
; H revision of 1.16

See Also On-line commands DATE, TYPE, VERSION

ENABLE PLC

Function Enable specified PLC program(s).

Scope Global

Syntax ENABLE PLC {constant}[, {constant}...]

ENA PLC {constant} [, {constant}...]

ENABLE PLC {constant}[..{constant}]

ENA PLC {constant}[..{constant}]

where:

e {constant} is an integer from 0 to 31, representing the program number

PMAC On-Line Command Specification

225

PMAC 2 Software Reference

Remarks

Example

See Also

This command causes PMAC to enable (start executing) the specified uncompiled PLC
program or programs at the top of the program. Execution of the PLC program may have
been stopped with the DISABLE PLC, PAUSE PLC, or OPEN PLC command.

PLC programs are specified by number, and may be used singularly in this command, in a list
(separated by commas), or in a range of consecutively numbered programs.

If a motion or PLC program buffer is open when this command is sent to PMAC, the
command will be entered into that buffer for later execution.

I-variable I5 must be in the proper state to allow the PLC program(s) specified in this
command to execute.

Note:

This command must be used to start operation of a PLC program after
it has been entered or edited, because the OPEN PLC command
automatically disables the program, and CLOSE does not re-enable it.

ENABLE PLC 1
ENA PLC 2,7
ENABLE PLC 3,21
ENABLE PLC 0..31

This example shows the sequence of commands to download a very simple PLC program and have it
enabled automatically on the download:

OPEN PILC 7 CLEAR
P1=P1l+1

CLOSE

ENABLE PLC 7

I-variable I5

On-line commands DISABLE PLC, OPEN PLC, PAUSE PLC, RESUME PLC, LIST
PLC, <CONTROL-D>.

Program commands DISABLE PLC, ENABLE PLC, PAUSE PLC, RESUME PLC

ENABLE PLCC

Function Enable specified compiled PLC program(s).

Scope Global

Syntax ENABLE PLCC {constant} [, {constant}]
ENA PLCC {constant}[, {constant}]
ENABLE PLCC {constant}..{constant}
ENA PLCC {constant}..{constant}
where:
e {constant} is an integer from O to 31, representing the program number

Remarks This command causes PMAC to enable (start executing) the specified compiled PLC
program or programs. Compiled PLC programs are specified by number, and may be used
singularly in this command, in a list (separated by commas), or in a range of consecutively
numbered programs.
If a motion or PLC program buffer is open when this command is sent to PMAC, the
command will be entered into that buffer for later execution.
I-variable I5 must be in the proper state to allow the compiled PLC program(s) specified in
this command to execute.

226 PMAC On-Line Command Specification

PMAC 2 Software Reference

Example ENABLE PLCC 1
ENA PLCC 2,7
ENABLE PLCC 3,21
ENABLE PLCC 0..31
See Also I-variable I5
On-line commands DISABLE PLC,DISABLE PLCC, ENABLE PLC, OPEN PLC,
<CONTROL-D>.
Program commands DISABLE PLC,DISABLE PLCC, ENABLE PLC, ENABLE PLCC
ENDGATHER
Function Stop data gathering.
Scope Global
Syntax ENDGATHER
ENDG
Remarks This command causes data gathering to cease. Data gathering may start up again (without
overwriting old data) with another GATHER command.
This command is usually used in conjunction with the data gathering and plotting functions
of the PMAC Executive Program.
If a motion or PLC program buffer is open when this command is sent to PMAC, the
command will be entered into that buffer for later execution.
Example GAT B1R...... ; Start gathering and run program 1
ENDG........cceueee. Stop gathering — give this command when moves
........................... of interest are done
OPEN PROG2 CLEAR
X10
DWELL1000
CMD”GATHER” . ; Program issues start command here
X20 ... ; Move of interest
DWELL50
CMD”ENDG” ; Program issues stop command here
CLOSE
See Also Data Gathering Function (Analysis Features)
I-variables 119-144
On-line commands DEFINE GATHER, GATHER, LIST GATHER, DELETE GATHER
Gathering and Plotting (PMAC Executive Program Manual)
F
Function Report motor following error
Scope Motor specific
Syntax F
Remarks This command causes PMAC to report the present motor following error (in counts, rounded
to the nearest tenth of a count) to the host. Following error is the difference between motor
desired and measured position at any instant. When the motor is open-loop (killed or
enabled), following error does not exist and PMAC reports a value of 0.
Example F....coooeeie, ; Ask for following error of addressed motor
12 e, ; PMAC responds
33 ; Ask for following error of Motor 3
-6.7 ; PMAC responds

PMAC On-Line Command Specification 227

PMAC 2 Software Reference

See Also

FRAX

Function
Scope
Syntax

Remarks

Example

See Also

Following Error (Servo Features)

I-variables Ix11, Ix12, Ix67

On-line commands <CTRL-F>, P, V

Suggested M-variable definitions Mx61, Mx62

Memory map registers D:$0028, D:$002C, etc.; D:$0840, etc.

Specify the coordinate system’s feedrate axes.

Coordinate-system specific

FRAX

FRAX ({axis} [, {axis}...])

where:

e {axis} (optional) is a character (X, Y, Z, A, B, C, U, V, W) specifying which axis is to
be used in the vector feedrate calculations

Note:
No spaces are permitted in this command.

This command specifies which axes are to be involved in the vector-feedrate (velocity)
calculations for upcoming feedrate-specified (F) moves. PMAC calculates the time for these
moves as the vector distance (square root of the sum of the squares of the axis distances) of
all the feedrate axes divided by the feedrate. Any non-feedrate axes commanded on the same
line will complete in the same amount of time, moving at whatever speed is necessary to
cover the distance in that time.

Vector feedrate has obvious geometrical meaning only in a Cartesian system, for which it
results in constant tool speed regardless of direction, but it is possible to specify for non-
Cartesian systems, and for more than three axes.

Note:

If only non-feedrate axes are commanded to move in a feedrate-
specified move, PMAC will consider the axis or axes commanded to
be feedrate axes for that move. However, the units of these axes may
be completely different from those of the vector feedrate axes (e.g.
degrees instead of mm), so the speed may not be what is desired.

If a motion program buffer is open when this command is sent to PMAC, it will be entered
into the buffer for later execution.

For instance, in a Cartesian XYZ system, if you use FRAX (X, Y), all of your feedrate-
specified moves will be at the specified vector feedrate in the XY-plane, but not necessarily
in XYZ-space. If you use FRAX (X,Y, Z) or FRAX, your feedrate-specified moves will be at
the specified vector feedrate in XYZ-space. Default feedrate axes for a coordinate system are
X,Y,and Z.

FRAX....coo.n.... ; Make all axes feedrate axes
FRAX (X,Y) ; Make X and Y axes only the feedrate axes
FRAX (X,Y, Z) ; Make X, Y, and Z axes only the feedrate axes

Feedrate-Specified Moves (Writing a Motion Program)
Program commands F{data}, FRAX.

228

PMAC On-Line Command Specification

PMAC 2 Software Reference

GATHER

Function
Scope
Syntax

Remarks

Example

See Also

H

Function
Scope
Syntax

Remarks

Begin data gathering.
Global

GATHER [TRIGGER]
GAT [TRIG]

This command causes data gathering to commence according to the configuration defined in
I-variables [19-145. If TRIGGER is not used in the command, gathering will start on the next
servo cycle. If TRIGGER is used, gathering will start on the first servo cycle after machine
input MI2 goes true.

Gathering will proceed at the frequency set by 119 (in number of servo interrupt cycles). If
119 is 0, only one set of data will be gathered per GATHER command. If PMAC is already
gathering data, GATHER will cause resynchronization of the gathering cycle to the next servo
cycle.

Gathering will continue until PMAC receives an ENDGATHER command, or until the buffer
created by the DEFINE GATHER command is full.

This command is usually used in conjunction with the data gathering and plotting functions
of the PMAC Executive Program.

If a motion or PLC program buffer is open when this command is sent to PMAC, the
command will be entered into that buffer for later execution.

GAT BIR.......... Start gathering and run